光课程设计平行平板多光束干涉的仿真

光课程设计平行平板多光束干涉的仿真
光课程设计平行平板多光束干涉的仿真

西安邮电大学

光学报告

学院:电子工程

学生姓名:

专业名称:光信息科学与技术班级:光信1103班

1

2

平行平板多光束干涉的仿真

【一】实验目的

通过对平行平板多光束干涉的计算: 1.掌握等倾干涉的概念;

2.掌握干涉特点及条纹锐度,自由光谱范围及滤波特性等概念。

3.对单色光(600nm )与复色光(两种颜色,如600,620nm )进行多光束干涉(要求变化R 值,

如R=0.046,R=0. 27,R=0.64,R=0.87,R=0.99)的计算,绘出干涉条纹,观察条纹锐度;固定入射角(如0°,30°角),观察选频特性。对复色光观察自由光谱范围。对整个仿真进行总结归纳。

【二】实验原理

相邻两反射光之间的光程差为

相位差为

相邻两透射光之间的相位差为

设光从周围介质射入平板时的反射系数为r ,透射系数为t ,光从平板射出时的反射系数为r ′,透射系数为t ′. 从平板反射出的各个光束的复振幅

由平板表面反射系数、透射系数与反射率、透射率的关系

反射光在P 点合成光场的复振幅

由I=E ·E*, 得到反射光强与入射光强的关系为

反射光、透射光强与入射光强的关系式,常称为爱里公式 类似地,也可得到透射光强与入射光强的关系式: θ

cos 2nh =?θ

λ

π

λπ?cos 222nh r =

?=

θλπλπ?cos 42nh t =?=

???

)1(0)32(020*********''''''--====l i i l lr i i r i i

r

i r e E r tt E e E r tt E e E tt r E rE E 2

1''r tt r r -=-=T R tt R r r =-===1''22n

i n i i i r e R e E R R E R E )()1(0

000??

∑∞=-+-=i

i i r E R

e E 00Re 1)1(?

?---=i r I F F I 2

sin 12sin 22??+=i

t I F I 2

sin

112?

+=

3

式中 精细度,描述干涉条纹的细锐程度 (1) 互补性

反映了能量守恒的普遍规律。即在不考虑吸收和其它损耗的情况下,反射光强与透射光强之和等于入射光强。若反射光因干涉加强,则透射光必因干涉而减弱,反之亦然。即是说,反射光强分布与透射光强分布互补 (2) 等倾性

由爱里公式可以看出,干涉光强随R 和?变化。 在特定的R 条件下,仅随?变化。

也可以说干涉光强只与光束倾角θ有关,这正是等倾干涉条纹

的特性 (3) 光强分布的极值条件

爱里公式

反射光形成亮条纹条件及其光强

反射光形成暗条纹条件及其光强

2

)1(4R R

F -=

θλ

π

?cos 22nh r =i

r I

F F I 2

sin 12sin 2

2

?

?+=

,2,1,0)12(=+=m m π?i

r I F

F

I +=1max

,2,1,02==m m π?0

min

=r I

透射光也可以由此得出类似的结果。

【三】程序框图

开始

已知入射光的入射角,反射率R,

入射光的波长

有光的干涉条件及光强的计算,由已知条件计

算出透射光的光强

计算出反射率与投射率与相位差的关系

用plot输出绘出反射率与投射率与相位

差的曲线图和投射光的干涉图样

结束

4

【四】实验结果及分析

i.

ii.

5

由透射光的相对光强图形和干涉条纹可以得出以下的规律:

首先第一幅图是在入射角一定的时候,改变反射率R所呈现不同的干涉条纹。第二幅图依次是透射光的相对光强曲线、反射光的相对光强曲线(其中它们是光强随着相位差 和反射率R的变化而变化)、条纹锐度图形(透射的相对光强随相位差的变化而变化)。

1.光强分布与反射率R有关 R很小时,干涉光强的变化不大,即干涉条纹

的可见度很低。R很大时,透射光强暗条纹的强度降低,条纹可见度提高。控制R的大小,可以改变光强的分布;

2.条纹锐度与反射率R有关随着R增大,极小值下降,亮条纹宽度变窄。

但因相对透射光强的极大值与R无关,所以,在R很大时,透射光的干涉条纹是在暗背景上的细亮条纹。与此相反,反射光的干涉条纹则是在亮背景上的细暗条纹,由于它不易辨别,故极少应用。R愈大,条纹锐度愈小,条纹愈尖锐(由

一图可以看出)。条纹锐度ε是单色光照射下多光束干涉条纹的半值宽度,称为”

