搅拌反应釜课程设计(优选.)

搅拌反应釜课程设计(优选.)
搅拌反应釜课程设计(优选.)

课程设计说明书

专业:

班级:

姓名:

学号:

指导教师:

设计时间:

要求与说明

一、学生采用本报告完成课程设计总结。

二、要求文字(一律用计算机)填写,工整、清晰。所附设备安

装用计算机绘图画出。

三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录

一、设计任务书 (5)

二、设计方案简介 (6)

1.1罐体几何尺寸计算 (7)

1.1.1确定筒体内径 (7)

1.1.2确定封头尺寸 (8)

1.1.3确定筒体高度 (9)

1.2夹套几何计算 (10)

1.2.1夹套内径 (10)

1.2.2夹套高度计算 (10)

1.2.3传热面积的计算 (10)

1.3夹套反应釜的强度计算 (11)

1.3.1强度计算的原则及依据 (11)

1.3.2按内压对筒体和封头进行强度计算 (12)

1.3.2.1压力计算 (12)

1.3.2.2罐体及夹套厚度计算 (12)

1.3.3按外压对筒体和封头进行稳定性校核 (14)

1.3.4水压试验校核 (16)

(二)、搅拌传动系统 (16)

2.1进行传动系统方案设计 (17)

2.2作带传动设计计算 (17)

2.2.1计算设计功率Pc (17)

2.2.2选择V形带型号 (17)

2.2.3选取小带轮及大带轮 (17)

2.2.4验算带速V (18)

2.2.5确定中心距 (18)

(18)

2.2.6 验算小带轮包角

1

2.2.7确定带的根数Z (18)

2.2.8确定初拉力Q (19)

2.3搅拌器设计 (19)

2.4搅拌轴的设计及强度校核 (19)

2.5选择轴承 (20)

2.6选择联轴器 (20)

2.7选择轴封型式 (21)

(三)、设计机架结构 (21)

(四)、凸缘法兰及安装底盖 (22)

4.1凸缘法兰 (22)

4.2安装底盖 (23)

(五)、支座形式 (24)

5.1 支座的选型 (24)

5.2支座载荷的校核计算 (26)

(六)、容器附件 (27)

6.1手孔和人孔 (27)

6.2设备接口 (28)

6.2.1接管与管法兰 (28)

6.3视镜 (30)

四、设计结果汇总 (33)

五、参考资料 (35)

六、后记 (37)

七、设计说明书评定 (38)

八、答辩过程评定 (38)

一、设计任务书

设计题目:夹套反应釜的设计

设计条件:设计参数及要求

设计参数及要求简图

容器内夹套内

工作压力/MPa 0.18 0.25

设计压力/MPa 0.2 0.3

工作温度/℃100 130

设计温度/℃<120 <150

介质染料及有机溶剂水蒸气

全容积/m3 2.5

操作容积/ m3 2.0

传热面积/ m2>3

腐蚀情况微弱

推荐材料Q345R或Q245R

搅拌器型式浆式

200

搅拌轴转速

/(r/min)

轴功率/kW 4

工艺接管表

符号公称尺寸连接面形式

A 25 PL/RF 蒸汽入口

B 65 PL/RF 进料口

C1,2100 - 视镜

D 25 PL/RF 温度计管口

E 25 PL/R

F 压缩空气入口

F 40 PL/RF 放料口

G 25 PL/RF 冷凝水出口

设备安装场合室内

二、设计方案简介

三、工艺计算及主要设备计算

(一)、罐体和夹套的结构设计

夹套式反应釜是由罐体和夹套两大部分组成的。罐体在规定的操作温度和操作压力下,为物料完成其搅拌过程提供了一定的空间。夹套传热是一种应用最普遍的外部传热方式。

罐体和夹套的设计主要包括其结构设计,各部分几何尺寸的确定和强度的计算与校核。

罐体一般是立式圆筒容器,有顶盖、筒体和罐底,通过支座安装在基础或平台上。罐底通常为椭圆形封头。

1.1罐体几何尺寸计算

1.1.1确定筒体内径

一般由工艺条件给定全容积V ,筒体内径 按照D 1公式 估算 D 1 ≈

3

4i

V π[1]

式中 V ——工艺条件给定容积,m 3

i ——长径比, 11D H i =

其按物料选取,根据参考文献[1],

图1-1 几种搅拌釜的长径比值

选取i=1.3。由任务书给出的V=2.5m 3,可得D 1=1.348m=1348mm ,查阅压力容器公称直径GB9019—1998[2]

图1-2 筒体的容积、面积和质量

圆整为D1=1400 mm,同时得到V1m=1.539m3/m,F1m=4.40m2。

1.1.2确定封头尺寸

反应釜筒体与夹套最常用的封头型式是标准椭圆封头,以内径为基准的椭圆封头类型代号为EHA,其内径与筒体内径相同,根据筒体内径D1=1400mm,参阅[3]可选取以下信息:

曲边高度h1(mm)350

直边高度h2 (mm) 25

内表面积F封(m2) 2.2346

容积V封(m3)0.3977

图1-3 以内径为公称直径的椭圆封头的型式和尺寸

1.1.3确定筒体高度

H按反应釜容积V通常按下封头和筒体两部分容积之和计算。则筒体高度1公式计算,并进行圆整。

H1=(V-V封)/V1m[4]

