2020高三高考物理二轮复习专题强化练习卷:机械能守恒及能量守恒定律

2020高三高考物理二轮复习专题强化练习卷:机械能守恒及能量守恒定律
2020高三高考物理二轮复习专题强化练习卷:机械能守恒及能量守恒定律

机械能守恒及能量守恒定律

1.(2019·山西高三二模)2018年2月13日,平昌冬奥会女子单板滑雪U 形池项目中,我国选手刘佳宇荣获亚军。如图所示为U 形池模型,其中a 、c 为U 形池两侧边缘,在同一水平面,b 为U 形池最低点。刘佳宇从a 点上方h 高的O 点自由下落由左侧进入池中,从右侧飞出后上升至最高位置d 点相对c 点高度为h

2。不计空气阻力,下列判

断正确的是( )

A .从O 到d 的过程中机械能减少

B .从a 到d 的过程中机械能守恒

C .从d 返回到c 的过程中机械能减少

D .从d 返回到b 的过程中,重力势能全部转化为动能

2. (2019·广东省“六校”高三第三次联考)(多选)如图固定在地面上的斜面倾角为θ=30°,物块B 固定在木箱A 的上方,一起从a 点由静止开始下滑,到b 点接触轻弹簧,又压缩至最低点c ,此时将B 迅速拿走,然后木箱A 又恰好被轻弹簧弹回到a 点。已知木箱A 的质量为m ,物块B 的质量为3m ,a 、c 间距为L ,重力加速度为g 。下列说法正确的是( )

A .在A 上滑的过程中,与弹簧分离时A 的速度最大

B .弹簧被压缩至最低点c 时,其弹性势能为0.8mgL

C .在木箱A 从斜面顶端a 下滑至再次回到a 点的过程中,因摩擦产生的热量为1.5mgL

D .若物块B 没有被拿出,A 、B 能够上升的最高位置距离a 点为L 4

3. (2019·东北三省三校二模)(多选)如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计。两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 球套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接。将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重

力加速度为g 。在此后的运动过程中,下列说法中正确的是( )

A .a 球和b 球所组成的系统机械能守恒

B .b 球的速度为零时,a 球的加速度大小一定等于g

C .b 球的最大速度为 (2+2)gL

D .a 球的最大速度为 2gL

4.(2019·安徽省阜阳市第三中学模拟)(多选)如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量分别为2m 、m ,开始时细绳伸直,用手托着物体A 使弹簧处于原长且A 与地面的距离为h ,物体B 静止在地面上,放手后物体A 下落,与地面即将接触时速度大小为v ,此时物体B 对地面恰好无压力,不计一切摩擦及空气阻力,重力加速度大小为g ,则下列说法中正确的是( )

A .物体A 下落过程中,物体A 和弹簧组成的系统机械能守恒

B .弹簧的劲度系数为2mg h

C .物体A 着地时的加速度大小为g

2

D .物体A 着地时弹簧的弹性势能为2mgh

5.(2019·江西高三九校3月联考)(多选)如图所示,左侧为一个固定在水平桌面上的半径为R 的半球形碗,碗口直径AB 水平,O 为球心,碗的内表面及碗口光滑。右侧是一个足够长的固定光滑斜面。一根不可伸长的轻质细绳跨过碗口及竖直固定的轻质光滑定滑轮,细绳两端分别系有可视为质点的小球m 1和物块m 2,且m 1>m 2。开始时m 1恰在A 点,m 2在斜面上且距离斜面顶端足够远,此时连接m 1、m 2的细绳与斜面平行且恰好伸直,C 点位于圆心O 的

正下方。当m1由静止释放开始运动,则下列说法中正确的是()

A.m2沿斜面上滑过程中,地面对斜面的支持力始终保持恒定

B.当m1运动到C点时,m1的速率是m2速率的2倍

C.m1可能沿碗面上升到B点

D.在m1从A点运动到C点的过程中,m1与m2组成的系统机械能守恒

6.(2019·郑州二模)蹦极是一项考验体力、智力和心理承受能力的空中极限运动。跳跃者站在约50 m高的塔台上,把一根原长为L的弹性绳的一端绑在双腿的踝关节处,另一端固定在塔台上,跳跃者头朝下跳下去。若弹性绳的弹力遵守胡克定律,不计空气阻力,则在跳跃者从起跳到第一次下落到最低点的过程中,跳跃者的动能E k(图线①)和弹性绳的弹性势能E p(图线②)随下落高度的变化图象中,大致正确的是()

7.(2019·辽宁大连二模)(多选)如图甲所示,固定斜面的倾角为30°,一质量为m的小物块自斜面底端以初速度v0沿斜面向上做匀减速运动,经过一段时间后又沿斜面下滑回到底端,整个过程小物块的v-t图象如图乙所示。下列判断正确的是()

A.物块与斜面间的动摩擦因数μ=

3 3

B.上滑过程的加速度大小是下滑过程的2倍

C.物块沿斜面上滑的过程中机械能减少3

16mv20

D .物块沿斜面下滑的过程中动能增加1

4mv 20

8.(2019·江苏南京、盐城高三第三次调研)(多选)如图所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点。轻弹簧左端固定于竖直墙面,用质量为m 1的滑块压缩弹簧至D 点,然后由静止释放滑块,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上。换用相同材料、质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程。不计滑块经过B 点时的机械能损失,下列说法正确的是( )