6

7

仪器宽度“。

3.由条纹图可以看出其平行平板在透镜焦平面上产生的多光束干涉条纹是等倾干涉条纹,同时所观察到的等倾干涉条纹是一组同心圆环;这里由于光透过透镜是一个圆锥型,在屏幕上刚好是圆形;

4.频率特性 由图像可以看出,相邻透射光相位差?处于半宽度Δ?内的光才能透过平行平板,在平板结构(n,h)给定,入射光线方向(θ)一定的情况下,?仅与波长λ有关;——滤波特性

滤波宽度

可见,R 愈大,滤波效果愈好。- -高反膜F-P 可以用白光作光源,也可以得到细而亮的多光束干涉条纹。也可作单色滤波器使用。

5.在有一个角度入射时,此时干涉图样只是一个圆;

【五】总结

这个实验在做之前,我先找到很多相关的资料和书籍在查看和翻阅,想更加深入的理解其中的原理,看过之后还是只知道透射率和反射率,进而得到相对光强,在询问别人之后才发现它就是通过透射率的相对光强的大小来衡量光的大小,进而绘制出图像,但这里加了色彩这部分,使得实验效果更佳。不过需要懂得知识点很多。程序中应用了很多新的函数,比如:hold on 和hold off ,是相对使用的前者的意

思是,你在当前图的轴(坐标系)中画了一幅图,再画另一幅图时,原来的图还在,与新图共存,都看得到;后者表达的是,你在当前图的轴(坐标系)中画了一幅图,此时,状态是hold off,则再画另一幅图时,原来的图就看不到了,在轴上绘制的是新图,原图被替换了。程序中有很多要注意的语句,会使用它同时更注意的是知道它的功能用法。在这些逐渐比较难的程序中,我们逐渐掌握了如何建立坐标,并给坐标上建立标注;如何给一幅图上加注标题等等。感觉在程序上有很大的提高,也没有以前那么害怕。

在实验中不仅更加了解编程的思维,更重要的是对于平行平板多光束干涉的知识的巩固与复习,在实验中让我了解到:

1. 透射光的特点:具体为对光强分布、条纹锐度、频率特性的了解

2. 了解为什么干涉条纹是圆形,由于经过透镜光路为圆锥型;

3. 了解为什么实际中应用的是透射光而不是反射光,因为透射光的干涉条纹是在暗背

景上的细亮条纹。与此相反,反射光的干涉条纹则是在亮背景上的细暗条

纹,由于它不易辨别,故极少应用

还有很多知识在老师的讲解下都有了清晰地获得,这里就不一一说明了。

θπ?

νcos 421nh c

?=

?θπνcos R 2R)-c(121nh =?

matlab仿真光束的传输特性

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务和要求 用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲率半径,设为100mm ,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻璃),502-=r ,0.12=' n ,物点A 距第一面顶点的距离为100,由 A 点计算三条沿光轴夹角分别为10、20、30的光线的成像。试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。)

2、用MATLAB仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。) 3、用MATLAB仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。) 4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab对不同传输距离处的光强进行仿真。 三、理论推导部分 将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sin θ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r -)2^1 r ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即 2^(y

多光束干涉和法布里―珀罗干涉仪实验及其改进(精)

基础物理实验研究性报告论文题目:多光束干涉和法布里—珀罗干涉仪实验及其改进 第一作者:陈雪骑10231032 第二作者:王宇10231034 目录 引言 (2 实验重点 (2 实验原理 (3 实验内容 (9 原始数据及数据处理 (11

实验思考题 (13 误差分析与解决方法 (14 心得体会 (15 参考文献 (15 引言 1899年法国物理学家法布里和珀罗创制了以他们名字命名的法布里-珀罗干涉仪(简F-P干涉仪。用(相位相同的多光束干涉,可以获得细锐明亮且暗纹较宽的明条纹。因此一直是长度计量和研究光谱超精细结构的有效工具,多光束干涉原理还在激光器和光学薄膜理论中有重要的作用,是制作干涉仪器中干涉滤光片和激光共振腔的基本构型。 等倾干涉入射光经薄膜上表面反射后得第一束光,折射光经薄膜下表面反射,又经上表面折射后得第二束光,这两束光在薄膜的同侧,由同一入射振动分出,是相干光,属分振幅干涉。若光源为扩展光源(面光源,则只能在两相干光束的特定重叠区才能观察到干涉,故属定域干涉。对两表面互相平行的平面薄膜,干涉条纹定域在无穷远,通常借助于会聚透镜在其像方焦面内观察。 实验重点 ,1,了解法布里珀罗干涉仪的特点和调节; ,2,用法布里珀罗干涉仪观察多光束等倾干涉并测量钠双线的波长差和膜厚; ,3,巩固一元线性回归法在数据处理中的应用。 实验原理 法布里-珀罗(Fabry-Perot干涉仪主要由平行放置的两块平面板所组成,