式中V封——封头容积,m3;

V1m——1m高筒体容积,m3/m;

V1m=1.539m3/m,V封= 0.3977m3

H1=(2.5-0.3977)/1.539=1.366m=1366mm

圆整后H1=1400mm

当筒体高度确定后,应按圆整后的筒体高度修正设计容积,则

V修正=V1m×H1+V封=1.539×1.4+0.3977=2.5523 m3

式中F筒——筒体表面积F筒,F筒=H2×F1m,m2

F封——封头面积,m2

F1m——1m高筒体内表面积,m2/m

F筒=H2×F1m=1.100×4.40=4.84m2 ,

F筒+F封=4.84+2.2346=7.0746m2 >3m2

因此符合传热要求。因圆筒型夹套传热面积小,故选用圆筒型夹套。

图1-4 U型夹套与圆筒型夹套的比较

1.3夹套反应釜的强度计算

当反应釜的几何尺寸确定后,则要根据已知的公称直径、设计压力和设计温度进行强度计算,确定罐体及夹套的筒体和封头的厚度。

1.3.1强度计算的原则及依据

根据任务书给出的条件,反应釜体内为正压外带夹套,被夹套包围的罐体分别按内压和外压计算,罐体内压为0.2MPa,外压为极限时最大内外压差0.3MPa;其余部分按内压圆筒设计。

圆筒为正压外带夹套:[7]

(1)当圆筒体的公称直径DN≥600mm时,被夹套包围部分的筒体分别按

图1-5 焊接接头系数设计温度下材料需用应力=113 MPa[10]

图1-6钢板许用应力

罐体筒体计算厚度

C

t

c

P

D

P

1

1

1

1

]

[2-

=

φ

δ

σ=1.56mm;[11]

0F =

zv

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设计 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径

当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ; i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由

高温高压反应釜操作规程及注意事项

目录 1 装置简介 (2) 1.1 反应釜结构 (2) 1.2 技术参数 (2) 1.3 控制箱组成 (2) 1.4 控制箱工作原理 (4) 2 安装要求 (4) 3 操作步骤 (5) 3.1 检查工作 (5) 3.2 温度整定 (5) 3.3 实验步骤 (6) 4 安全注意事项 (7)

1 装置简介 该类型反应釜,适用于一定压力和温度下的化学反应的反应装置。与物料接触的零件均采用不锈钢耐腐蚀材料做成,能够满足多种物料在额定压力和额定温度范围内进行化学反应的要求,是进行各种化学反应试验的理想装置。 1.1 反应釜结构 本反应釜由反应容器、电加热炉、安全爆破片、针型阀、控制箱等部件组成。反应容器是由不锈钢制成的釜体和釜盖组成,釜体与釜盖采用法兰连接。 釜盖上设有压力表和爆破片,进气(液)阀,取样(出料)阀,冷却水管接头及测温铂电阻插口。爆破片一般在购买时已与用户定好使用压力,当用户使用中超过规定的压力时会发生爆破泄压,以保护其他承受部件的安全。加热电炉为螺旋形电热管,该电热管经缩管工艺将电阻丝固定在绝缘材料之中,绝缘性能好,使用寿命长。 本釜配带控制箱,控制箱中的温度仪与插入釜体中的测温铂电阻联接由PID 控制,从而实现温度的目标控制,控温精度达到±0.5%。 1.2 技术参数 公称容积35L 全容积40L 设计压力 2.5MPa 工作压力 1.5MPa 设计温度220℃工作温度200℃ 材质S31603 加热功率9 KW 加热方式油浴电加热控温精度±1℃ 1.3 控制箱组成 本控制仪为箱体结构,前面板装有智能温度控制仪(1)、通电工作计时表(2)、电加热电压表(3)、加热调压电位器(4)、电源开关(5)、夹套温度显示(6)。 后面板装有电源进线插座(7)、电加热输出接线端子(8)、测温铂电阻进线插座(9、10)、电源保险丝座(11)。

夹套反应釜课程设计

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 ⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可

行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

搅拌反应釜的设计

1 绪论 1.1 反应釜概况 搅拌设备是一种在一定容积的容器中,借助搅拌器向液相物料中传递必要的能量进行搅拌过程的化学反应设备。反应釜就是其中比较典型的一种,它适用于多种物性(如粘度、密度)和多种操作条件(温度、压力)的反应过程,广泛应用于石油化工、橡胶、农药、染料、医药等行业,是一种用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。 搅拌式反应釜有很大的通用性,由于搅拌可以把多种液体物料相混合,把固体物料溶解在液体中、将几种不互溶的液体制成乳浊液、把固体微粒搅浑在液体中制成悬浮液或在液相中析出结晶等,故搅拌反应釜可以在带有搅拌的许多物理过程中广泛的应用。同时在研究容器的结构方面,如容器形状、搅拌装置、传热部件等,搅拌式反应釜都具有代表性。在大多数设备中,反映釜是作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器,约占反应器总数的90%。其它如染料、医药、农药、油漆等设备的使用亦很广泛。有色冶金部门对全国有色冶金行业中的搅拌设备作了调查及功率测试,结果是许多湿法车间的动力消耗50%以上是用在搅拌作业上。搅拌设备的应用范围之所以这样广泛,还因为搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围广,又能适用于多样化的生产。 搅拌式反应釜在石油化工生产中被用于物料混合、溶解、传热、制备悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精致,汽油添加四乙基铅等添加物而进行混合,使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。因为在石油工业中大量使用催化剂、添加剂,所以对于搅拌设备的需求量比较大。由于物料操作条件的复杂性、多样性、对搅拌