A .两滑块到达

B 点的速度相同

B .两滑块沿斜面上升过程中的加速度相同

C .两滑块上升到最高点的过程中克服重力做的功相同

D .两滑块上升到最高点的过程中因摩擦产生的热量相同

9.(2019·辽宁铁路实验中学模拟)如图所示,半径为R 的光滑圆环竖直固定,质量为3m 的小球A 套在圆环上,长为2R 的刚性轻杆一端通过铰链与A 连接,另一端通过铰链与滑块B 连接;滑块B 质量为m ,套在水平固定的光滑杆上。水平杆与圆环的圆心O 位于同一水平线上。现将A 置于圆环的最高处并给A 一微小扰动(初速度可视为零),使A 沿圆环顺时针自由下滑,不计一切摩擦,A 、B 可视为质点,重力加速度大小为g 。求:

(1)A 滑到与圆心O 同高度时的速度大小;

(2)A 下滑至杆与圆环第一次相切的过程中,杆对B 做的功。

10.(2019·广东惠州二模)如图所示,遥控电动赛车(可视为质点)从A点由静止出发,经过时间t后关闭电动机,赛车继续前进至B点后进入固定在竖直平面内的圆形光滑轨道,通过轨道最高点P后又进入水平轨道CD上。已知赛车

在水平轨道AB部分和CD部分运动时受到阻力恒为车重的0.5倍,即k=F f

mg=0.5,赛车的质量m=0.4 kg,通电后赛车的电动机以额定功率P=2 W工作,轨道AB的长度L=2 m,圆形轨道的半径R=0.5 m,空气阻力可忽略,取重力加速度g=10 m/s2。某次比赛,要求赛车在运动过程中既不能脱离轨道,又在CD轨道上运动的路程最短。在此条件下,求:

(1)赛车在CD轨道上运动的最短路程;

(2)赛车电动机工作的时间。

参考答案

1.【答案】 A

【解析】 运动员从高h 处自由下落由左侧进入池中,从右侧飞出后上升的最大高度为h

2,摩擦力做负功,机械能

减小,故A 正确;从a 到d 的过程中,摩擦力做负功,则机械能不守恒,故B 错误;从d 返回到c 的过程中,只有重力对运动员做功,机械能守恒,故C 错误;从d 返回到b 的过程中,摩擦力做负功,运动员的重力势能转化为运动员的动能和因摩擦产生的内能,故D 错误。 2.【答案】 BC

【解析】 在A 上滑的过程中,A 与弹簧分离是弹簧恢复原长的时候,在此之前A 已经开始减速,故与弹簧分离时A 的速度不是最大,A 错误;设弹簧被压缩至最低点c 时,其弹性势能为E p ,在A 、B 一起下滑的过程中,由功能关系有4mgL sin θ=μ·4mgL cos θ+E p ,将物块B 拿出后,木箱A 从c 点到a 点的过程,由功能关系可得E p =mgL sin θ+μmgL cos θ,联立解得E p =0.8mgL ,摩擦生热Q =3mgL sin θ=1.5mgL ,故B 、C 正确;若物块B 没有被拿出,且A 、B 一起从c 点上滑的距离L ′大于弹簧原长,则有E p =4mgL ′sin θ+μ·4mgL ′cos θ,解得L ′=L

4,故A 、B 能够上升的最

高位置距离a 点为3

4L ,D 错误。

3.【答案】 AC

【解析】 a 球和b 球组成的系统除重力外没有其他力做功,只有a 球和b 球的动能和重力势能相互转化,因此a 球和b 球的机械能守恒,A 正确;设轻杆L 和水平杆L 2的夹角为θ,由速度关联可知v b cos θ=v a sin θ,得v b =v a tan θ,可知当b 球的速度为零时,轻杆L 处于水平位置和L 2杆平行,此时a 球在竖直方向只受重力mg ,因此a 球的加速度大小为g ,当v a =0时,v b 也为0,如题图所示位置,此时a 的加速度小于g ,故B 错误;当杆L 和杆L 1平行成竖直状态,球a 运动到最下方,球b 运动到L 1和L 2交点的位置的时候,球b 的速度达到最大,此时由速度的关联可知a 球的速度为0,因此由机械能守恒定律有:mg (

22L +L )=12

mv 2

b ,得v b =(2+2)gL ,C 正确;当轻杆L 向下运动到杆L 1和杆L 2的交点的位置时,此时杆L 和杆L 2平行,由速度的关联可知此时b 球的速度为0,由机械能守恒定律有:

22mg ·L =12

mv 2

a ,得v a =2gL ,此时a 球具有向下的加速度g ,因此此时a 球的速度不是最大,a 球将

继续向下运动到加速度为0时速度达到最大,D 错误。 4.【答案】 AC

【解析】 由题可知,物体A 下落过程中,B 一直静止不动,对于物体A 和弹簧组成的系统,只有重力和弹力做功,则物体A 和弹簧组成的系统机械能守恒,故A 正确;A 即将触地时,物体B 对地面的压力恰好为零,故弹簧的拉力为T =mg ,开始时弹簧处于原长,由胡克定律知:T =kh ,得弹簧的劲度系数为k =mg

h

,故B 错误;物体A 着地时,

细绳对A 的拉力等于mg ,对A 受力分析,根据牛顿第二定律得2mg -mg =2ma ,得a =g

2,故C 正确;物体A 与弹

簧组成的系统机械能守恒,有:2mgh =E p +1

2×2mv 2,所以E p =2mgh -mv 2,故D 错误。

5【答案】 ABD

【解析】 m 2沿斜面上滑过程中,m 2对斜面的压力是一定的,斜面的受力情况不变,由平衡条件可知地面对斜面的支持力始终保持恒定,故A 正确;设小球m 1到达最低点C 时m 1、m 2的速度大小分别为v 1、v 2,则有:v 1cos45°=v 2,则v 1=2v 2,故B 正确;在m 1从A 点运动到C 点的过程中,m 1与m 2组成的系统只有重力做功,系统的机械能守恒,D 正确;由于m 1、m 2组成的系统机械能守恒,m 2的机械能增加必导致m 1的机械能减少,故m 1不可能沿碗面上升到B 点,C 错误。 6.【答案】 B