O S L1 G G' L2 S O i 图1,法布里珀罗干涉仪示意图 图1为这种干涉仪的示意图,在两个板相向的平面G和'G上镀有薄银膜或 其它反射率较高的薄膜,要求镀膜的平面与标准样板之间的偏差不超过 1/20~1/50波长。若两平行的镀银平面的间隔固定不变(通常采用石英或铟钢作 间隔,则该仪器称为法布里-珀罗干涉仪。面光源S放在透镜1L的焦平面上,使许多方向不同的平行光束入射到干涉仪上,在' GG间作来回多次的反射,最后透射出来的平行光束在第二透镜2L的焦平面上形成同心圆形的等倾干涉条纹。

光课程设计平行平板多光束干涉的仿真

西安邮电大学 光学报告 学院:电子工程 学生姓名: 专业名称:光信息科学与技术班级:光信1103班 1

2 平行平板多光束干涉的仿真 【一】实验目的 通过对平行平板多光束干涉的计算: 1.掌握等倾干涉的概念; 2.掌握干涉特点及条纹锐度,自由光谱范围及滤波特性等概念。 3.对单色光(600nm )与复色光(两种颜色,如600,620nm )进行多光束干涉(要求变化R 值, 如R=0.046,R=0. 27,R=0.64,R=0.87,R=0.99)的计算,绘出干涉条纹,观察条纹锐度;固定入射角(如0°,30°角),观察选频特性。对复色光观察自由光谱范围。对整个仿真进行总结归纳。 【二】实验原理 相邻两反射光之间的光程差为 相位差为 相邻两透射光之间的相位差为 设光从周围介质射入平板时的反射系数为r ,透射系数为t ,光从平板射出时的反射系数为r ′,透射系数为t ′. 从平板反射出的各个光束的复振幅 由平板表面反射系数、透射系数与反射率、透射率的关系 反射光在P 点合成光场的复振幅 由I=E ·E*, 得到反射光强与入射光强的关系为 反射光、透射光强与入射光强的关系式,常称为爱里公式 类似地,也可得到透射光强与入射光强的关系式: θ cos 2nh =?θ λ π λπ?cos 222nh r = ?= θλπλπ?cos 42nh t =?= ??? )1(0)32(020*********''''''--====l i i l lr i i r i i r i r e E r tt E e E r tt E e E tt r E rE E 2 1''r tt r r -=-=T R tt R r r =-===1''22n i n i i i r e R e E R R E R E )()1(0 000?? ∑∞=-+-=i i i r E R e E 00Re 1)1(? ?---=i r I F F I 2 sin 12sin 22??+=i t I F I 2 sin 112? +=

高斯光束的matlab仿真复习进程

高斯光束的m a t l a b 仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 图3 理论高斯曲线 50 100150200 020406080100120140160 180实验测量高斯曲线 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

高斯光束的matlab仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 图3 理论高斯曲线 50 100150200 020406080100120140160 180实验测量高斯曲线 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

物理光学第二章答案

第二章光的干涉作业 1、在杨氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm和600nm的两种光波,试求: (1)两光波分别形成的条纹间距; (2)两组条纹的第8个亮条纹之间的距离。 2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。 3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。 4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。洛埃镜长为40cm,置于光源和屏的中央。(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹? 5、在杨氏干涉实验中,准单色光的波长宽度为0.05nm,

平均波长为500nm ,问在小孔S 1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。 6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。 7、太阳对地球表面的张角约为0.0093rad ,太阳光的平均波长为550nm ,试计算地球表面的相干面积。 8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。试计算从反射光方向和透射光方向观察到的条纹的可见度。 9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为 1.5,其下表面涂上高折射率(1.5)材料。试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=20cm )(3)第10个亮环处的条纹间距是多少? P P ’

多光束干涉和法布里—珀罗干涉

多光束干涉和法布里—珀罗干涉

————————————————————————————————作者:————————————————————————————————日期:

大学物理实验研究性报告 多光束干涉和法布里—珀罗干涉 第一作者:何志明 第二作者:张猛13071054 机械工程及自动化学院

2015年5月23日 摘要: 本报告将系统整理多光束干涉和法布里——珀罗干涉实验的实验原理、实验步骤、实验数据处理等内容,并对实验数据和实验中可能存在的误差、实验改进方法与建议做了较为详细的归纳,最后说明实验的收获与感想。 关键词: 干涉、波长、膜厚、数据处理、误差分析