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计 课程设计说明书设计题目夹套搅拌反应器设计 学生 学号 专业班级 指导老师耿绍辉 化工设备基础 Nefu.20121228

夹套搅拌反应器设计 目录 第一章设计方案简介 1.1反应釜的基本结构 1.2反应釜的机械设计依据 第二章反应釜机械设计的内容和步骤 第三章反应釜釜体的设计 3.1 罐体和夹套计算 3.2厚度的选择 3.3设备支座 3.4手孔 3.5选择接管、管法兰、设备法兰 第四章搅拌转动系统设计 4.1转动系统设计方案 4.2转动设计计算:定出带型、带轮相关计算 4.3选择轴承 4.4选择联轴器 4.5罐体搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计4.6电动机选择 第五章绘制装配图 第六章绘制大V带轮零件图 第七章本设计的评价及心得体会 第八章参考文献

夹套搅拌反应器设计 第一章设计方案简介 搅拌设备在石油、化工、食品等工业生产中应用范围很广,尤其是化学工业中,很多的化工生产或多或少地应用着搅拌操作,化学工艺过程的种种物理过程与化学过程,往往要采用搅拌操作才能得到好的效果。搅拌设备在许多场合时作为反应器来应用的,而带搅拌的反应器则以液相物料为特征,有液-液、液-固、液-气等相反应。 搅拌的目的是:1、使互不相溶液体混合均匀,制备均匀混合液、乳化液、强化传质过程;2、使气体在液体中充分分散,强化传质或化学反应;3、制备均匀悬浮液,促使固体加速溶解、浸取或发生液-固化学反应;4、强化传热,防止局部过热或过冷。所以根据搅拌的不同目的,搅拌效果有不同的表示方法。 搅拌操作分为机械搅拌和气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群以密集状态上升借所谓气升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体所进行的搅拌时比较弱的,所以在工业生产,大多数的搅拌操作均是机械搅拌。本设计实验要求的就是机械搅拌搅拌器设备的设计遵循以下三个过程:1根据搅拌目的和物理性质进行搅拌设备的选型。2在选型的基础进行工艺设计与计算。3进行搅拌设备的机械设计与费用评价。在工艺与计算中最重要的是搅拌功率的计算和传热计算。 1.1反应釜的基本结构

高压反应釜操作规程

标准文件 Standard document 1、目的Objective:规范高压反应罐操作,确保反应罐正常处于完好状态以及满足安全、生产的要求。 2、范围Scope:适用于公司所有高压反应罐的操作。 3、职责Responsibilities: 3.1 培训职责:本文件起草人或审核人或批准人负责对工程项目部、生产车间负责人进行本规程培训;以上部门负责人对其部门人员进行本规程培训。 3.2 工程项目部负责制定本规程,生产车间负责人负责监督本规程的实施,生产操作人员对本规程的实施负责。 4、定义Definition:无。 5、程序Procedures: 5.1 操作规程 5.1.1每次开机前操人员都要检查各电器线路、阀门管线,确保无问题。开机前先开冷却水,运行过程中以及设备内部有较高温度的情况下,要一直保持畅通,不得断水。防止内外磁转子高温退磁。 5.1.2运行时,每班都要设专人负责。运行时(包括试运行)时操作人员不得擅自离开工作台。 5.1.3经常检查减速机的润滑油,确保油量在标定范围内。 5.1.4磁力耦合器应定时加注高温润滑脂(按公司指定厂家产品或同类型号的),加注时设备应停止运行,禁止带压、带温加油。 5.1.5检查压力表是否归零,指针是否灵活。管道阀门应良好有效,以做到有控制的、缓缓的加压。

5.1.6严禁超压超温运行。反应釜的工作压力参数不得超过额定值。 5.2. 运行 5.2.1严禁超温超压运行,反应釜的工作参数不得超过额定值。 5.2.2反应釜在任何情况下都不能空转。当转速大于100r∕min时,电机减速机不得在工作转速下启动,应使变频器缓慢提速。防止磁力耦合器脱齿损坏。 5.2.3每次工作完毕后,应切断电源。 6、参考资料References:无。 7、相关记录和文件Documents and Records:无。 8、变更/修订记录Changes / revision records: The following is blank

反应釜温度过程控制课程设计

过程控制系统课程设计 课题:反应釜温度控制系统 系别:电气与控制工程学院 专业:自动化 姓名:彭俊峰 学号:092413238 指导教师:李晓辉 河南城建学院 2016年6月15日