【解析】 设弹性绳的伸长量为x ,则F 弹=kx ,伸长量在0~x 间时F 弹=12kx ,故W 弹=-12kx 2,即E p 弹=1

2kx 2。根

据能量守恒定律得,跳跃者和弹性绳增加的动能和弹性势能之和等于减小的重力势能,即ΔE k +ΔE p =|ΔE 重|,则E k =|ΔE 重|-ΔE p =mgh -1

2kx 2,O ~L 阶段,弹性绳未伸长,x =0,则E k =mgh ,当跳跃者下落L 后,x 增大,且x =h

-L ,则E k =mgh -1

2k (h -L )2,E k 与h 是二次函数关系,其变化图象是曲线,且刚开始阶段,合力向下,速度继续

增大,动能增加,直至合力为零时,速度最大,动能最大;O ~L 阶段,弹性绳未伸长,弹性势能为零,当h >L 后,x 增大,且x =h -L ,则E p =1

2k (h -L )2,E p -h 图线是开口向上的抛物线,故B 正确。

7.【答案】 BD

【解析】 由v -t 图得上滑过程的加速度大小:a =v 0t 0,下滑过程的加速度大小:a ′=0.5v 0

t 0,所以上滑过程的加速度

大小是下滑过程的2倍,B 正确;根据题意,物块上滑阶段,由牛顿第二定律可知:mg sin θ+μmg cos θ=m v 0

t 0,同理

下滑过程:mg sin θ-μmg cos θ=m 0.5v 0t 0,联立解得:μ=39,A 错误;联立mg sin θ+μmg cos θ=m v 0

t 0与mg sin θ-μmg cos θ

=m 0.5v 0t 0两式,可得:f =μmg cos θ=mv 04t 0,上滑过程中,机械能减小量等于克服摩擦力做的功:ΔE =W f =f ·v 0t 02=1

8mv 20,

C 错误;对物块上滑和下滑的全过程,根据动能定理得E k -12mv 20=-2fx ,其中f =mv 04t 0,x =12v 0t 0,解得:E k =14mv 20,

D 正确。 8.【答案】 BCD

【解析】 两次实验,弹簧压缩形变是相同的,所以弹性势能相等,两滑块到达B 点的动能是相等的,即12m 1v 21=12m 2v 22,又m 2>m 1,所以v 1>v 2,两滑块到达B 点的速度不相同,A 错误;沿斜面上升时,物体受到重力、支持力、摩擦力,根据牛顿运动定律可得,ma =mg sin θ+μmg cos θ,a =g sin θ+μg cos θ,两滑块材料相同,故动摩擦因数μ相同,

故两滑块上升过程中加速度相同,B 正确;设滑块上升的最大高度为h ,则上升到最高点过程中克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ×h sin θ,可得mgh =E p

1+μ

tan θ,故两滑块上升到最高点的过程中克服重力

做的功相同,C 正确;因摩擦产生的热量Q =μmg cos θh

sin θ,因μ、mgh 相同,故产生的热量相同,D 正确。

9.【答案】(1)2gR (2)15-65

17

mgR

【解析】(1)当A 滑到与O 同高度时,A 的速度沿圆环切向竖直向下,B 的速度为零,由机械能守恒定律可得 3mgR =1

2·3mv 2,

解得v =2gR 。

(2)如图所示,杆与圆环第一次相切时,A 的速度沿杆方向,设为v A ,设此时B 的速度为v B ,由运动的合成与分解可得

v A =v B cos θ,

由几何关系可知cos θ=

2R R 2+4R 2=2

5

5,

球A 下落的高度h =R (1-cos θ),

由机械能守恒定律可得3mgh =12·3mv 2A +12mv 2B , 由动能定理可得杆对B 做的功W =1

2mv 2B ,

联立以上各式可得W =15-65

17mgR 。

10.【答案】 (1)2.5 m (2)4.5 s

【解析】 (1)要求赛车在运动过程中既不能脱离轨道,又在CD 轨道上运动的路程最短,则赛车经过圆轨道P 点时

速度最小,此时赛车对轨道的压力为零,重力提供向心力:mg =m v 2P

R

由机械能守恒定律可得:mg ·2R +12mv 2P =12

mv 2

C

由上述两式联立代入数据可得:v C =5 m/s

设赛车在CD 轨道上运动的最短路程为x ,由动能定理可得:-kmgx =0-1

2mv 2C

代入数据可得:x =2.5 m 。

(2)由于竖直圆轨道光滑,由机械能守恒定律可知: v B =v C =5 m/s

赛车从A 点到B 点的运动过程中,由动能定理可得: Pt -kmgL =1

2mv 2B

代入数据可得:t =4.5 s 。

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

验证机械能守恒定律实验(吐血整理经典题)

实验:验证机械能守恒定律 1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是 ( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 2.用如图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是( ) A .重力势能的减少量明显大于动能的增加量 B .重力势能的减少量明显小于动能的增加量 C .重力势能的减少量等于动能的增加量 D .以上几种情况都有可能 3.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2) ( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm

4.如图是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n 点来验证机械能守恒定律.下面举一些计算n 点速度的方法,其中正确的是( ) A .n 点是第n 个点,则v n =gnT B .n 点是第n 个点,则v n =g (n -1)T C .v n =s n +s n +1 2T D .v n =h n +1-h n -1 2T 5.某研究性学习小组在做“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 Hz ,查得当地的重力加速度g =9.80 m/s 2。测得所用重物的质量为1.00 kg 。 (1)下面叙述中正确的是________。 A .应该用天平称出重物的质量 B .可选用点迹清晰,第一、二两点间的距离接近2 mm 的纸带来处理数据 C .操作时应先松开纸带再通电 D .打点计时器应接在电压为4~6 V 的交流电源上 (2)实验中甲、乙、丙三学生分别用同一装置得到三条点迹清晰的纸带,量出各纸带上第一、二两点间的距离分别为0.18 cm 、0.19 cm 、0.25 cm ,则可肯定________同学在操作上有错误,错误是________。若按实验要求正确地选出纸带进行测量,量得连续三点A 、B 、C 到第一个点O 间的距离分别为15.55 cm 、19.20 cm 和23.23 cm 。则当打点计时器打点B 时重物的瞬时速度v =________ m/s ;重物由O 到B 过程中,重力势能减少了________J ,动能增加了________J(保留3位有效数字), 6.在“验证机械能守恒定律”的实验中,图(甲)是打点计时器打出的一条纸带,选取

高中物理实验【验证机械能守恒定律】内容+典例

图1 图2 实验:验证机械能守恒定律 一、实验目的 通过实验验证机械能守恒定律. 二、实验原理 如图1所示,质量为m 的物体从O 点自由下落,以地面作为零重力势 能面,如果忽略空气阻力,下落过程中任意两点A 和B 的机械能守恒 即12mv 2A +mgh A =12 mv 2B +mgh B 上式亦可写成12mv 2B -12mv 2A =mgh A -mgh B . 等式说明,物体重力势能的减少等于动能的增加.为了方便,可以直接 从开始下落的O 点至任意一点(如图1中A 点)来进行研究,这时应有:12 mv 2 A =mgh ,即为本 实验要验证的表达式,式中h 是物体从O 点下落至A 点的高度,v A 是物体在A 点的瞬时速度. 三、实验器材 打点计时器,低压交流电源,带有铁夹的铁架台,纸带,复写纸,带夹子的重 物,刻度尺,导线两根. 四、实验步骤 1.安装置:按图2将检查、调整好的打点计时器竖直固定在铁 架台上,接好电路. 2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔用手提着纸带使重物静止在靠近打点计时器 的地方.先接通电源,后松开纸带,让重物带着纸带自由下落. 更换纸带重复做3~5次实验. 3.选纸带:分两种情况说明 (1)用12 mv 2 n =mgh n 验证时,应选点迹清晰,且1、2两点间距离略小于或接近2 mm 的纸带. (2)用12mv 2B -12 mv 2A =mg Δh 验证时,由于重力势能的相对性,处理纸带时,选择适当的点为基准点,只要后面的点迹清晰就可选用. 五、数据处理 方法一:利用起始点和第n 点计算 代入mgh n 和12mv 2 n ,如果在实验误差允许的条件下,mgh n 和12 mv 2n 相等,则验证了机械能守恒定律.

高三物理《能量守恒定律》公式总结

高三物理《能量守恒定律》公式总结 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律w+Q=ΔU{,w:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温

度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功w<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

大学物理习题第4单元 能量守恒定律

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E = k mg F 2)(2 μ- (B) p E =k mg F 2)(2 μ+ (C) K F E p 22 = (D) k mg F 2)(2μ-≤p E ≤ k mg F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定在半径 为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为 -0.207 J 。 6.有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A B C R v O 1 t 2t 3 t 4 t

实验:验证机械能守恒定律实验报告

实验:验证机械能守恒定律 班级: 姓名: 时间: 2017年4月20 [实验目的] 1.验证机械能守恒定律。 2.掌握实验数据处理方法,能定性分析误差产生的原因。 [实验原理] 当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒。若某一时刻 物体下落的瞬时速度为v ,下落高度为h ,则应有:21mg m 2 h v =。借助打点计时器,测出重物某时刻的下落高度h 和该时刻的瞬时速度 v ,即可验证机械能是否守恒,实验装置如图1所示。 测定第n 点的瞬时速度的方法是: T 2h -h 1 -n 1n n +=v [实验器材] 铁架台(带铁夹)、打点计时器、纸带、交流电源、导线、带铁夹的重锤、纸带、刻度尺等。 [实验步骤] 图 1 图2

1.按如图1装置把打点计时器安装在铁架台上,并使两限位孔在同一竖直线上,以减小摩擦阻力。用导线把打点计时器与交流电源连接好。 2.把纸带的一端在重锤上用夹子固定好,另一端穿过计时器限位孔,用手竖直提起纸带使重锤停靠在打点计时器附近。 3.先接通电源,再松开纸带,让重锤带着纸带自由下落。 4.重复几次,得到3~5条打好点的纸带。 5.在打好点的纸带中挑选点迹清晰且第1、2两计时点间的距离接近2mm 的一条纸带,在起始点标上0,再在距离0点较远处开始选取相邻的几个计数点依次标上1、2、3……用刻度尺测出对应下落的高度h 1、h 2、h 3…… 6.应用公式T 2h -h 1 -n 1n n += v 计算各点对应的瞬时速度v 1、v 2、v 3…… 7.计算各点对应的重力势能减少量mgh n 和动能的增加量2 2 1n mv , 进行比较,并讨论如何减小误差。 [数据处理及误差分析]

