高速公路紧急避险车道的设计

高速公路紧急避险车道的设计
高速公路紧急避险车道的设计

汽车紧急避险

(转)开车如何紧急避险?十种危险状况化解方案 今年2月份,一段被美国当地媒体播出后迅速传遍了全世界,一位不当值的高速公路巡警Mark Saylor驾驶的雷克萨斯ES350的油门踏板被地毯卡住了,无法迅速制动的汽车最后在慌乱的驾乘者绝望的惊叫声中与一台SUV相撞,并在地上翻转了数圈之后起火,很不幸的是,车上4位乘员全部遇难。 相信很多车主看了这个新闻片段后感到不安,事实上,汽车高速行驶时以及日常行驶时,遇到的极端威胁可能不仅仅是卡住油门,记者为此寻求了诸多案例和采访众多安全方面专家,竭力找出车主驾车遇到紧急事件时处理的正确招数,力求遇到紧急事件时从容化险为夷。 危险状况一: 油门卡住,汽车持续加速 说实在的,这种情况尽管不多见,但是发生的几率却还是不低的,油门在踩下去被卡住或者弹不起来或者弹起得很慢都会导致车子持续加油猛向前急蹿,这时是很危险的,因为,汽车前方的公路不可能是为你单设的,一般都会有别的车或者其他物体。试验证明,这时还有一个现象就是无论是急刹还是点刹,都没有好的制动效果,也就是说,车子根本不可能减速,原因是动力在源源不断地持续输出。 化险招数:此时一定不要慌乱,要保持镇静,立即挂入N挡(空挡),手档车要立刻将离合踩到底。由于油门发生卡滞,此时相当于引擎始终拥有动力输出并传递到车轮,而在引擎始终拥有动力的情况下刹车制动力无法有效的制动。而反复踩踏刹车踏板还会使刹车盘、片发生热衰退,导致车辆完全失去制动力。因此如果遇到类似紧急状况,驾驶者驾驶自动挡车时应当首先挂入N挡(手挡要将离合踩到底),此时,就断开了发动机和车轮之间的动力联系,也即动力输出被切断了,接着要通过点刹制动(脚的力度可适当加大,但不能一脚踩死)降低车速,在车子速度降低并确保在安全道路上时(前后均无汽车),将发动机强制熄火(按键的,强按住超过3秒钟,钥匙的,逆时针旋转即可关机)。 提醒:一定要迅速挂N挡(空挡)或者将离合踩到底,此时车速很快,车的方向在失去四轮动力发动机牵制后比平时有些难控,但还是能控制住方向,一边躲避前方障碍物和车辆,一边点刹车,不要一脚踩到底,因为此时汽车失去发动机牵引控制,制动效果不好,非常容易紊乱方向并且紧急刹车很难,将汽车减到超低速或者静止时关闭发动机。切勿还在高速时强制关闭发动机,如果一旦关闭发

避险车道设计说明

G210线K2719+700避险车道设计说明 国道G210线K2716+600~K2721+300段地处河池市河池镇大山塘,地势险峻,山高路陡,连续下坡长达4.7公里,大型货车因刹车失控,频繁发生恶性交通事故,与水南路G050线K3001+000~K3006+000段(坡长5公里)并列为自治区重点整治危险路段。2005年12月河池公路管理局在水南路G050线K3004+264处增设一条避险车道,至今已成功施救30多辆大货车,交通事故死亡人数由年14人减至年4人。根据这次成功经验,河池公路管理局对大山塘路段多次勘察,提出在K2719+700处增设避险车道的设想。 一、设置避险车道的原因 据河池市公安局交通警察支队金城江大队“道路交通事故月报表”统计,国道G210线大山塘路段(K2716+600~K2721+300)自2001年11月开通至2007年1月,共发生交通事故215起,其中特大事故10起,重大事故26起,共造成61人死亡,385人受伤,直接经济损失2429461元。近两年交通事故主要集中在K2719+900处。经交警部门事故现场鉴定,造成交通事故的直接原因就是机动车超速、超载引起的。 拟建中的避险车道起点桩号在G210线K2719+700处,距坡顶3.1公里,坡底1.6公里,该处前方200米弯道交通事故频率最高。该路段连续下坡4.7公里,平均坡率为4.20%。最大纵坡为7%,最小纵坡为2.0%,纵坡大于6.0%坡段有5处,共长2085米,占整段纵坡44.36%。由于连续

下坡,超重货车长时间刹车,引起刹车片发热,续而发软,引发刹车失灵,造成交通事故。为减少交通事故发生,避免车毁人亡,故拟建避险车道。 二、避险车道位置选定 G210线寨任二级公路按山岭重丘二级公路标准设计,路基宽12米,设计时速40公里/小时。大山塘段地势险恶,山高谷深,坡陡路弯,高差起伏大,K2716+600~K2721+300段变坡点达15处,弯道有9处,弯道最小半径为200米。根据交警部门和金城江公路局这几年来从汽车交通事故中调查得知,机动车连续下坡2公里后,刹车片已发热发软,制动开始失灵,大部分车到大山塘大桥K2719+230处,刹车已全部失灵,K2719+180~K2720+100段有两处弯道,为S型,弯道半径R1=200米,R2=256.36米,纵坡为-7%。路又弯又陡,机动车高速下行,拐过第一个弯道后,很难拐过第二个弯道,在离心力作用下,机动车冲出行车道,轻则翻车,重则撞山,车毁人亡。经过多次勘查,确定把避险车道建在第二个弯道(K2719+700~K2720+100)上,能最大限度发挥险车道作用。具体位置有两处:①避险车道起点在弯道的曲中点K2719+900处,沿弯道圆曲线切线方向布置,机动车拐不过弯道时可冲进避险车道内避险。②避险车道起点在弯道直缓点K2719+700处,机动车拐过第一个弯道后,可直接冲进避险车道内避险。经过多次比较,位置②优于位置①。位置①需挖开山体,工程量很大,容易造成山体滑坡,且位置在弯中,施救时比较危险。位置②填方大,挖方少,工程量少,在弯道与避险车道夹角处可建施救平台,视线良好,施救方便。