引言 (1) 1系统工艺过程及被控对象特性选取 (2) 1.1 被控对象的工艺过程 (2) 1.2 被控对象特性描述 (4) 2 仪表的选取 (5) 2.1过程检测与变送器的选取 (5) 2.2执行器的选取 (6) 2.2.1执行器的选型 (7) 2.2.2调节阀尺寸的选取 (7) 2.2.3调节阀流量特性选取 (7) 2.3控制器仪表的选择 (8) 3.控制方案的整体设定 (10) 3.1控制方式的选择 (10) 3.2阀门特性及控制器选择 (10) 3.3 控制系统仿真 (12) 3.4 控制参数整定 (13) 4 报警和紧急停车设计 (14) 5 结论 (15) 6 体会 (16) 参考文献 (17)

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC温度调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

反应釜设计程序.doc

反应釜设计程序 (1)确定反应釜操作方式根据工艺流程的特点,确定反应釜是连续操作还是间歇操作。 (2)汇总设计基础数据工艺计算依据如生产能力、反应时间、温度、装料系数、物料膨胀比、投料比、转化率、投料变化情况以及物料和反应产物的物性数据、化学性质等。 (3)计算反应釜体积 (4)确定反应釜设计(选用)体积和台数。 如系非标准设备的反应釜,则还要决定长径比以后再校算,但可以初步确定为一个尺寸,即将直径确定为一个国家规定的容器系列尺寸。 (5)反应釜直径和筒体高度、封头确定。 (6)传热面积计算和校核。 (7)搅拌器设计。 (8)管口和开孔设计。 (9)画出反应器设计草图(条件图),或选型型号。 3.设计要求(1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料夹套反应釜的总装配图;(7)从总装图中测绘一张零件图或一张部件图。1罐体和夹套的设计1.1 确定筒体内径表4-2 几种搅拌釜的长径比i值搅拌釜种类设备内物料类型长径比i值一般搅拌釜液-固相或液-液相物料i=1~1.3气-液相物料i=1~2发酵罐类I=1.7~2.5 当反应釜容积V小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i取小值,此次设计取i=1.1。一般由工艺条件给定容积V、筒体内径按式4-1估算:得D=1366mm.式中V--工艺条件给定的容积,;i——长径比,(按照物料类型选取,见表4-2)由附表4-1可以圆整=1400,一米高的容积=1.539 1.2确定封头尺寸椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 =0.4362 ,(直边高度取50mm)。1.3确定筒体高度反应釜容积V按照下封头和筒体两部分之容积之和计算。筒体高度由计算H1==(2.2-0.4362)/1.539=1.146m,圆整高度=1100mm。按圆整后的修正实际容积由式V=V1m×H1+V封=1.539×1.100+0.4362=2.129 式中;——一米高的容积/m ——圆整后的高度,m。1.4夹套几何尺寸计算夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径可根据内径由500~600700~18002000~3000 +50 +100 +200选工艺装料系数=0.6~0.85选取,设计选取=0.80。1. 4.1夹套高度的计算H2=(ηV-V封)/V1m=0.755m1.4.2.夹套筒体高度圆整为=800mm。1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F封=2.345。1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=4.401.4.5实际的传热面积F== 5.6665>3,由《化工设备机械基础》式4-5校核5.6665〉3所以传热面积合适。2夹套反应釜的强度计算强度计算的参数的选取及计算均符合GB150-1998《钢制压力容器》的规程。此次设计的工作状态已知时,圆筒为外压筒体并带有夹套,由筒体的公称直径mm,被夹套包围的部分分别按照内压和外压圆筒计算,并取其中较大者。...[ 过程装备夹套反应釜化工机械化工课程设计] 反应釜设计 摘要

搅拌反应釜的釜体设计及夹套设计

搅拌反应釜的釜体设计及夹套设计 概述 夹套式反应釜的釜体是由封头、筒体和夹套三部分组成。封头有椭圆形封头和锥形封头等形式。上、下封头与筒体常为焊接。 釜体材料的选择 根据工艺参数及操作条件(见附录2)确定封头、筒体及夹套的材料。此设计的釜体材料选用0Cr18Ni9与夹套材料选用Q235-B ,热轧钢板,其性能与用途见表2-1。 表2-1 Q235-B 性能与用途 由工艺参数及操作条件和表2-1可知,0Cr18Ni9和Q235—B 材料能够满足任务书中的设计温度、设计压力。在操作条件下,Q235—B 能使设备安全运转,并且不会因腐蚀而对介质产生污染,而且相对与其他钢号价格便宜,所以本设计釜体材料选用0Cr18Ni9与夹套材料采用Q235-B ,热轧钢板。 封头的选择 搅拌反应釜顶盖在受压状态下操作常选用椭圆形封头,本设计采用椭圆形标准封头,直边高度mm h 45=ο,其内径取与筒体内径相同的尺寸。 椭圆形封头是由半个椭圆球体和一个圆柱体组成,由于椭圆部分径线曲率平滑连续,封头中的应力分布不均匀。对于2=b a 得标准形封头,封头与直边的连接处 的不连续应力较小,可不予考虑。椭圆形封头的结构特性比较好。 釜体几何尺寸的确定 釜体的几何尺寸是指筒体的内径i D 和高度H 。釜体的几何尺寸首先要满足化工工艺的要求。对于带搅拌器的反应釜来说,容积V 为主要决定参数。 2.4.1 确定筒体的内径