高中物理实验验证机械能守恒定律

实验:验证机械能守恒定律 【知能准备】 1.实验目的:验证机械能守恒定律 2.实验原理: 在只有重力做功的自由落体运动中,物体的重力势能和动能可以相互转化,但总的机 械能守恒。设某时刻物体的瞬时速度为V ,下落高度为h ,则有:mgh =mv 2/2 。故可利用打 点计时器测出重物下落时某时刻的瞬时速度及下落的高度,即可验证机械能是否守恒。 3.实验器材: 打点计时器、刻度尺 、 电源、纸带、复写纸片、重物、带有铁夹台、导线两根 4.实验步骤: (1)如图2-9-1所示,将纸带固定在重物上,让纸带穿过打点计时器; ⑵用手握着纸带,让重物静止地靠近打点计时器,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点。 ⑶更换纸带,用同样的方法再打几条以备选用. ⑷从几条打下点的纸带中挑选第一、二点间距离接近2mm 且点迹清楚的低带进行测量,测出一系列各计数点到第一个点的距离d 1、d 2,据公式Vn T d d n n 211-+-= ,计算物体在打下点1、2……时的即时速度v 1、v 2……,计算相应的动能的增加值。 ⑸用刻度尺测量纸带从点O 到点1、2……之间的距离h 1、h 2……,计算出相应减少的重力势能。 ⑹计算各点对应的势能减少量mgh ,以及增加的动能mv 2/2,并进行比较。 【同步导学】 1.原理理解: ⑴因为打点计时器每隔0.02 s 打点一次,在最初的0.02 s 内物体下落距离应为0.002 m ,所以应从几条纸带中尽量挑选点迹清晰呈一直线且第一、二点间接近2 mm 的纸带进行测量;二是在纸带上所选的点应该是连续相邻的点,每相邻两点时间间隔 t =0.02 s. ⑵因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量 m ,而只需验证n n gh v =22 1就行了。 例1:在验证机械能守恒定律的实验中,得到了一条如图2-9-2所示的纸带,纸带上的点记录了物体在不同时刻的位置,当打点计时器打点4时,物体的动能增加的表达式为△E k = 物体重力势能减小的表达式为 △E P = ,实验中是通过比较 来验证机械能守恒定律的(设交流电周期为T )。 解答:△E k =2153()22D D m T -; △E P =mgD 4 ;2153()22D D T -与 gD 4是否相等 例2:关于验证机械能守恒定律的下列说法中正确的是: 2-9-1 2-9-2

验证机械能守恒实验教案

7.5 实验:验证机械能守恒定律 【教学目标】 1.会用打点计时器打下的纸带计算物体运动的速度. 2.掌握验证机械能守恒定律的实验原理. 3.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法.4.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度. 【教学重、难点】 1.掌握验证机械能守恒定律的实验原理. 2.验证机械能守恒定律的误差分析及如何减小实验误差的方法. 【实验器材】电火花计时器(或电磁打点计时器),交流电源,纸带(复写纸片),重物(带纸带夹子),导线,刻度尺,铁架台(带夹子) 【课时安排】1课时 【教学设计】 课前预学 【预学内容】 1.复习巩固机械能守恒定律的条件 下列几种情况中,物体的机械能守恒的是(不计空气阻力):() A.水平推出的铅球在空中运动的过程 B.沿着光滑斜面匀加速下滑的物体 C.被起重机匀速吊起的物体 D.物体做自由落体运动 2.受上题的启发,如果现在要用一个具体的运动实例来验证机械能守恒定律,你觉得选哪种运动来研究最简单,方便呢?说说你的理由. 3.根据你的选择,谈谈实验中要测量的物理量,要用到的实验器材,必要的实验步骤.【预学疑难】 课内互动 【新课导入】

根据前面的学习,我们知道了物体在只有重力做功的情况下机械能守恒,那么如何用实验来验证这个定律呢?这节课我们就一起来探讨这个问题. 【新课教学】 一、设计实验: 教师活动:针对大家的预学情况,投影出几个同学的实验方案,要求大家分组讨论每个方 案的可行性. 学生活动:分组讨论,并派代表发言.得出结论:自由落体运动是一种只有重力做功的最 简单的运动. 教师活动:自由落体物体初速度为零,当下落高度为h 时,速度达到v ,则有:221mv mgh 本实验中我们就要找出物体减少的重力势能mgh 和物体增加的动能221mv 看看两者是否相等,如果两者相等,则验证了机械能守恒定律. 提出问题:实验中我们要测量那些物理量?需要用到哪些实验仪器呢? 学生活动:分组讨论,并派代表发言 学生甲: 需要天平测物体的质量,刻度尺测量物体下落的高度 学生乙: 不需要测质量,因为质量可以两边约掉,只要看gh 是否等于22 1v 就可以了. 可以借助于打点计时器来测物体下落的高度以及物体的速度.另外打点计时器 的限位孔要竖直放置,所以需要用仪器把打点计时器竖直固定. 教师活动:很好,质量是不需要测的,所以不需要用天平.另外我们可以用带夹子的铁架 台将打点计时器固定. 提出问题:如何根据实验打出的纸带测量物体下落的距离,及物体的速度呢? 学生活动:在纸带上取某点A ,测出它距第一个点的距离,即为物体下落的高度.在A 点 前后各取一个点,将A 点作为两点的中间时刻,求出前后两点之间的平均速度即为A 点的瞬时速度. 教师活动:同学们讨论的都非常好,那么下面我们就一起来看 看实验的具体步骤 (1) 按图装置固定好计时器,并用导线将计时器接到电 压合适的交流电源上 (2) 将纸带的一端用小夹子固定在重物上,使另一端穿 过计时器的限位孔,用手竖直提着纸带,使重物静 止在靠近计时器的地方. (3) 接通电源,松开纸带,让重物自由下落,计时器就 在纸带上打下一系列小点. (4) 换几条纸带,重做上面的实验. 二、学生分组实验 在学生开始做实验之前,老师应强调如下几个问题: (1)打点计时器所接电源有何要求?