目录? 摘要....................................................................................................................................................................... 2关键词 .................................................................................................................................................................. 2引言3? 实验原理 (4) 实验仪器 (6) 实验装置示意图................................................................................................................................................ 6实验内容7? 数据处理?8 思考题11? 参考文献............................................................................................................................................................ 11 实验感想?11 附:原始数据照片 (13) 引言 法布里——珀罗干涉仪(Fabry--Perotinterferometer)简

第五章光的干涉习题答案

第五章 光的干涉 5-1 波长为的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm ,试计算双缝之间的距离。 解:由题意,条纹间距为:cm e 15.020 3 == ∴双缝间距为:m e D d 39 1079.015 .0103.589200--?≈??==λ 1.5mm ,观察屏离小孔的垂直距离为1m ,若所用光源发出波长1λ=650nm 和2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。 解:对于1λ=650nm 的光波,条纹间距为: m d D e 3 3 9111043.010 5.1106501---?≈???==λ 对于2λ=532nm 的光波,条纹间距为: m d D e 339 221035.010 5.1105321---?≈???==λ ∴两组条纹的第8级条纹之间的距离为: m e e x 3 211064.0)(8-?=-=? 5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到 稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。已知照射光波波长为,空气折射率为,试求注入气体的折射率n g 。 解:气室充入空气和充气体前后,光程的变化为: D n g )000276.1(-=?δ 而这一光程变化对应于30个波长: λδ30=? ∴λ30)1(=-D n g 000768.1000276.110 401028.656303 9 =+???=--g n 5-4 在菲涅耳双面镜干涉实验中,光波长为600nm ,光源和观察屏到双面镜交线的距 离分别为0.6m 和1.8m ,双面镜夹角为10-3 rad ,求:(1)观察屏上的条纹间距;(2)屏上最多能看到多少亮条纹

多光束干涉研究

i 极小转角的多光束干涉在线测量 引言:文章就极小转角的测量提出利用F-P干涉仪的想法。利用光学器件具有误差小测量精度优势,探究了利用现有的F-P干涉仪原理,并在此基础上进一步改进,进而实现其精确测量极小转角的目的。关键字:极小转角多光束干涉在线测量。 下图为F-P干涉仪的简易图 1.多光束干涉 由于F-P干涉仪利用分振幅多光束干涉,所以先对多光束干涉进行理论推导。利用透明薄透镜的第一个表面和第二个表面对光波的依次反射,将入射光的振幅分为若干部分,并由各部分光波再次相遇产生干涉。

假设入射光波的振幅为A,薄膜上下表面对光波的振幅反射比分 别为r 1、r' 2 (外表面反射)和r' 1 和r 2 (内表面反射),相应的振 幅投射比分别为t 1、t' 2 (自外向内)和t' 1 、t 2 (自内向外),则 反射光波的振幅依次为r 1A,r 2 t 1 t' 1 A,r2 2 r' 1 t 1 t' 1 A , r3 2r2' 1 t 1 t' 1 A … 透射光波的振幅依次为t 1t 2 A,r 2 r' 1 t 1 t 2 A,r2 2 r2' 1 t 1 t 2 A, r3 2r3' 1 t 1 t 2 A,… 若n 1 =n 2 ,则r 1 =r' 2 =r, r 2 = r' 1 =r', t 1 = t' 2 =t'。i 1 =i' 2 =i。 于是根据斯托克斯倒易关系(|r|=|r'|,r2+tt'=1)得 反射光波振幅:rA,r(1-r2)A,r3(1-r2)A,r5(1-r2)A,; 透射光波振幅:(1-r2)A,r2(1-r2)A,r4(1-r2)A, r6(1- r2)A, 若振幅反射比r比较小,则多次反射可以忽略,这时只需要考虑前两束反射光和透射光的影响,从而可以使薄膜多光束干涉简化为双光束干涉,而且两束反射光波振幅近似相等,干涉图样的衬比度近似等于1;两束投射光光波振幅相差较大,其干涉图样衬比度小于1。 若振幅反射比r比较大,则相邻反射光合投射光光波振幅相差不大,各光束对叠加的贡献不可忽略,薄膜干涉变为不等强度的多光束干涉,这正是我们要研究的问题。

基于matlab高斯光束经透射型体光栅后的光束传输特性分析(附源程序)

目录 1 基本原理 (1) 1.1耦合波理论 (1) 1.2高斯光波的基本理论 (9) 2 建立模型描述 (10) 3仿真结果及分析 (10) 3.1角度选择性的模拟 (10) 3.2波长选择性的模拟 (13) 3.3单色发散光束经透射型布拉格体光栅的特性 (15) 3.4多色平面波经透射型布拉格体光栅的特性 (17) 4 调试过程及结论 (18) 5 心得体会 (20) 6 思考题 (20) 7 参考文献 (20) 8 附录 (21)