浅析避险车道的设置

浅析避险车道的设置 浅析避险车道的设置张灿和单位:黑龙江正业勘测设计有限公司避险车道是专 门为减慢失控车辆速度并使车辆安全停车的辅助车道。避险车道一般为上坡车道,表面为铺满沙石或松软砂砾的制动层。设置避险车道的原理是把失控车辆的动能 转化为重力势能和抵抗路面摩擦的能量,从而使车辆停下来。因此,制动层的目 的是增加大型车辆的滚动摩擦阻力,最终帮助车辆停下来,而且这种增加的滚动 摩擦力还能阻止大型车在停车后向后翻转。如果没有沙石或松软的砂砾层,避险 车道必须设计得更长或坡度更大。在特定情况下,避险车道也可以是平坡或下坡 车道。一、避险车道的类型国内避险车道可分为三种类型:重力型、沙堆型、 制动砂床型。重力型避险车道是靠陡峭的坡度使车辆减速的车道。重力型匝道是 平行于主线的上坡匝道,它一般是建立在旧路上的。长陡坡给驾驶人带来的是控 制车辆问题,不仅仅是使车辆停止,而且还不能让车辆进入避险车道后由于重力 返回主线,影响主线上其他车辆正常行驶。沙堆型避险车道是将松散、干燥的沙 子堆积在上坡的匝道上,靠重力及沙堆阻力来使车辆减速的车道。沙堆型避险车 道易受天气的影响(雨、雪影响沙堆的稳定性)。另外,高数值的减速度对驾驶人 及车辆造成的损伤较大。制动砂床型避险车道是由光滑的、粒径均匀的天然砂砾 铺设在路床上。制动砂床主要通过砂砾的滚动阻力使失控车辆减速或停止。它通 常建立在上坡上,因为上坡的重力分力可以增加它的减速效能。结合紧急避险车道的类型和坡度、材料可以组合成:上坡砂坑型、下坡砂坑型、平坡砂坑型和砂 堆型。目前,基本不太采用下坡和平坡类型的避险车道,因为它们的制动距离过长,避险车道线形长,工程造价过高,而且制动效果不好。我国较多采用的是上 坡重力型并结合制动材料减速,效果不错。二、避险车道的组成一条完善的避 险车道应由流出渐变段、引道、制动坡床、服务道路、强制减弱装置、救助设施 等组成。 (1)流出渐变段:设在避险车道与主线衔接的入口处,长度30~60m;流出渐变段的作用是从主线分离失控车辆,同时尽可能降低失控车辆从主线驶出的 车速。设置流出渐变段的路段,路基应相应加宽,当条件受限制时,可占用硬路 肩宽度。流出渐变段的平面线形应尽量为直线或大半径曲线,纵面线形应顺延主 线纵坡后变坡,或完全与主线纵坡一致。 (2)引道:指避险车道中,从主线分离出来的那部分道路,即流出渐变段与制动坡床或服务道路之间的道路。引道的形状 是一个楔型多边体,其路面结构与主线相同。引道的作用在于连接主线与制动坡床,使失控车辆在安全的前提下驶入制动坡床。 (3)制动坡床:使失控车辆能在安全的减速下平稳停车的一种路面结构,为松散材料的道路。制动坡床的宽度不小 于4.5m,坡床集料可选用碎砾石、砾石、砂或豆砾石。为了尽量减小坡床长度,一般选用豆砾石。 (4)服务道路:与制动坡床平行的供救援车辆行驶的道路,是连接引道的断头路,专供救援车辆救助失控车辆时使用。服务道路平、纵面线形与 制动坡床一致,宽度不小于4.5m,一般为3.5m—4.5m,路面结构与引道一致,也可以只作简易铺装,但一定要做硬化处理。 (5)强制减弱装置:设在避险车道的末端,制动坡床的顶部,使失控车辆强制减振。它是防撞、消能的设施。强 制减弱装置可用砂袋、废旧轮胎堆放,或在制动坡床的U形槽末端设置防撞砂桶。减弱装置的堆放厚度为0.6m~1.5m。 (6)救助设施:附属在避险车道上,救助失控车辆时必须或可能使用的一些设施,如救助锚栓、照明灯、救助电话等。三、避险车道的设置 1.设置原则公路连续长、陡下坡路段,当平均纵坡为4%,纵 坡连续长度为3km;车辆组成中大、中型重车占50%以上,且载重车缺乏辅助制