实验《验证机械能守恒定律》

《验证机械能守恒定律》学习材料 教学目的:验证机械能守恒定律 实验器材: 铁架台、铁夹子、重锤、毫米刻度尺、纸带、打点计时器(若选用电磁打点计时器,还需要低压交流电源) 实验原理: 在只有重力做功的自由落体运动中,重力势能和动能相互转化,转化过程中机械能守恒,即重力势能的减少量等于动能的增加量。若物体由静止下落的高度h 时,其速度为v ,则有 2 12 mgh mv 在实验过程中,测出重锤由静止下落高度h 时的速度v ,算出gh 是否等于212v ,则可得出mgh 是否等于21 2mv , 若在实验误差允许范围内二者相等,则机械能守恒定律得到验证。 实验步骤: 1、把打点计时器安装在铁架台上,并连接到电源上。 2、把重锤用夹子固定在纸带的一端,纸带的另一端穿过计时器的限位孔,用手竖直提起纸带,使重锤停靠在打点计时器附近。 3、先接通电源,后松开纸袋带,让重锤带着纸带自由下落,打点计时器便在纸带上打下一系列的点迹。 4、重复3次,得到3条打上点的纸带。 5、从三条打上点的纸带中挑选出点迹清晰且第一、二点间的距离接近2mm 的纸带。 6、在挑选出的纸带中,记下第一个点的位置O ,并在纸带上离O 点较远的任意点开始,依次选取连续的几个点,并依次标上1、2、3、4、5,分别测出1、2、3、4、5各点到O 点的距离h 1、h 2、h 3、h 4、h 5,并把记在下面表格中,这些距离分别是打下1、2、3、4、5个点时重锤下落的高度。

7、利用匀变速直线运动在一段时间内的平均速度等于这段时间内中点时刻的速度的规律,应 用公式12n n n h h V T +-= (此处T=0.02s ),分别算出2、3、4各点对应得速度2V 、3V 、4V 。 8、计算2、3、4各点对应的n gh 和212n V ,并进行比较,从而得出n mgh 与21 2 mV 是否相等。 9、得出实验结论。 注意事项: 1、铁架台上固定打点计时器的夹子不可伸出太长,以防铁架台翻倒。 2、打点计时器应夹紧在铁架台上,确保在实验过程中不会晃动。计时器的两个限位孔必须在同一竖直线上,以减少纸带与限位孔间的摩擦阻力。 3、打点前纸带必须平直,不要卷曲,纸带上端要用手提着静止,重锤应停靠在打点计时器附近。 4、实验时先通电源,让打点计时器稳定后才松开纸带 5、选用纸带时应尽量挑选第一、二点的距离接近2mm 的纸带(因为自由落体运动的最初0.02s 内下落的距离2211 9.80.02 1.9622 S gT m m = =??=) 6、选取得各个计数点1、2、3……离起始点应适当远些,以减小测量下落高度h 时的相对误差。 7、实验过程中不需要测重锤的质量m 8、为减少阻力的影响,重物应选用密度大些的便于夹紧纸带的物体。 误差分析 (1)本实验中因重物和纸带在下落过程中要克服各种阻力(空气阻力、打点计时器阻力)做功,故动能的增加量ΔEk 稍 重力势能的减少量ΔEp ,即ΔEk <ΔEp ,这属于系统误差.改进的办法是调整器材的安装,尽可能地减小阻力. (2)本实验的另一个误差来源于长度的测量,属偶然误差.减小误差的办法是测下落距离时都从0点量起,一次将各打点对应的下落高度测量完.或者多次测量取平均值来减小误差.

大学物理物理知识点总结!!!!!!

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

《实验验证机械能守恒定律》示范教案

7.9实验:验证机械能守恒定律 【教学目标】 知识与技能 1、会用打点计时器打下的纸带计算物体运动的速度。 2、掌握验证机械能守恒定律的实验原理。 过程与方法 通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。 情感、态度与价值观 通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观。培养学生的观察和实践能力,培养学生实事求是的科学态度。【教学重点】 掌握验证机械能守恒定律的实验原理。 【教学难点】 验证机械能守恒定律的误差分析及如何减小实验误差的方法。 【教学课时】 1课时 【自主学习】 ⒈为进行验证机械能守恒定律的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有: ;缺少的器材是。 ⒉物体做自由落体运动时,只受力作用,其机械能守恒,若物体自由下落H高度时速度为V,应有MgH= ,故只要gH=1/2V2成立,即可验证自由落体运动中物体的机械能守恒。 ⒊在打出的各纸带中挑选出一条点迹,且第1、2两打点间距离接近 的纸带。 ⒋测定第N个点的瞬时速度的方法是:测出与N点相邻的前、后两段相等时间T内下落的距离S N和S N+1,,有公式V N= 算出。 ⒌在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。

【探究学习】 课前准备 教师活动:课前布置学生预习本节实验。下发预习提纲,重点复习下面的三个问题: 1、推导出机械能守恒定律在本实验中的具体表达式。 在图1中,质量为m 的物体从O 点自由下落,以地作零重力势能面,下落 过程中任意两点A 和B 的机械能分别为: E A =A A mgh mv +221, E B =B B mgh mv +22 1 如果忽略空气阻力,物体下落过程中的机械能守 恒,于是有 E A =E B ,即 A A mgh mv +221= B B mgh mv +22 1 上式亦可写成B A A B mgh mgh mv mv -=-222121 该式左边表示物体由A 到B 过程中动能的增加,右 边表示物体由A 到B 过程中重力势能的减少。等式 说明,物体重力势能的减少等于动能的增加。为了方便,可以直接从开始下 落的O 点至任意一点(如图1中A 点)来进行研究,这时应有: mgh mv A =22 1----本实验要验证的表达式,式中h 是物体从O 点下落至A 点的高度,v A 是物体在A 点的瞬时速 度。 2、如何求出A 点的瞬时速度v A ? 根据做匀加速运动的物体在某一段时 间t 内的平均速度等于该时间中间时刻 的瞬时速度可求出A 点的瞬时速度v A 。 图2是竖直纸带由下而上实际打点后 的情况。从O 点开始依次取点1,2, 3,……图中s 1,s 2,s 3,……分别为0~ 2点,1~3点,2~4点…… 各段间的 距离。 根据公式t s v =,t =2×0.02 s (纸带上任意两个相邻的点间所表示的时间都 是0.02s ),可求出各段的平均速度。 这些平均速度就等于是1,2,3, ……图 2