由于搅拌功率与搅拌器直径的五次方成正比,而搅拌器直径往往需随釜体直径的增加而增大。因此,在同样的容积下筒体的直径太大是不适宜的。对于发酵类物料的反应釜,为使通入的空气能与发酵液充分接触,需要有一定的液位高度,筒体的高度不宜太矮。因此,要选择适宜的长泾比(i D H )。 根据釜体长径比对搅拌功率、传热的影响以及物料特性对筒体长径比的要求,又由实践经验,针对一般反应釜,液—液相物料,i D H 取值在之间,并且考虑还 要在封头上端布置机座和传动装置,因此,取i D H =。 由<<搅拌设备设计>>可知: i D =3 ) (41i D H V πηο (2-1) 有:操作容积=全容积?= 式中:V ——操作容积,3m ;H ——筒体高度,m ;i D ——筒体内径;1η——装料系数,取值为。 则: i D =33 .28.04 .64???π =m 将i D 值圆整到标准直径,取筒体内径i D =1600mm 。 2.4.2确定筒体的高度 由《搅拌设备设计》可知: )(44 D 1 2 2i h i h V V D V V H -=-=ηππο (2-2) 式中:h V ——下封头所包含的容积,在《材料与零部件》中查得,h V = 。 ) (0.6178 .0.6.4 6.142-?=πH =m 把1H 的值圆整到H =3700mm ,则: 3.21600 3700 == i D H 夹套的结构和尺寸设计 常用的夹套结构形式有以下几种:(1)仅圆筒部分有夹套,用于需加热面积不大的场合;(2)圆筒一部分和下封头包有夹套,是最常用的典型结构;(3)在

微型高压加氢反应釜

微型高压加氢反应釜 微型高压加氢反应釜介绍 微型高压加氢反应釜具有耐高温、耐腐蚀、生产能力强等优点,广泛用于医药、饮料、化工、颜料、树脂、科研等工业部门。反应釜是融合了反应容器,反应条件控制系统,原料进料、产品导出系统的一类生产或实验器械。 微型高压加氢反应釜技术参数 型号SLM50 容积50ml 最高工作温度250℃ 加热方式模块加热 加热功率 1.2KW 搅拌速度0-1200rpm 搅拌方式内部磁力搅拌 最高工作压力标配10Mpa 结构材质标配316L不锈钢 微型高压加氢反应釜详情 世纪森朗微型高压加氢反应釜是实现反应过程的设备,化学反应工程以工业反应器中进行的反应过程为研究对象,运用数学模型方法建立反应器数学模型,研究反应器传递过程对化学反应的影响以及反应器动态特性和反应器参数敏感性,以实现工业反应器的可靠设计和操作控制。 搅拌方式:内部磁力搅拌,不存在轴封泄漏及其保养的问题,确保无泄露旋转部件,试验更加安全。 搅拌电机:原装进口大功率马达,强劲有力,高速稳定。 进气体阀:气体进气针型阀,质量可靠。 取样阀:便于反应过程中随时取样并分析反应进程 排气阀:方便在反应前对系统进行真空处理和置换气体使用,反应结束后作为放空阀. 压力表:实时监测反应压力 温度探头:深入反应釜体内部,实时监测反应温度 加热单元:模块加热,加热快速,控制精确。 世纪森朗微型高压加氢反应釜产品在设计开发、生产制造、安装调试、出厂检验每一个阶段都严格把关,确保每一台反应釜拥有最高的使用性和安全性。同时,北京世纪森朗实验仪器公司技术部非常愿意以专业培训的技术服务队伍向用户提供完美优质的售前技术咨询,与客户进行技术沟通,提供选型帮助;根据客户的实际要求定做特殊的反应釜,提供现场产品技术培训和安装调试及售后期服务。 北京世纪森朗友情提供 https://www.360docs.net/doc/0816247296.html,

立式搅拌反应釜设计

立式搅拌反应釜工艺设计 1. 推荐的设计程序 1.1 工艺设计 1、做出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K 值; 7、计算传热面积; 8、计算传热装置的工艺尺寸; 9、计算搅拌轴功率; 1.2 绘制反应釜工艺尺寸图 1.3 编写设计说明书 2. 釜式反应器的工艺设计 2.1 反应釜体积的计算 2.1.1 间歇釜式反应器 V a =V R /φ (2-1) V D =F v (t+t 0) (2-2) 式中 V a —反应器的体积,m 3; V R —反应器的有效体积,m 3。 V D —每天需要处理物料的体积,m 3。 F v —平均每小时需处理的物料体积,m 3/h ; t 0 —非反应时间,h ; t —反应时间,h ; ? =A x R A A A V r dx n t 0 (2-3) 等温等容情况下 ? =A x A A A r dx C t 0 0 (2-4)