山区公路避险车道的设置

山区公路避险车道的设置 摘要本文结合实践和理论,探讨山区公路避险车道的设置,包括位置、线性、车道长度、材料、厚度及附属设施等。 关键词山区公路避险车道设置 避险车道是指在长陡下坡路段行车道外侧增设的供失控车辆驶离正线而安全减速的专用车道。如下图: 我国的避险车道起步较晚,相关的研究很少,相应的规范或指南还没出台。目前,我国避险车道设置在长度、线形、材料等方面还存在一些问题,给使用避险车道的司机和车辆带来了事故隐患。即影响了公路的交通运输,又可能造成巨大的经济损失。本文结合理论和实践对山区避险车道做一浅显探讨。 1、避险车道的设置 1.1设置位置及线形 避险车道一般设置在连续长、陡下坡路段上的适当位置的右侧。新规范(2003修改94版)的送审稿有样的规定:“公路连续长、陡下坡路段,当平均纵坡≥4%,纵坡连续长度≥3km;车辆组成内大、中型重车占50%以上,且载重车辆缺乏辅助制动装置。为避免车辆在行驶中速度失控而造成事故,应在长、陡下坡地段的右侧山坡上的适当位置设置避险车道。” 对于已经建成并通车的公路,在连续长,陡下坡路段上的某些位置可能会发生一些车辆失控事故,对于这种情况,避险车道设置位置可通过路政部门调查了解后的情况做出判断分析。国外的避险车道根据经验和事故率一般都设置在距坡顶的2/3~3/4坡长处的右侧。  而对于尚未建成通车的山区公路,我们在设计阶段就要对存在连续长、陡下坡的路段作出是否要设计避险车道,设计几处和设于何处进行科学的分析。其位置可参考其它已建成的避险车道的设计经验,结合实际线形及地形来确定。    避险车道由于主要针对失控车辆,考虑到司机在车辆失控的情况下情绪紧张且车速较高,最好将避险车道的线形设置为直线,以利于行车安全。避险车道应设置在主线快要左转弯之前的直线路段上,且自身线形应设置为直线;如果主线前后段落均为直线路段,设置一个驶出角从主线分离,与主线连接用竖曲线,通过引道将失控车辆引入避险车道。考虑到失控车辆车速较高,驶出角应取稍小值,一般取≤10°,使车辆横向移动不致太剧烈,保证失控车辆能够安全进入避险车道。

高速公路避险车道的设置

TRANSPOWORLD 2012 No.24 (Dec) 88 理的温度调节。道路交通标志的具体施工与管理 在道路交通标志的施工前期先要进行精确的测量定位,一般来说测量定位都是以路缘石和里程桩为准的,但遇到特殊情况时也可适当地进行调整。测量定位之后就是基础开挖了,基坑的开挖要严格依照图纸尺寸及比例进行,基础开挖完成以后要由负责监督管理的工程师进行验收,确认合格后才能实施下一道工序。这个过程要注意,基坑不要挖的过深过多,要与下一步工具同时进行,以免造成雨水冲塌现象。这个过程的工作完成之后应尽快进入到支模浇筑阶段,首先把钢筋笼捆扎好,然后放到基坑内进行固定,如果钢筋笼不能提前进行绑扎,也可以在放入基坑后进行绑扎,这些工作完成后也要有负责监督管理的工程师进行验收,确认合格后开始用混凝土进行浇筑。这一步一定要把握好法兰盘连接的标高及位置,然后把螺栓包封好,以免受到侵蚀而损坏。最后就要安装立柱,挂上标志板了。上述基础工作完成之后,就可以进行支柱安装并悬挂标志板了,如果说标志板体积不是很大,可以先将标志板固定在立柱上,之后直接把立柱安装在基础 设施上面就可以了。但是还有一些相对来说体积比较大的标志板,这样的情况就可以进行立柱在基础设施上的安装,安装完成后再单独把标志板挂在立柱上就可以了。在进行立柱安装时要把握好立柱的板面和路面之间在竖直方向的夹角,还要确保立柱的垂直度。路肩和标志侧边缘之间的在水平方向上的距离,地面和标志下边缘在竖直方向上的距离也都是影响立柱标志板安装的重要因素。 波形梁护栏的具体施工与管理 波形梁护栏是护栏的一种,护栏施工的位置主要是公路的中央分隔地带以及路侧边缘部分,设置护栏立柱可以采用埋设法或者打入法两种,总的来说,这两种设置方法具有不同的有点,也适用于不同的道路场合,对于一般的土质路段来说,土质比较疏松,更适合运用打入法来设置立柱;而对于一些桥头位置或者山地石质路段来说,更适合运用埋设法来设置立柱。如果站在施工的位置进行考虑的话,打入法所使用的设备比较简单,资金投入相对较少,实际操作起来比较简单。从以后的养护来看,埋设法则更加合理更加实用。波形梁护栏施工时首先要进行测量定位,这 是保障立柱间距准确合理的根本手段,同时对挂板的质量与速度也会产生一定的影响,测量人员对施工图纸要有一个综合性的把握,放样时竖直方向上要以中央开口带以及桥梁等为准,水平方向上要以路缘石为准,只有严格依照图纸测量才能使定位更加准确。测量完毕后要根据测量准确的位置打入立柱,在打入立柱的过程中要严格控制立柱的垂直度以及高度,完成后要对立柱的垂直度以及高度进行重点检验,对不符合规定的,及时进行纠正,确保立柱全部规范合理。有些路段还需要进行挂板,这个在完成立柱的打入后直接挂板即可,挂板完成后进行相应的调整与固定就可以了。 结语 在道路安全设施的施工与管理过程中,可能会涉及到安全设施管理的各个方面的精确细致要求,这不但要求施工人员加强对安全设施施工的责任心,还要求有关责任人做好施工的监督工作,使交通环境更加安全和谐,从而推动社会的进步与发展。 作者单位:河北冀星高速公路有限公司 承 德市为山区地形,相对于平原地区而言,由于山区的地形、地 质、水文等自然条件复杂,生态环境制约限制条件与影响因素众多,因此山区公路往往存在着曲线半径较小、坡度大、坡道长和视距不良等不利于行车安 全的情况。 在山区高速公路建设过程中,考虑到经济因素和工程方便性,道路设计参数采用了一些极限标准。尤其是在越岭路段往往出现长大纵坡路段。比如承唐高速穿越北大山后向唐山方向有较长 段的直线下坡路段。 根据我国的事故统计表明,山区公路事故主要集中在长陡下坡段,而且事故后果严重。长陡下坡的事故原因主要是连续制动导致刹车温度急剧上升,引发刹车系统出现功能性故障,发生车 高速公路避险车道的设置 文 / 刘 彬 T RAFFIC SAFETY 交通安全