高考物理复习实验验证机械能守恒定律学案

实验8 验证机械能守恒定律(必考) [考纲解读] (1)会根据纸带测定下落的距离,掌握测量瞬时速度的方法。(2)能根据实验数据得出实验结论。(3)能对实验误差的产生原因作定性分析。 ,误差分析 1.减小测量误差:一是测下落距离时都从0点量起,一次将各打点对应下落高度测量完,二是多测几次取平均值。 2.误差来源:由于重物和纸带下落过程中要克服阻力做功,故动能的增加量ΔE k=1 2 mv2n必定稍小于重力势 能的减少量ΔE p=mgh n,改进办法是调整器材的安装,尽可能地减小阻力。 考点一实验原理与实验操作 1.打点计时器要竖直:安装打点计时器时要竖直架稳,使其两限位孔在同一竖直平面内以减少摩擦阻力。 2.重物密度要大:重物应选用质量大、体积小、密度大的材料。 3.一先一后:应先接通电源,让打点计时器正常工作,后松开纸带让重物下落。 4.测长度,算速度:某时刻的瞬时速度的计算应用v n=h n+1-h n-1 2T ,不能用v n=2gh n或v n=gt来计算。

1.利用图示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v和下落高度h。某班同学利用实验得到的纸带,设计了以下四种测量方案: A.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度v B.用刻度尺测出物体下落的高度h,并通过v=2gh计算出瞬时速度v C.根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速 度v,并通过h=v2 2g 计算出高度h D.用刻度尺测出物体下落的高度h,根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v 以上方案中只有一种正确,正确的是________。(填入相应的字母) 解析在验证机械能守恒定律的实验中不能将物体下落的加速度看做g,只能把它当做未知的定值,所以正确方案只有D项。 答案 D 2.用如图所示的实验装置验证机械能守恒定律。实验所用的电源为学生电源,输出电压为6 V的交流电和直流电两种。重锤从高处由静止开始下落,重锤上拖着的纸带打出一系列的点,对图中纸带上的点痕进行测量,即可验证机械能守恒定律。 (1)下面列举了该实验的几个操作步骤: A.按照图示的装置安装器件 B.将打点计时器接到电源的“直流输出”上 C.用天平测出重锤的质量 D.先接通电源,后释放纸带,打出一条纸带

高三物理能量守恒定律详尽讲义

高三物理能量守恒定律详尽讲义 考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是() A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 答案 C 2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中() 图1 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 答案AD 解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,

C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D对. 3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停 下来,则停下的位置到B的距离为() 图2 A.0.5 m B.0.25 m C.0.1 m D.0 答案 D 解析由mgh=μmgx,得x=3 m,而x d= 3 m 0.5 m=6,即3个来回后,小物块 恰停在B点,选项D正确. 一、几种常见的功能关系 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增.

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律” 一、填空题 1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。 2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-?=s m v ,方向与x F 相同,则当力x F 的冲量s N I ?=300时,物体的速度大小为: 。 3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。现以100N 的力打击它的下端点,打击时间为0.02s 时。若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。 4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-??s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。 5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。 6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动 学方程为3 243t t t x +-= (SI)。则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。 7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。 8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。 9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F )43(+=作用下,无摩

2017年高考物理-实验验证机械能守恒-专题练习

2017年高考物理 实验验证机械能 题型一、考查实验原理与实验操作 1.如图甲为验证机械能守恒定律的实验装置示意图。现有的器材为:带铁夹的铁架台、电磁打点计时器、纸带、带铁夹的重锤、天平。回答下列问题。 甲 (1)为完成此实验,除了所给的器材,还需要的器材有________。(填入正确选项前的字母) A.米尺 B.秒表 C.4~6V的直流电源 D.4~6V的交流电源 (2)下面列举了该实验的几个操作步骤: A.按照图示的装置安装器件; B.将打点计时器接到电源的“直流输出”上; C.用天平测出重锤的质量; D.先接通电源,后释放纸带,打出一条纸带; E.测量纸带上某些点间的距离; F.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能 其中操作不当的步骤是________。 (3)实验中误差产生的原因有__________________________________________。(写出两个原因) (4)利用这个装置也可以测量重锤下落的加速度a的数值。根据打出的纸带,选取纸带上连续的五个点A、B、C、D、E,测出各点之间的距离如图乙所示。使用交流电的频率为f,则计算重锤下落的加速度的表达式a ________。(用1x、2x、3x、4x及f表示)