高斯光束经透射型体光栅后的光束传输 特性分析 1 基本原理 1.1耦合波理论 耦合波理论分析方法基于厚全息光栅产生的布拉格衍射光。当入射波被削弱且产生强衍射效率时,耦合波理论分析方法适用耦合波理论分析方法适用于透射光栅。 1.1.1耦合波理论研究的假设条件及模型 耦合波理论研究的假设条件: (1) 单色波入射体布拉格光栅; (2) 入射波以布拉格角度或近布拉格角度入射; (3)入射波垂直偏振与入射平面; (4)在体光栅中只有两个光波:入射光波 R 和衍射光波 S; (5)仅有入射光波 R 和衍射光波 S 遵守布拉格条件,其余的衍射能级违背布拉格 条件,可被忽略; (6)其余的衍射能级仅对入射光波 R 和衍射光波 S 的能量交换有微小影响; (7)将耦合波理论限定于厚布拉格光栅中; 图1为用于耦合波理论分析的布拉格光栅模型。z 轴垂直于介质平面,x 轴在介质平面内,平行于介质边界,y 轴垂直于纸面。边界面垂直于入射面,与介质边界成Φ角。光栅矢量K垂直于边界平面,其大小为2/ =Λ,Λ为光栅周期,θ为入射角。 Kπ 图1布拉格光栅模型

MATLAB 高斯光束传播轨迹的模拟

B1:高斯光束传播轨迹的模拟 设计任务: 作图表示高斯光束的传播轨迹 (1)基模高斯光束在自由空间的传播轨迹; (2)基模高斯光束经单透镜变换前后的传播轨迹; (3)基模高斯光束经调焦望远镜变换前后的传播轨迹。 function varargout = B1(varargin) % B1 M-file for B1.fig % B1, by itself, creates a new B1 or raises the existing % singleton*. % % H = B1 returns the handle to a new B1 or the handle to % the existing singleton*. % % B1('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in B1.M with the given input arguments. % % B1('Property','Value',...) creates a new B1 or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before B1_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to B1_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDA TA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help B1 % Last Modified by GUIDE v2.5 21-Oct-2010 17:52:32 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @B1_OpeningFcn, ... 'gui_OutputFcn', @B1_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []);

多光束干涉

第四章多光束干涉 4.1 法布里-珀罗(F-P)标准具两反射面的反射系数为0.8944,求(1)条纹的位相差半宽度; (2)条纹精细度。 4.2 分别计算R=0.5, 0.8, 0.9, 0.98时,F-P标准具条纹的精细度。 4.3 F-P标准具的间隔h=2mm,所使用的单色光波长λ=632.8nm,聚焦透镜的焦距f=30cm,试求条纹图样中第5个环条纹的半径。(设条纹图样中心正好是一亮点。) 4.4 将一个波长稍小于600nm的光波与一个波长为600nm的光波在F-P干涉仪上进行比较。当F-P干涉仪两镜面间距离改变1.5mm时,两光波的条纹系就重合一次,试求未知光波的波长。 4.5 F-P标准具的间隔为2.5mm,问对于λ=500nm的光,条纹系中心的干涉级是多少?如果照明光波包含波长500nm和稍小于500nm的两种光波,它们的环条纹距离为1/100条纹间距,问未知光波的波长是多少? 4.6 F-P标准具两镜面的间隔为0.25mm,标准具产生的λ1谱线的干涉环系中第2环和第5环的半径为2mm和3.8mm,λ2谱线的干涉环系中第2环和第5环的半径分别为2.1mm和 3.85mm。两谱线的平均波长为500nm,试决定两谱线的波长差。 4.7 在4.3题中,如果标准具两镜面的反射率为R=0.98,(1)标准具所能测量的最大波长差是多少?(2)所能分辨的最小波长差是多少? 4.8 已知汞同位素在绿光的四条特征谱线的波长分别为546.0753nm, 546.0745nm, 546.0734nm, 546.0728nm,它们分别属于汞的同位素Hg198, Hg200, Hg202, Hg204。问用F-P标准具分析这一结构时,如何选取标准具的间隔?(设标准具两镜面的反射率R=0.9。) 4.9 如果把激光器的谐振腔看作为一个F-P标准具,激光器的腔长h=0.5m,两反射镜的反射率为R=0.99,试求输出激光的频率间隔和线宽(设气体折射率n=1,输出谱线的中心波长λ=632.8nm)。 4.10λF-P干涉仪两反射镜的反射率为0.5,试求它的最大透射率和最小透射率。若干涉仪为一折射率为n=1.6的玻璃平板所代替,最大透射率和最小透射率又是多少?(不考虑系统的吸收。) 4.11 在上题中,若考虑到干涉仪镜面的吸收,其吸收率为0.05,试求干涉仪最大透射率和最小透射率。 4.12 如图所示,F-P标准具两镜面的间隔为1cm,在其两侧各放一个焦距为15cm的准直透镜L1和会聚透镜L2。直径为1cm的光源(中心在光轴上)置于L1的焦平面,光源发射波长为589.3nm的单色光;空气的折射率为1。(1)计算L2焦点处的干涉级。在L2的焦面上能观察到多少个亮条纹?其中半径最大条纹的干涉级和半径是多少?(2)若将一片折射率为1.5,厚为0.5mm的透明薄片插入标准具两镜面之间,插至一半位置,干涉环条纹将发生怎样的变化?