公路项目安全性评价指南讲解

公路项目安全性评价指南 (JTG/T B05~2004) 条文说明 1 总则 1.0.1目的 公路安全性评价(Highway Safety Audit,简称USA)是从公路使用者行车安全的角度对公路设施的规划、研究、设计成果或现有公路路况影响行车安全的潜在因素进行评价。 20世纪80年代以前,世界各国多采用警告标志、限速标志、改线等措施降低运营期间的公路交通事故率,效果虽然很好,但往往需要很长时间,造成很多人员和财产损失之后才来逐步解决。如果能在交通事故发生前或在公路设施规划、研究、设计阶段就能发现公路设施存在着影响交通安全的潜在因素并加以纠正,就能大大减少人员和财产损失。公路安全评价的概念和方法就是在这样的背景下逐步形成的0 1985年前后,英国首先开始研究并逐步推广应用公路安全评价技术,并规定从1991年起对所有新建高速公路和汽车专用公路进行公路安全评价。1992年以后,澳大利亚、新西兰、马来西亚、丹麦、荷兰等国家相继开展了公路安全评价的研究和应用。美国公路安全研究起步很早,1967年AASHTO就发表了“考虑公路安全的公路设计与操作实践”,1974年修改、扩充再版;1985年建立了公路安全信系统,积累交通事故数据,从1990年开始进行公路安全评价的理论研究并取得了重要的成果;1991年形成AASHTO标准《道路安全设计与操作指南》,1997年AASHTO又公布了《道路安全设计与操作指南》的最新版;2003年推出了路侧安全分析程序Roadside Safety Analysis Program(RSAP)和交互式公路安全设计程序Interactive Highway Safety Design Model(IHSDM),使公路安全性评价从定性评价方式过渡到了定性与定量评价相结合的方式。 1.0.2适用范围 由于我国公路安全评价的研究起步较晚,研究工作以高速公路、一级公路为主,因此本指南的适用范围为新建或改扩建高速公路、一级公路,其他等级公路可参照使用。为提高行车安全性,高速公路,、一级公路改扩建之前应进行安全性评价,以指导改扩建工程设计。 1.0.3代表车型 高速公路、一级公路的代表车型一般情况下应为小客车,但对于车型以大货车为主的公路,对大货车控制的技术指标(如视距等)评价时,宜采用大货车车型进行评价。 1.0.4评价阶段 在目前已开展公路安全性评价的国家,评价工作大都分为可行性研究、初步设计、施工图设计、试通车及运营等五个阶段。由于我国公路基本建设阶段划分及各阶段内容深度与其

高速公路避险车道设计

共享知识分享快乐 咼速公路避险车道设计 1概述 在山区高速公路长大下坡路段,经常岀现载重货车因制动失效,发生严重安全事故的现象。对于长大 纵坡带来的道路交通安全问题,国内外已进行了大量的专题研究。紧急避险车道作为道路的一个组成部分,在欧美广泛应用了多年。其应用实践证明对提高道路交通安全和减少交通事故经济损失具有重要的意义。避险车道的设置在我国尚处于起步阶段,相关设计目前尚缺少专门规范。在东西高速公路设计中, 中、西标段共设置了27处紧急避险车道。本文结合国内外有关资料,拟对避险车道设置原则、类型、设计方法进行系统地总结。 2山区高速公路长大下坡路段存在的安全问题与分析 2. 1规范要求 东西高速公路几何设计采用欧洲(法国)标准,对于地形特别困难路段,ICTAALI985给出了最大纵坡及 坡长指标,见表1 表1纵坡坡长指标表(单位:% / m ) 欧洲标准路线纵面设计和国内存在较大理念差别,前者在规范规定的最大纵坡之内,坡长一般不受限制。

欧洲标准规定长大纵坡路段坡度设计应尽量采用平均坡度,认为较长的坡长对视距、行驶安全更为有利。如一个坡长为3000m ,平均坡度为5.5 %的路段,这个坡段最好采用 5.5%一个坡度设置到底(这一 结论与国内规范截然相反)。 欧洲规范要求在长大坡路段应坚决避免插入短的缓坡,研究结论认为,陡坡之间的缓坡会给司机造成陡坡结束的错觉,容易引起更大的安全问题。 2.2 长大纵坡风险的判定 2.2.1 研究方法 法国高速公路和道路技术研究部门(SETRA) 对长大纵坡进行了研究,通过两种方法来确定长大纵坡路段风险判定条件,这两种方法分别是: (1) 对重型车辆在长大纵坡上的运行性能进行分析; (2) 对长大纵坡路段车辆发生的事故进行统计分析。 2.2.2 车辆的制动性能 研究者认为:长时间的制动或频繁制动会使刹车片过热从而导致危险,特别是在高速行驶状态时,紧急制动需要更大的制动力,因此会产生更大的危险。研究结果显示汽车在30km /h 恒定速度下,经过一个长6km,坡度为6%的下坡后,其制动性能将下降到40 %以下,此时刹车片的温度升高到350°C左右。制动效率的恢复研究结果见表2 所列。 表2 制动效率恢复表(单位:min )

《普通公路紧急避险车道建设技术要求》

《普通公路紧急避险车道建设技术要求》 河南省地方标准编制说明 一、编制的目的和意义 山区公路克服高差设置连续长陡坡难以避免。连续长大下坡和重型车辆的结合存在着潜在的危险;而我国货车制动性能相对较差,超载超限又加剧了危险。 近年来,我国的事故统计表明,山区公路的事故主要集中在连续长大下坡路段,而且事故后果严重。目前许多事故频发的连续长大下陡坡被驾驶员喻为“死亡之路”或“通天之路”。长大下坡路段事故多发原因是连续制动导致刹车毂温度急剧上升,引发制动性能热衰退现象,严重时会完全丧失制动,进而引发车辆失控。 根据国外的经验,解决山区公路长大下坡路段交通安全问题的工程方法之一是修建避险车道。在欧美国家,避险车道已有余年的使用历史,积累了相当丰富的实践经验且出了许多研究成