对于零级反应 A A x k C t 0 = (2-5) 对一级反应 A x k t -= 11ln 1 (2-6) 对二级反应 2A →P ;A+B →P (C A0=C B0) () A A A x kC x t -= 100 (2-7) 对二级反应 A+B →P ()A B A B x x C C k t ---= 11ln 100 (2-8) φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2.2反应器直径和高度的计算 在已知搅拌器的操作容积后,首先要选择罐体适宜的长径比(H/D),以确定罐体直径和高度。长径比的确定通常采用经验值,即2-1 表2-1 罐体长径比经验表 在确定了长径比和装料系数之后,先忽略罐底容积,此时 ??? ? ??≈ ≈ i i i D H D H D V 32 44 π π (2-9) 选择合适的高径比,将上式计算结果圆整成标准直径。椭圆封头选择标准件,其内径与筒体内径相同。可参照《化工设备机械基础课程设计指导书》的附录查找。通过式(2-10)得出罐体高度。 π 4 2?-= i D V V H 封 (2-10) 其中 V 封——封头容积,m 3

立式搅拌反应釜设计

立式搅拌反应釜设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K值; 7、计算传热面积及夹套高度; 8、计算搅拌轴功率。 二、机械设计 1、确定反应器的结构型式及尺寸; 2、选择材料; 3、强度计算; 4、选用零部件; 5、绘图; 6、提出技术要求。 三、化工仪表选型 四、编制计算结果汇总表 五、绘制反应釜装配图 六、编写设计说明书 第二节釜式反应器的工艺设计 一、反应釜体积和段数的计算 1、间歇釜式反应器: V=V R/φ(3—1) V R=V O(τ+τ') (3—2)式中V—反应器实际体积,m3; V R—反应器有效体积,m3。

V O —平均每秒钟需处理的物料体积,m 3/s ; τ' —非反应时间,s ; τ —反应时间,s ; ?=Af x R A A V dx n 00,τ (3—3) 等温等容情况下 ()? -=Af x A A A r dx C 0 0,τ (3—4) 对一级反应 Af x k -= 11 ln 1τ 对二级反应 ()Af A A x xC x -= 10,0 ,τ φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2、连续釜式反应器 (1)单段连续釜式反应器: ()φφA A A R r x F V V -= =0, (3—5)其中 F A,O —每秒钟所处理的物料摩尔数,kmol/s 。 对于一级反应:(-γA )=kC A =kC A,O (1-A x ) 则有效反应体积: () () 20,00,0,1A A A A A A A R KC C C V x kC x F V -= -= 其中 V O —每秒所处理的物料体积,m 3/s 对于二级反应:(-γA )= ()2 20,21A A A x kC kC -=,代入式(3-5)中 则有效反应体积为:V R =()()2 0,020,01A A A A A A kC C C V x kC x V -=- 其中 A x —转化率,其它符号同前。 (2)多级连续釜式反应器 V= φ ∑=n i i R V 1 ,, 而 V R,i = () ()i A i A i A r C C V ---,1,0 (3—6)

反应釜课程设计说明书

课程设计 资料袋 机械工程学院(系、部) 2012 ~ 2013 学年第二学期 课程名称指导教师职称 学生专业班级班级学号题目酸洗反应釜设计 成绩起止日期 2013 年 6 月 24 日~ 2013 年 6 月 30 日 目录清单 . . .

过程设备设计 设计说明书 酸洗反应釜的设计 起止日期: 2013 年 6 月 24 日至 2013 年 6 月 30 日 学生 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2013年6月26日

课程设计任务书 2012—2013学年第二学期 机械工程学院(系、部)专业班级 课程名称:过程设备设计 设计题目:酸洗反应釜设计 完成期限:自 2013 年 6 月 24 日至 2013 年 6 月 30 日共 1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日 目录

第一章绪论 (4) 1.1 设计任务 (2) 1.2 设计目的 (2) 第二章反应釜设计 (2) 第一节罐体几何尺寸计算 (2) 2.1.1 确定筒体径 (2) 2.1.2 确定封头尺寸 (2) 2.1.3 确定筒体高度 (2) 2.1.4 夹套的几何尺寸计算 (3) 2.1.5 夹套反应釜的强度计算 (4) 2.1.5.1 强度计算的原则及依据 (4) 2.1.5.2 筒及夹套的受力分析 (4) 2.1.5.3 计算反应釜厚度 (5) 第二节反应釜釜体及夹套的压力试验 (6) 2.2.1 釜体的水压试验 (6) 2.2.1.1 水压试验压力的确定 (6) 2.2.1.2 水压试验的强度校核 (6) 2.2.1.3 压力表的量程、水温及水中Cl-的浓度 (6) 2.2.2 夹套的水压试验 (6) 2.2.2.1 水压试验压力的确定 (6) 2.2.2.2 水压试验的强度校核 (6) 2.2.2.3 压力表的量程、水温及水中Cl-的浓度 (6) 第三节反应釜的搅拌装置 (1) 2.3.1 桨式搅拌器的选取和安装 (1) 2.3.2 搅拌轴设计 (1) 2.3.2.1 搅拌轴的支承条件 (1) 2.3.2.2 功率 (1) 2.3.2.3 搅拌轴强度校核 (2) 2.3.2.4 搅拌抽临界转速校核计算 (2) 2.3.3 联轴器的型式及尺寸的设计 (2) 第四节反应釜的传动装置与轴封装置 (1) 2.4.1 常用电机及其连接尺寸 (1) 2.4.2 减速器的选型 (2) 2.4.2.1 减速器的选型 (2) 2.4.2.2 减速机的外形安装尺寸 (2) 2.4.3 机架的设计 (3) 2.4.4 反应釜的轴封装置设计 (3) 第五节反应釜其他附件 (1) 2.5.1 支座 (1) 2.5.2 手孔和人孔 (2) 2.5.3 设备接口 (3) 2.5.3.1 接管与管法兰 (3) 2.5.3.2 补强圈 (3) 2.5.3.3 液体出料管和过夹套的物料进出口 (4) 2.5.3.4 固体物料进口的设计 (4) 第六节焊缝结构的设计 (7) 2.6.1 釜体上的主要焊缝结构 (7) 2.6.2 夹套上的焊缝结构的设计 (8) 第三章后言............................................................. 错误!未定义书签。 3.1 结束语 ......................................................... 错误!未定义书签。 3.2 参考文献....................................................... 错误!未定义书签。