乙 2.(1)在利用重锤做自由落体运动验证机械能守恒定律的实验中,有关重锤的质量,下列说法正确的是( ) A .应选用质量较大的重锤,使重锤和纸带所受的重力远大于它们所受的阻力 B .应选用质量较小的重锤,使重锤的惯性小一些,下落时更接近于自由落体运动 C .不需要称量重锤的质量 D .必须称量重锤的质量 (2)在该实验中,选定了一条较为理想的纸带,如图实- 6-3所示,“0”为起始点,以后纸带上所打的各点依次记为1、2、3……,测得的1x 、2x 、3x ……是重锤从开始运动到各时刻的位移。已知打点计时器的打点周期为T ,重锤质量为m ,重力加速度为g ,则当打点计时器打点“4”时,重锤动能的表达式为________________;从“0”点到“4”点的过程中重锤重力势能的减少量表达式为________________。 图实- 6-3 题型二、考查实验数据处理及误差分析 3.在用落体法验证机械能守恒定律时,某小组按照正确的操作选得纸带如图所示。其中O 是起始点,A 、B 、C 是打点计时器连续打下的3个点。用毫米刻度尺测量O 到A 、B 、C 各点的距离,并记录在图中。(已知当地的重力加速度2 g 9.80 m /s =,重锤质量为m 1kg =,计算结果均保留3位有效数字) (1)图中的三个测量数据中不符合有效数字读数要求的是________段的读数,应记作________cm 。 (2)甲同学用重锤在OB 段的运动来验证机械能守恒,他用AC 段的平均速度作为B 点对应的瞬时速度B v ,则求得该过程中重锤的动能增加量k E ?=________J ,重力势能的减少量p E ?=________J 。这样验证的系统误差总是k E ?________p E ?(选填“>”、“<”或“=”)。 (3)乙同学根据同一条纸带,同一组数据,也用重锤在OB 段的运动来验证机械能守恒,将打点计时器打

高考物理-实验验证机械能守恒-专题练习有答案

高考物理 实验验证机械能 题型一、考查实验原理与实验操作 1.如图甲为验证机械能守恒定律的实验装置示意图。现有的器材为:带铁夹的铁架台、电磁打点计时器、纸带、带铁夹的重锤、天平。回答下列问题。 甲 (1)为完成此实验,除了所给的器材,还需要的器材有________。(填入正确选项前的字母) A.米尺 B.秒表 C.4~6V的直流电源 D.4~6V的交流电源 (2)下面列举了该实验的几个操作步骤: A.按照图示的装置安装器件; B.将打点计时器接到电源的“直流输出”上; C.用天平测出重锤的质量; D.先接通电源,后释放纸带,打出一条纸带; E.测量纸带上某些点间的距离; F.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能 其中操作不当的步骤是________。 (3)实验中误差产生的原因有__________________________________________。(写出两个原因) (4)利用这个装置也可以测量重锤下落的加速度a的数值。根据打出的纸带,选取纸带上连续的五个点A、B、C、D、E,测出各点之间的距离如图乙所示。使用交流电的频率为f,则计算重锤下落的加速度的表达式a ________。(用1x、2x、3x、4x及f表示)

乙 2.(1)在利用重锤做自由落体运动验证机械能守恒定律的实验中,有关重锤的质量,下列说法正确的是( ) A .应选用质量较大的重锤,使重锤和纸带所受的重力远大于它们所受的阻力 B .应选用质量较小的重锤,使重锤的惯性小一些,下落时更接近于自由落体运动 C .不需要称量重锤的质量 D .必须称量重锤的质量 (2)在该实验中,选定了一条较为理想的纸带,如图实-6-3所示,“0”为起始点,以后纸带上所打的各点依次记为1、2、3……,测得的1x 、2x 、3x ……是重锤从开始运动到各时刻的位移。已知打点计时器的打点周期为T ,重锤质量为m ,重力加速度为g ,则当打点计时器打点“4”时,重锤动能的表达式为________________;从“0”点到“4”点的过程中重锤重力势能的减少量表达式为________________。 图实-6-3 题型二、考查实验数据处理及误差分析 3.在用落体法验证机械能守恒定律时,某小组按照正确的操作选得纸带如图所示。其中O 是起始点,A 、B 、C 是打点计时器连续打下的3个点。用毫米刻度尺测量O 到A 、B 、C 各点的距离,并记录在图中。(已知当地的重力加速度2 g 9.80 m /s =,重锤质量为m 1kg =,计算结果均保留3位有效数字) (1)图中的三个测量数据中不符合有效数字读数要求的是________段的读数,应记作________cm 。 (2)甲同学用重锤在OB 段的运动来验证机械能守恒,他用AC 段的平均速度作为B 点对应的瞬时速度B v ,则求得该过程中重锤的动能增加量k E ?=________J ,重力势能的减少量p E ?=________J 。这样验证的系统误差总是k E ?________p E ?(选填“>”、“<”或“=”)。

高中物理考试热力学定律与能量守恒定律

选修3-3 第3讲 一、选择题 1.有关“温度”的概念,下列说法中正确的是( ) A.温度反映了每个分子热运动的剧烈程度 B.温度是分子平均动能的标志 C.一定质量的某种物质,内能增加,温度一定升高 D.温度较高的物体,每个分子的动能一定比温度较低的物体分子的动能大 [答案] B [解析] 温度是分子平均动能的标志,但不能反映每个分子的运动情况,所以A、D错误,由ΔU=Q+W可知C错,故选项B正确. 2.第二类永动机不可能制成,这是因为( ) A.违背了能量守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转变为内能 D.内能不能全部转化为机械能,同时不引起其他变化 [答案] D [解析] 第二类永动机的设想虽然符合能量守恒定律,但是违背了能量转化中有些过程是不可逆的规律,所以不可能制成,选项D正确. 3.(2010·重庆)给旱区送水的消防车停于水平地面.在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体( ) A.从外界吸热B.对外界做负功 C.分子平均动能减小D.内能增加 [答案] A [解析] 该题考查了热力学定律,由于车胎内温度保持不变,故分子的平均动能不变,内能不变,放水过程中体积增大对外做功,由热力学第一定律可知,胎内气体吸热.A选项正确. 4.如图所示,两相同的容器装同体积的水和水银,A、B两球完全 相同,分别浸没在水和水银的同一深度,A、B两球用同一种特殊的材料 制成,当温度稍升高时,球的体积会明显变大.如果开始时水和水银的 温度相同,且两液体同时缓慢地升高同一值,两球膨胀后,体积相等, 则( ) A.A球吸收的热量较多 B.B球吸收的热量较多

相关文档
最新文档