高斯光束经透射型体光栅后的光束传输特性分析

目录 1 技术指标 (1) 1.1 初始条件 (1) 1.2 技术要求 (1) 1.3 主要任务 (1) 2 基本理论 (1) 2.1 高斯光波的基本理论 (1) 2.2 耦合波理论 (2) 3 建立模型描述 (4) 4 仿真结果及分析 (5) 4.1 角度选择性的模拟 (5) 4.1.1 不同光栅厚度下的角度选择性 (6) 4.1.2 不同光栅线对下的角度选择性 (7) 4.2 波长选择性的模拟 (8) 4.2.1不同光栅厚度下的波长选择性 (8) 4.2.2不同光栅线对下的波长选择性 (9) 4.3 单色发散光束经透射型布拉格体光栅的特性 (10) 4.4 多色平面波经透射型布拉格体光栅的特性 (11) 5 调试过程及结论 (12) 6 心得体会 (13) 7 思考题 (13) 8 参考文献 (14)

高斯光束经透射型体光栅后的光束传输 特性分析 1 技术指标 1.1 初始条件 Matlab软件,计算机 1.2 技术要求 根据耦合波理论,推导出透射体光栅性能参量(角度和波长选择性)与光栅参数(光栅周期,光栅厚度等)之间的关系式;数值分析平面波、谱宽和发散角为高斯分布的光束入射条件下,衍射效率受波长和角度偏移量的影响。 1.3 主要任务 1 查阅相关资料,熟悉体光栅常用分析方法,建立耦合波分析模型; 2 利用matlab软件进行模型仿真,程序调试使其达到设计指标要求及分析仿真结果; 3 撰写设计说明书,进行答辩。 2 基本理论 2.1 高斯光波的基本理论 激光谐振腔发出的基膜场,其横截面的振幅分布遵守高斯函数,称之为高斯脉冲光波。如图1所示为高斯脉冲光波及其参数的图。

多光束干涉

第四章多光束干涉 4.1法布里-珀罗(F-P)标准具两反射面的反射系数为0.8944,求(1)条纹的位相差半宽度;(2)条纹精细度。 4.2分别计算R=0.5, 0.8, 0.9, 0.98时,F-P标准具条纹的精细度。 4.3F-P标准具的间隔h=2mm,所使用的单色光波长=632.8nm,聚焦透镜的焦距f=30cm,试求条纹图样中第5个环条纹的半径。(设条纹图样中心正好是一亮点。) 4.4将一个波长稍小于600nm的光波与一个波长为600nm的光波在F-P干涉仪上进行比较。 当F-P干涉仪两镜面间距离改变1.5mm时,两光波的条纹系就重合一次,试求未知光波的波长。 4.5F-P标准具的间隔为2.5mm,问对于=500nm的光,条纹系中心的干涉级是多少?如果照明光波包含波长500nm和稍小于500nm的两种光波,它们的环条纹距离为1/100条纹间距,问未知光波的波长是多少? 4.6F-P标准具两镜面的间隔为0.25mm,标准具产生的 1谱线的干涉环系中第2环和第5环的半径为2mm和3.8mm, 2谱线的干涉环系中第2环和第5环的半径分别为2.1mm和 3.85mm。两谱线的平均波长为500nm,试决定两谱线的波长差。 4.7在4.3题中,如果标准具两镜面的反射率为R=0.98,(1)标准具所能测量的最大波长差是多少?(2)所能分辨的最小波长差是多少? 4.8已知汞同位素在绿光的四条特征谱线的波长分别为 546.0753nm,546.0745nm, 546.0734nm, 546.0728nm,它们分别属于汞的同位素Hg198, Hg200, Hg202, Hg204。问用F-P标准具分析这一结构时,如何选取标准具的间隔?(设标准具两镜面的反射率R=0.9。)

matlab仿真光束的传输特性

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务与要求 用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1、5062,镜片中心厚度为3mm,凸面曲率半径,设为100mm,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻 璃),502-=r ,0.12='n ,物点A 距第一面顶点的距离为100,由A 点计 算三条沿光轴夹角分别为10、20、30的光线的成像。试用Matlab 对以上三条光线光路与近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm,中心厚度3mm 的平凸透镜。用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。) 2、用MATLAB 仿真平行光束的衍射强度分布图样。(夫朗与费矩形孔衍射、夫朗与费圆孔衍射、夫朗与费单缝与多缝衍射。) 3、用MATLAB 仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布与平面的灰度图。)