果。我国避险车道起步较晚,年,京藏高速()北京段(原八达岭高速公路)修建了我国第一条避险车道。近年来,连续长大下坡路段引发的交通事故成为了社会关注的重点。国内避险车道设置数量也增长较快,我省山区普通公路连续长大下坡路段也设置了多条避险车道。 目前,我国尚未有专门的避险车道方面的设计规范,《公路工程技术标准》中的条文虽然明确提出连续长下坡应设置避险车道,但缺乏设置条件、铺装材料、几何结构尺寸及附属设施等关键内容的技术要求,公路避险车道的设计基本参照国外的标准,并加入设计或管理人员的主观想法进行设计。 尽管现有的避险车道取得了一定的使用效果,但由于设置经验有限,且缺乏指导避险车道设计的规范,避险车道设计缺陷也引发了一些安全、救援困难等问题:如避险车道设施位置不合适或角度过大引起失控车辆驶入困难;几何线形的不合理或附属设施设置不当导致失控车辆驶入避险车道却发生侧翻、冲出避险车道或冲撞端头防撞墙等二次事故;因未设置辅助救援设施,事故

驾考理论考试题目归类

驾驶型 1、(1)、立交桥一般为封闭单行道,设计规则:上桥先往左行驶过桥后向右行驶,再右走不过桥进匝道就完成。 (2)、车辆从匝道驶入高速公路,应开启左转向灯,在不妨碍已在高速公路内的机动车正常行驶下驶入车道。驾驶车辆驶入高架公路加速车道后,遇行车道车辆稀少时,可从正常行驶车辆后驶入行车道。 (3)、在划有导向车道的路口,机动车应按所需行进方向驶入导向车道。 2、发动机着火时,应迅速关闭发动机,不能开启发动机罩进行灭火,容易让更多氧气涌入使火势加大。 3、(1)、安装防抱死制动装置(ABS)的车辆制动时,制动距离会变化,制动时前车轮抱死会丧失转向能力。 (2)、安装防抱死制动装置(ABS)的车辆制动时,可用力踏制动踏板。 (3)、制动时车轮最容易抱死的路面是冰雪路面。 (4)、制动时后车轮抱死可能会出侧滑甩尾的情况,前轮抱死也可能会出侧滑甩尾的情况。 4、(1)、侧面碰撞部位发生在驾驶座部位时,不应迅速设法跳车。 (2)、感到车辆不可避免地要倾翻时,应稳住身体,双手用力撑住方向盘,不用跳车,有安全带最多皮外伤。 5、轮胎交叉换位是为了防止偏磨,与爆胎无关系,防止爆胎的方法有保持胎压在适当范围内,避免过高或过低的胎压、避免超载、避免长时间以过高的速度行驶、在路况不好的地方谨慎驾驶、停车时避免刮擦胎壁等 6、驻车制动器操纵杆,即手刹,需紧急驻车可用,停车时必用的,高速行驶时,拉起手刹也会导致甩尾。 制动踏板即刹车,主要起到车辆行驶过程中,速度慢的可以使车辆停车,速度快了会甩尾的,切记-行车勿快。一脚将刹车踩死。 离合器踏板即离合器,离合器分离轴承到离合器分离爪之间的距离,反应到踏板上就称为离合器的自由行程,当离合器片因摩擦而变薄后,自由行程会变小,严重时会打滑,俗称离合器变高了。 检查离合器踏板,是用力踩离合器踏板,看踏板能否顺利的踏下,回位 检查制动踏板,才是将制动踏板踩到底,检查制动踏板与车厢地板之间的间隙是否符合要求 加速踏板即油门,改变发动机转速的装置,一般情况下,踩下加速踏板,改变的都是节气门开度。从而增加发动机进气量,达到提升转速的目的。 (1)、踏制动踏板,应当用右脚前掌踩踏。 (2)、机油压力表是用来指示发动机运转时润滑系主油道的润滑油压力。 (3)、离合器踏板是离合器的操纵装置,用以控制发动机与传动系动力的接合与分离。 (4)、加速踏板是控制发动机节气门或喷油泵柱塞的装置,用以控制发动机转速。 (5)、变速器操纵杆的作用是通过变速档位改变发动机的扭矩和转速,并使汽车前进和倒退。 (6)、为发挥最大制动作用,使用驻车制动器时不可将操纵杆一次性拉紧。 (7)、车辆下长坡时要减挡行驶,以充分利用发动机的制动作用。 (8)、车辆因转向或擦撞引起的侧滑,不可使用行车制动。 (9)、下坡路制动突然失效后,在不得已的情况下,可用前保险杠侧面撞击山坡,迫使车辆停住。 (10)、出现制动失效后,应以控制方向为第一应急措施,再设法控制车速。 (11)、制动失灵后,应立即寻找并冲入紧急避险车道;停车后,拉紧驻车制动器,以防溜动发生二次险情。(12)、行车中当车辆前轮爆胎已发生转向时,轮胎漏气驶离主车道时,驾驶人不可采用紧急制动,以免造成交通事故,驾驶人应双手紧握转向盘,尽力控制车辆直线行驶。 7、下长坡时,车速会因为惯性而越来越快,控制车速最有效的方法是(利用发动机制动)。 8、车辆驶出隧道口处,遇横风引起车辆偏离行驶路线时,应握稳转向盘,微量进行调整。 9、驾驶人在行车中经过积水路面时,应特别注意减速慢行。 10、自动挡汽车P挡在驻车、起步、拔钥匙时使用,起步还需须踏下制动踏板。 N档,空挡,发动机正常运作,变速箱不传递动力给传动轴。 R档,倒车档,车辆倒退行驶所使用。 D档,通常行驶所用,适用于一般道路,车速不高时使用。 2档,上下缓坡使用,发动机制动力较大。 L档,上下陡坡使用,发动机制动力最大。 OD档,高速档,车辆高速行驶所使用。 11、机动车通过没有交通信号的交叉路口,三个先行原则:转弯的机动车让直行的车辆先行,右方道路来车先行,右转弯车让左转弯车先行。 12、行车时应该注意观察远距离路面情况,以防偏离行驶路线。 13、车辆行驶中(特别在高速公路上)一侧发生爆胎时,车就向坏轮子那边跑偏,甚至会翻车。 14、行车中与其他车辆有迎面碰撞可能时,应先向右侧稍转方向,随即适量回转,并迅速踩踏制动踏板。 15、转向失控后,若车辆偏离直线行驶方向,应果断地连续踩踏、放松制动踏板,使车辆尽快减速停车。 16、(1)、没有划分机动车道、非机动车道和人行道的道路,机动车在道路中间通行。