高温高压反应釜技术参数

高温高压反应釜 由气源柜、增压柜、反应釜柜三部分组成。主要用于气岩含气性自动测试实验和页岩气资源丰度的综合评价。爱帝工控高温高压反应釜仪器性能稳定可靠、测试结果准确、精密度高,相对标准偏差小于0.2%,数据采样、记录间隔根据用户要求。软件界面友好,整个测定过程全中文提示,无需人工监视,操作简单方便,可以非常容易按照标准实现气量的测定。测量过程中温度、压力、流量测量自动化、结果计算。数据处理、打印、修改等功能齐全。 增压柜:由静音压塑机、增压泵组成,其中总压力控制阀可调节供气压力;静音空压机调压阀调整增压泵输出压力,保证高温高压柜恒压。气源柜:为四组连桥结构,可同时使用4只标准氮气瓶并联供气。 反应釜柜:由高温高压反应釜、常温令凝器、低温冷凝器三部分组成。高温高压反应釜设计5.5Mpa,温度500℃,可通入流动气体,如氮气,在高温高压环境下蒸发岩石气;整台设备由西门子PLC可编程控制器完成系统控制,数据采集,由触摸屏完成人机操作,数据采集储存,整机配有超温、超压、报警、柜体良好散热等功能。 1,设备用途:分析气态烃S0,热蒸发烃S1,热解烃S2,S3和Tmax,计算出样品总有机碳量。对烃源岩、储集岩等的生油潜量、成熟度、有机质类型和储油岩的油气含量、油气性质等进行评价。 总体要求:全数字采集智能控制输出,windows操作系统,触摸屏人机对话控制操作中文界面,实时曲线图,棒状图、数据表监控,热补偿高灵敏流量监控,温度监控,快速模拟、高温控制可达600℃。 2,配置及参数

主机 2.1,热解炉温度 S0:90℃ S1:300℃ S2:300-600℃ S3:300-390℃ 升温速率:5℃~50℃/min(连续可调可设定) 检测器:FID(GC7980) 2.2,氧化段温度600℃ 检测器:TCD(GC112A) 2.3,主机:CPU英特尔酷睿,内存4G,硬盘500G,光驱7200转,16倍速DVD-ROM,RAM功能,液晶22’’ 标准键盘,3D,光电无线鼠标。 2.4,氢气发生器: 流量控制范围:0~300ml/min 输出压力:0~0.3MPa/c㎡ 压力控制精度:≤0.002MPa/c㎡ 工作电压:AC220±10%,50HZ 功率:250W 适应环境温度:0~40℃ 相对湿度:≤85% 氢气纯度:99.999%(氧含量≤3ppm,含水露点-56℃) 外形:400×250×380(mm)

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

高压反应釜设计和制造要点

化工装备 前言 反应釜常用于石油化工、橡胶、农药、染料、医药等行业,用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。高压反应釜是国内目前进行高温、高压化学反应最为理想的装置,特别是进行易燃、易爆、有毒介质的化学反应,更加显示出它的优越性。但高压反应釜同时也是危险性较大、容易发生泄漏和火灾爆炸事故的设备。近年来,反应釜的泄漏、火灾、爆炸事故屡屡发生。由于釜内常常装有有毒有害的危险化学品,事故后果较之一般爆炸事故更为严重。开发具有国际先进发展方向和水平, 而又安全稳定的大型高中压反应釜势在必行。作为国内反应釜生产重点企业之一,本着安全第一,人民群众的生命财产高于一切的宗旨,摒弃公司之间的技术保密性,充分发挥合作精神,互惠互利、共创双赢,推动反应釜安全生产的进一步发展。文中主要依据广东建成机械设备有限公司和广东省石油化工专用设备四会有限公司多年以来对高压反应釜的设计、制造、检验及维修等方面的宝贵经验,毫无保留、十分坦诚地向本行业说明传统灌铅式内衬与液压胀贴式内衬的不同衬里结构以及各自的设计制造要点,希望能够为高压反应釜的设计制造提供有效的指导,减少安全事故,造福人民。 1 技术参数的确定 技术参数的确定是进行反应釜设计的第一步,也是关键的一步,它包括: 1.1 设计压力(或最高工作压力)、设计温度(或最高工作温度) 当用户提供的只是最高工作压力和最高工作温度时,先根据物料性质确定安全排放装置的形式、种类,再依据GB150-1998《钢制压力容器》附录B“超压泄放装置”的有关要求确定设计压力及设计温度。 1.2 釜内容积 釜内容积分为有效容积与全容积,用户一般给出的为有效容积(即操作容积)。此时,必须根据安全生产的要求确定物料充装系数,充装数一般为0.6~0.85,对于有容器法兰结构的釜体,物料充装高度不宜超出容器法兰密封面。 1.3 物料名称及特性 是确定结构及选材的重要因素。 1.4 搅拌器型式及搅拌转速 这关系到搅拌功率的大小及搅拌效果的好坏。 1.5 电机功率 若用户不能提供时,则必须要知道物料粘度、搅拌器型式、直径及搅拌转速,按“搅拌设备的计算”要求确定所需的搅拌功率,再计入轴封、轴承及减速机与传动副所损耗的功率,向上圆整为 高压反应釜设计和制造要点 余柏健谭新强(广东建成机械设备有限公司,开平市529300) 何敏(广东省石油化工专用设备四会制造厂有限公司,四会市526200)摘 要:对采用传统灌铅式内衬不锈钢和液压胀贴式内衬不锈钢两种衬里结构的高压反应釜设计、制造过程的要点进行阐述,可有效地指导高压反应釜的设计和制造。 关键词:高压、高温、密封、液压胀合、传统灌铅、灌铅钛合金、不锈钢衬里、半球型封头、应力腐蚀、晶间腐蚀。 技术应用与发展 -3-