4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab对不同传输距离处的光强进行仿真。 三、理论推导部分 将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sinθ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r-r ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即可求出b (y 2^ )2^1 值,从而就可以求出射直线。由单透镜焦点计算公式1/f=-(n-1)*(1/r1-1/r2)可求得f=193、6858。

MATLAB 高斯光束传播轨迹的模拟

B1:xx光束传播轨迹的模拟 设计任务: 作图表示xx光束的传播轨迹 (1)基模高斯光束在自由空间的传播轨迹; (2)基模高斯光束经单透镜变换前后的传播轨迹; (3)基模高斯光束经调焦望远镜变换前后的传播轨迹。 function vargout = B1(vargin) % B1 M-file for B1.fig %B1, by itself, creates a new B1 or raises the existing %singleton*.%%H = B1 returns the handle to a new B1 or the handle to %the existing singleton*.%%B1('CALLBACK',hObject,eventData,handles,...) calls the local %function named CALLBACK in B1.M with the given input arguments.%%B1('Property','Value',...) creates a new B1 or raises the %existing singleton*.Starting from the left, property value pairs are %applied to the GUI before B1_OpeningFunction gets called.An %unrecognized property name or invalid value makes property application GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help B1

拉盖尔高斯光束 厄米高斯光束MATLAB仿真

激光原理by贾而穑 130212114 厄米高斯光束MATLAB仿真 其中主程序文件:plotHermiteGaussianBeams.m 子程序文件:HermitePoly.m 程序如下: plotHermiteGaussianBeams.m %-------------------------------------------------------------------------% % auther:Erse Jia % Student ID 130212114 %-------------------------------------------------------------------------% %% Hermite Gaussian Beams %% SET PARAMETERS % Physical parameters lambda = 500; % nm k = 2*pi/lambda; % The two parameters for the gaussian beam (and derived quantities) z0 = 1; A0 = 1; W0 = sqrt(lambda*z0/pi); W = @(z) W0*sqrt(1+(z/z0)^2); R = @(z) z*(1+(z/z0)^2); Zeta = @(z) atan(z/z0); % The coefficients for the Hermite-Gaussian (HG) beam of order (l,m) A = [ 1 0 0 0; 1 1 0 0; 0 0 0 0; 0 0 .2 0]; % Display Parameters res = 800; z = 1e-9; x = linspace(-2*W(z),2*W(z),res); y = linspace(-2*W(z),2*W(z),res); [X Y] = meshgrid(x,y); X = X(:); Y = Y(:); %% RUN THE SIMULATION % Preallocate Memory

第五章 光的干涉 习题答案

第五章光得干涉 5-1 波长为589、3nm得钠光照射在一双缝上,在距双缝200cm得观察屏上测量20个条纹共宽3cm,试计算双缝之间得距离。 解:由题意,条纹间距为: ∴双缝间距为: ,两小孔得距离为1、5mm,观察屏离小孔得垂直距离为1m,若所用光源发出波长=650nm与=532nm得两种光波,试求两光波分别形成得条纹间距以及两组条纹得第8级亮纹之间得距离。 解:对于=650nm得光波,条纹间距为: 对于=532nm得光波,条纹间距为: ∴两组条纹得第8级条纹之间得距离为: 5-3 一个长40mm得充以空气得气室置于杨氏装置中得一个小孔前,在观察屏上观察到稳定得干涉条纹系,继后抽去气室中得空气,注入某种气体,发现条纹系移动了30个条纹。已知照射光波波长为656、28nm,空气折射率为1、000276,试求注入气体得折射率n g。 解:气室充入空气与充气体前后,光程得变化为: 而这一光程变化对应于30个波长: ∴ 5-4 在菲涅耳双面镜干涉实验中,光波长为600nm,光源与观察屏到双面镜交线得距离分别为0、6m与1、8m,双面镜夹角为10-3rad,求:(1)观察屏上得条纹间距;(2)屏上最多能瞧到多少亮条纹? 解:如图所示,S1S2得距离为: ∴条纹间距为: ∵角很小 ∴ 屏上能产生条纹得范围,如图阴影所示 ∴最多能瞧到得亮条纹数为: 5-5 在如图所示得洛埃镜实验中,光源S1到观察屏得距离为2m,光源到洛埃镜面得垂直距离为2、5mm。洛埃镜长40cm,置于光源与屏得中央。若光波波长为500nm,条纹间距为多少?在屏上可瞧见几条条纹? 解:在洛埃镜实验中,S1与S1在平面镜中得像S2可瞧作就是产生干涉得两个光源。条纹间距为: 由图可知,屏上发生干涉得区域在P1P2范围内 0 1 2