避险车道设计

高速公路避险车道设计 文章来源:科技质量办更新时间:2009-12-24 1概述 在山区高速公路长大下坡路段,经常出现载重货车因制动失效,发生严重安全事故的现象。对于长大纵坡带来的道路交通安全问题,国内外已进行了大量的专题研究。紧急避险车道作为道路的一个组成部分,在欧美广泛应用了多年。其应用实践证明对提高道路交通安全和减少交通事故经济损失具有重要的意义。避险车道的设置在我国尚处于起 步阶段,相关设计目前尚缺少专门规范。在东西高速公路设计中,中、西标段共设置了27处紧急避险车道。本文结合国内外有关资料,拟对避险车道设置原则、类型、设计方 法进行系统地总结。 2山区高速公路长大下坡路段存在的安全问题与分析 2. 1规范要求 东西高速公路几何设计采用欧洲(法国)标准,对于地形特别困难路段,ICTAALI985 给出了最大纵坡及坡长指标,见表1。 表1纵坡坡长指标表(单位:% / m ) 设计标准L80 L100 L120 上坡路段最大坡度/ 7/600 6/600 5/600 坡长 下坡路段最大坡度/ 没有特殊限制6/600 坡长 欧洲标准路线纵面设计和国内存在较大理念差别,前者在规范规定的最大纵坡之内,坡长一般不受限制。 欧洲标准规定长大纵坡路段坡度设计应尽量采用平均坡度,认为较长的坡长对视距、行驶安全更为有利。如一个坡长为3000m,平均坡度为5.5%的路段,这个坡段最好采用5.5%一个坡度设置到底(这一结论与国内规范截然相反)。

欧洲规范要求在长大坡路段应坚决避免插入短的缓坡,研究结论认为,陡坡之间的缓坡会给司机造成陡坡结束的错觉,容易引起更大的安全问题。 2. 2长大纵坡风险的判定 2. 2. 1研究方法 法国高速公路和道路技术研究部门(SETRA)对长大纵坡进行了研究,通过两种方法来确定长大纵坡路段风险判定条件,这两种方法分别是: (1)对重型车辆在长大纵坡上的运行性能进行分析; (2)对长大纵坡路段车辆发生的事故进行统计分析。 2. 2. 2车辆的制动性能 研究者认为:长时间的制动或频繁制动会使刹车片过热从而导致危险,特别是在高速 行驶状态时,紧急制动需要更大的制动力,因此会产生更大的危险。研究结果显示汽车在 30km/h恒定速度下,经过一个长6km,坡度为6%的下坡后,其制动性能将下降到40%以下,此时刹车片的温度升高到350°C左右。制动效率的恢复研究结果见表2所列。 表2制动效率恢复表(单位:min) 根据测试表明,当刹车片温度超过250o C时,制动效率就会出现损失,可将200o C作为风险判定条件。当刹车片超过这一温度时,则认为汽车行驶会产生风险。当刹车片温度超过200o C时dp>150,其中: d为长大纵坡总的坡长,单位:m; p为长大纵坡平均坡度,单位:%。 2. 2. 3长大纵坡事故原因分析 车辆发生事故与车辆的性能及道路几何特性相关联,在车辆性能一定的情况下,风险的发生则与道路几何特性直接相关,当车辆性能无法适应超标的坡度时,这些坡道上发生事故的风险

高速公路避险车道设计

高速公路避险车道设计 1概述 在山区高速公路长大下坡路段,经常出现载重货车因制动失效,发生严重安全事故的现象。对于长大纵坡带来的道路交通安全问题,国内外已进行了大量的专题研究。紧急避险车道作为道路的一个组成部分,在欧美广泛应用了多年。其应用实践证明对提高道路交通安全和减少交通事故经济损失具有重要的意义。避险车道的设置在我国尚处于起步阶段,相关设计目前尚缺少专门规范。在东西高速公路设计中,中、西标段共设置了27处紧急避险车道。本文结合国内外有关资料,拟对避险车道设置原则、类型、设计方法进行系统地总结。 2 山区高速公路长大下坡路段存在的安全问题与分析 2.1规范要求 东西高速公路几何设计采用欧洲(法国)标准,对于地形特别困难路段,ICTAALl985给出了最大纵坡及坡长指标,见表1。 表1纵坡坡长指标表(单位:% / m) 欧洲标准路线纵面设计和国内存在较大理念差别,前者在规范规定的最大纵坡之内,坡长一般不受限制。 欧洲标准规定长大纵坡路段坡度设计应尽量采用平均坡度,认为较长的坡长对视距、行驶安全更为有利。如一个坡长为3000m,平均坡度为5.5%的路段,这个坡段最好采用5.5%一个坡度设置到底(这一结论与国内规范截然相反)。 欧洲规范要求在长大坡路段应坚决避免插入短的缓坡,研究结论认为,陡坡之间的缓坡会给司机造成陡坡结束的错觉,容易引起更大的安全问题。 2.2长大纵坡风险的判定 2.2.1研究方法 法国高速公路和道路技术研究部门(SETRA)对长大纵坡进行了研究,通过两种方法来确定长大纵坡路段风险判定条件,这两种方法分别是: (1)对重型车辆在长大纵坡上的运行性能进行分析;