搅拌釜式反应器课程设计

搅拌釜式反应器课程设计任务书 一、设计内容安排 1. 釜式反应器的结构设计 包括:设备结构、人孔数量及位置,仪表接管选择、工艺接管管径计算等。 2. 设备壁厚计算及其强度、稳定性校核 3. 筒体和裙座水压试验应力校核 4. 编写设计计算书一份 5. 绘制装配图一张(电子版) 二、设计条件 三、设计要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.根据设计计算书、图纸及平时表现综合评分。 四、设计说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质;

(3)确定焊接材料。 4.绘制结构草图 (1)按照工艺要求,绘制工艺结构草图; (2)确定裙座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及 环向位置,以单线图表示; (3)标注形位尺寸。 5.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN, 法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 6.结束语:对自己所做的设计进行小结与评价,经验与收获。 7.主要参考资料。 【设计要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计计算书目录要有序号、内容、页码; 5.设计计算书中与装配图中的数据一致。如果装配图中有修改,在说明书中要注明变更; 6.设计计算书要有封面和封底,均采用A4纸,正文用小四号宋体,行间距1.25倍,横向装订成册。

反应釜设计

四搅拌反应釜的机械设计 4.1 概述 反应釜的机械设计是在工艺设计之后进行的。工艺上给出的条件一般包括:釜体容积、最大工作压力、工作温度、介质腐蚀性、传热面积、搅拌形式、转速和功率、工艺接管尺寸方位等。这些条件通常都以表格和示意图的形式反映在机械设计任务书中。对于机械设计,设计者是依据工艺设计提出的要求和条件,对搅拌反应釜的容器、搅拌轴、传动装置和轴封装置等进行合理的选型、设计和计算。 夹套反应釜的机械设计大体按以下内容和步骤进行: (l)总体结构设计根据工艺要求考虑制造、安装和使用维修方便等,确定各部分结构型式和尺寸,如封头、传热面、传动类型、轴封和各种附件的结构型式与连接形式等。 (2)选择材料根据压力、温度、介质情况经济合理选材。 (3)计算强度和稳定性对釜体封头、夹套、搅拌轴等进行强度计算和必要时的稳定性计算校核。 (4)零部件设计选用包括电动机、减速机、联轴器、轴封类型以及机座、底座等有关零部件的选用和设计。 (5)绘制图样包括总装图、零部件图。标准零部件有标准图纸的要查出标准施工图号,不必绘图。 (6)提出技术要求提出制造、装配、检验和试车等方面的要求。应用标准技术条件的可标注文件号。 (7)编写计算说明书包括设备设计重要问题的论证,主要零部件的机械计算,主要零部件设计选用说明等。 4.2 罐体的尺寸确定及结构选型 搅拌罐包括罐体和装焊在其上的各种附件。 常用的罐体是立式圆筒形容器,它有顶盖、筒体和罐底,通过支座安装在基础或平台上。罐体在规定的操作温度和操作压力下,为物料完成其搅拌过程提供了一定的空间。 为了满足不同的工艺要求,或者因为搅拌罐本身自身结构上的需要,罐体上装有各种不同用途的附件。例如,由于物料在反应过程中常常伴自热效应,为了提供或取出反应热,需要在罐体的外侧安装夹套或在罐体的内部安装蛇管;为了与减速机和轴封相连接,顶盖上要焊装底座;为了便于检修内件及加料和排料,需要装焊人孔、手孔和各种接管;为了在操作过程中有效地监视和控制物料的温度、压力和料面高度,则要安装温度计、压力表、液而计、视镜和安全泄放装置;有时为了改变物料的流型、增加搅拌强度、强化传质和传热,还要在罐体的内部焊装挡板和导流筒。但是随着附

相关文档
最新文档