高斯光束传播 matlab

%Gaussian_propagation.m %Simulation of diffraction of Gaussian Beam clear; %Gaussian Beam %N:sampling number N=input('Number of samples(enter from 100 to 500)='); L=10*10^-3; Ld=input('wavelength of light in [micrometers]='); Ld=Ld*10^-6; ko=(2*pi)/Ld; wo=input('Waist of Gaussian Beam in [mm]='); wo=wo*10^-3; z_ray=(ko*wo^2)/2*10^3; sprintf('Rayleigh range is %f [mm]',z_ray) z_ray=z_ray*10^-3; z=input('Propagation length (z) in [mm]'); z=z*10^-3; %dx:step size dx=L/N; for n=1:N+1 for m=1:N+1 %Space axis x(m)=(m-1)*dx-L/2; y(n)=(n-1)*dx-L/2; %Gaussian Beam in space domain Gau(n,m)=exp(-(x(m)^2+y(n)^2)/(wo^2)); %Frequency axis Kx(m)=(2*pi*(m-1))/(N*dx)-((2*pi*(N))/(N*dx))/2; Ky(n)=(2*pi*(n-1))/(N*dx)-((2*pi*(N))/(N*dx))/2; %Free space transfer function H(n,m)=exp(j/(2*ko)*z*(Kx(m)^2+Ky(n)^2)); end end %Gaussian Beam in Frequency domain FGau=fft2(Gau); FGau=fftshift(FGau); %Propagated Gaussian beam in Frequency domain FGau_pro=FGau.*H;

干涉习题

《光的干涉》 一、填空题 1.两个频率相同、振动方向、传播方向的单色 光波叠加将形成驻波。 2.影响干涉条纹可见度的主要因素是相干光源的、光 源的和光源的非单色性。 3.平行平板产生的干涉圆条纹中,光程差越大,对应的条纹干涉级次 越;最高干涉级出现在条纹的处。 4.楔形平板产生的干涉平行条纹中,从一个条纹过渡到相邻另一个条 纹,平板的厚度变换为,对应光程差变化为,条纹间隔为。 5.用波长为λ的单色光垂直照射折射率为n2的劈形膜(如图)图中各部 分折射率的关系是n1<n2<n3.观察反射光的 干涉条纹,从劈形膜顶开始向右数第5条暗条 纹中心所对应的厚度e=_______________ 6.用波长为λ的单色光垂直照射如图所示的、折射 率为n2的劈形膜(n1>n2,n3>n2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e=______________ 三、计算题n 1 n 2 n 3 n 1 n 2 n 3

1. 曲率半径为R 的平凸透镜和平玻璃板之间形成劈形空气薄层,如图所示.用波长为λ的单色平行光垂直入射,观察反射光形成的牛顿环.设凸透镜和平玻璃板在中心点O 恰好接触,试导出确定第k 个暗环的半径r 的公式.(从中心向外数k 的数目,中心暗斑不算) 解:如题图,半径为r 处空气层厚度为e .考 虑到下表面反射时有相位突变π,两束反射光的光程差为2e +λ2 1 . 暗纹条件: 2e +λ2 1= ( 2k +1) λ2 1 , (k =0,1,2,…) 即: 2e = k λ, ① 由图得 ()2 2 222e Re e R R r -=--= ∵ R e <<, e 2<<2Re , ∴可将式中e 2 略去,得 R r e 22 = ② ∴ 将②式代入①,得暗环半径 λkR r = (k =1,2,…) (若令k =0,即表示中心暗斑) 2. 在等倾干涉实验中,若照明光波的波长λ=600nm ,平板的厚度h=2mm ,折射率n=1.5,其下表面涂上某种高折射率介质(n H >1.5),问正入射时: (1) 在反射光方向观察到的圆条纹中心是亮还是暗? (2) 由中心向外计算,第10个亮纹的半径是多少?(观察望远镜物 镜的焦距为20cm) (3) 第10个亮环处的条纹间距是多少?

相关文档
最新文档