避险车道

避险车道设计的问题 根据能量守恒,下坡的汽车将动能转化为重力势能和道路路面摩擦能量,这样根据汽车下坡速度,可以得出一个避险车道的最小长度L=v*v/2g/(R+i),在避险车道最小长度内铺设碎石或细砂来抵抗汽车冲过来的动能 一条完善的避险车道应当由避险车道引道、避险车道、服务车道及其他附属设施组成。避险车道应具有两个作用:使失控车辆从主线中分流,避免对主线车辆的干扰;失控车辆在避险车道上,在安全的减速度下平稳地停车,不应出现人员受伤、车辆严重损害的现象。而我国避险车道大都能起到使失控车辆从主线分流的作用,保证了主线其他车辆的安全;但是并没有保证驶入避险车道驾驶员的安全,从刮蹭、货物散落等轻微事故到驾驶员致残或死亡等严重事故时有发生。“这与车辆超速、超载等因素有很大的关系,但也和设计中没有正确选用避险车道设计参数有着密切的关系。”交通部公路所交通安全工程研究中心的专家说。 应重视引道的设置 据专家介绍,在我国,避险车道的引道很少引起设计人员的重视,我国的一些避险车道甚至没有设置引道。在美国上世纪80年代,关于引道的研究也很少,但是随着道路工程技术人员对避险车道不断深入的研究,引道的作用渐渐引起了研究者的重视。引道起着连接主线与避险车道的作用,可以给失控车辆驾驶员提供充分的反应时间、足够的空间沿引道安全地驶入避险车道,减少因车辆失控给驾驶员带来的极度恐惧,而不致失去正常的判断能力。引道的设置,应保证准备使用避险车道的驾驶员在引道的起点清晰地看到避险车道的全部线形,时隐时现的避险车道会给驾驶员不安全的感觉,往往会使驾驶员避开避险车道,而遗憾地错过一次救生的机会。 专家指出,避险车道是为失控车辆设计的,因此它的平面线形应是直线,我国某些山区公路的避险车道采用小半径曲线,设计人员有可能参照出口匝道设计的线形,失控车辆是不能适

高速公路避险车道设计

咼速公路避险车道设计 1概述 在山区高速公路长大下坡路段,经常岀现载重货车因制动失效,发生严重安全事故的现象。对于长大 纵坡带来的道路交通安全问题,国内外已进行了大量的专题研究。紧急避险车道作为道路的一个组成部分,在欧美广泛应用了多年。其应用实践证明对提高道路交通安全和减少交通事故经济损失具有重要的意义。避险车道的设置在我国尚处于起步阶段,相关设计目前尚缺少专门规范。在东西高速公路设计中, 中、西标段共设置了27处紧急避险车道。本文结合国内外有关资料,拟对避险车道设置原则、类型、设计方法进行系统地总结。 2山区高速公路长大下坡路段存在的安全问题与分析 2. 1规范要求 东西高速公路几何设计采用欧洲(法国)标准,对于地形特别困难路段,ICTAALI985给出了最大纵坡及坡长指标,见表1 表1纵坡坡长指标表(单位:% / m ) 欧洲标准路线纵面设计和国内存在较大理念差别,前者在规范规定的最大纵坡之内,坡长一般不受限 制。

欧洲标准规定长大纵坡路段坡度设计应尽量采用平均坡度,认为较长的坡长对视距、行驶安全更为有利。如一个坡长为3000m ,平均坡度为5.5 %的路段,这个坡段最好采用5.5%一个坡度设置到底(这一结论与国内规范截然相反)。 欧洲规范要求在长大坡路段应坚决避免插入短的缓坡,研究结论认为,陡坡之间的缓坡会给司机造成陡坡结束的错觉,容易引起更大的安全问题。 2.2 长大纵坡风险的判定 2.2.1 研究方法 法国高速公路和道路技术研究部门(SETRA) 对长大纵坡进行了研究,通过两种方法来确定长大纵坡路段风险判定条件,这两种方法分别是: (1) 对重型车辆在长大纵坡上的运行性能进行分析; (2) 对长大纵坡路段车辆发生的事故进行统计分析。 2.2.2 车辆的制动性能 研究者认为:长时间的制动或频繁制动会使刹车片过热从而导致危险,特别是在高速行驶状态时,紧急制动需要更大的制动力,因此会产生更大的危险。研究结果显示汽车在30km /h 恒定速度下,经过一个长6km,坡度为6%的下坡后,其制动性能将下降到40 %以下,此时刹车片的温度升高到350°C左右。制动效率的恢复研究结果见表2 所列。

交通安全设施设计学习心得

交通安全设施设计学习心得 课程名称:交通安全设施设计 班级: 姓名: 学号:201 指导教师: 学院名称:

近年来,我国的交通事业得到了迅猛的发展。交通基础设施建设不断取得新成绩,运输保障能力得到进一步的提高。至2007年底,我国的公路里程已达到357.3万公里,高速公路达到5.36万公里,稳居世界第二位。我国的公路建设只用10余年的时间就走过西方发达国家几十年的发展历程,成绩斐然。但是与西方发达国家一样,随着公路建设的突飞猛进、机动化水平的迅速提高和驾驶员数量的大幅增长,我国道路交通的事故也居高不下。1990年,全国有49271人死于道路交通事故,到了2001年,首次超过10万人,达到105930人。其间尤以2000和2001年增长最多,每年增幅超过1万人。2002年,死亡人数的增速虽然有所下降,但由于基数较大,总量仍高达109381人,达到历史上的最高峰。截至2007年6月,我国目前机动车保有量为152807598辆,仅占全球汽车保有量的2%;而每年死于交通事故的人数却占全球的15%-20%。目前,我国公路交通死亡人数世界第一,严重影响了公路交通的可持续健康发展。因此,安全有效的交通安全保障设施为保证出行安全从而减少交通事故发生的概率具有极大的必要性。 交通安全设施在作用上,首先应该诱导驾驶员的视线。在视觉上给予驾驶员充足的道路、环境信息,提高驾驶员辨识道路轮廓的能力,使其在规定的车道内保持安全行驶。视线诱导设施主要包括轮廓标、线形诱导标、路钮、示警墩和突起路标。这些设施沿行车道两侧布置,向驾驶员传递道路线形、方向、行车道边界及危险路段位置等信息。为了提高这些标志的视认性,改善信号传播效果,各种标志牌的材质均要求具有反光物质,可以全天候引导驾驶员视线,表明道路轮廓,保证行车安全。 其次是交通安全设施需要提前告知该路段的线形条件,为安全通行做好准备工作。视线诱导设施只有在行驶该路段时才能祈祷作用,在信息传递上缺乏前瞻性。基于此,在危险路段之前竖立交通竟是标志牌进行预告成为交通安保工程的第二阶段反感,可以有力地补充主动诱导不足。这些标志想驾驶者提供充分的道路信息,引导驾驶者顺利,会计,安全的到达目的地。交通警示和预告标志包含急弯警告标志,陡坡警告标志、连续弯道警告标志、长下坡警告标志、限速标志、路面图文标志等等。 第三,在危险路段车速不宜较高,交通安全设施应该起到对行驶车辆强制减

JTG+D81~2017年公路交通安全设施设计规范方案[正式版]护栏相关知识

JTG+D81-2017公路交通安全设施设计规(正式版) 护栏相关知识 1.0.8在满足安全和使用功能的条件下,应积极推广使用可靠的新技术,新材料,新工艺,新产品。 2.0.1净区:公路车行道以外,无障碍物,车辆驶出车行道后可以停车或驶回公路的带状区域。 2.0.2护栏标准段:断面结构形式保持不变并在一定长度围连续设置的公路护栏结构段。 2.0.3护栏过渡段:设置于两种不同结构形式或不同防护等级的公路护栏之间、连接平顺、结构刚度平稳过渡的公路护栏结构段。 2.0.4路侧护栏:设置于公路路侧建筑限界以外的护栏。 2.0.5中央分隔带护栏:设置于公路中央分隔带的护栏。 2.0.6中央分隔带开口护栏:设置于公路中央分隔带开口处、具有开启功能的公路护栏结构段。 2.0.7刚性护栏:车辆碰撞后基本不变形的护栏。混凝土护栏是主要代表形式,车辆碰撞时通过爬高并转向来吸收碰撞能量。 2.0.8半刚性护栏:车辆碰撞后有一定的变形,又具有一定强度和刚度的护栏。波形梁护栏是主要代表形式,车辆碰撞时利用土基、立柱、波纹状钢板的变形来吸收碰撞能量 2.0.9柔性护栏:具有较大缓冲能力的韧性护栏结构。缆索护栏是主要代表形式,车辆碰撞时依靠缆索的拉应力来吸收碰撞能量。 2.0.10缓冲设施:设置于公路互通式立体交叉、服务区、停车区出口处的分流鼻端、收费岛头,或者护栏端部等,可以减缓冲击,降低碰撞车辆和车人员伤害的设施,主要形式有防撞端头、防撞垫等。 2.0.11防撞端头:设置于护栏的迎车流方向起点,和护栏连接在一起,对碰撞车辆车辆起阻挡、缓冲和导向作用的设施。 2.0.12防撞垫:设置于公路交通分流处的障碍物或其他位置的障碍物前端的一种缓冲设施,车辆碰撞时通过自体变形吸收碰撞能量,从而降低乘员的伤害程度。防撞垫可分为可导向防撞垫和非导向防撞垫。 2.0.13隔离设施:分隔双向或同向交通,机动车和非机动车,车辆和行人等的设施。 2.0.14桥梁与高路堤坝段必须设置路侧护栏;整体式断面中间带宽度小于或等于12m时,必须连续设置中央分隔带护栏;不同形式的护栏连接时,应进行过渡设计;中央分隔带开口处必须设置开口护栏;出口分流三角端应设置防撞垫。 3. 4.3桥梁与高路堤路段必须设置路侧护栏;不同形式的护栏连接时,应进行过渡设计;高速公路中央分隔带开口处必须设置开口护栏。 3.3.4桥梁与高路堤路段必须设置路侧护栏;一级公路整体式断面中间带应设置保障行车安全的隔离设施。 3.4.6路侧有不满足计算净区宽度要求的悬崖、深谷、深沟、江河湖海等路段应设置路侧护栏。 3.4.7设置避险车道时,应设置配套的交通标志、标线及隔离防护、缓冲等设施。

JTG D 公路交通安全设施设计规范 正式版 护栏相关知识

JTG+D81-2017公路交通安全设施设计规范(正式版) 护栏相关知识 在满足安全和使用功能的条件下,应积极推广使用可靠的新技术,新材料,新工艺,新产品。 净区:公路车行道以外,无障碍物,车辆驶出车行道后可以停车或驶回公路的带状区域。 护栏标准段:断面结构形式保持不变并在一定长度范围内连续设置的公路护栏结构段。 护栏过渡段:设置于两种不同结构形式或不同防护等级的公路护栏之间、连接平顺、结构刚度平稳过渡的公路护栏结构段。 路侧护栏:设置于公路路侧建筑限界以外的护栏。 中央分隔带护栏:设置于公路中央分隔带内的护栏。 中央分隔带开口护栏:设置于公路中央分隔带开口处、具有开启功能的公路护栏结构段。 刚性护栏:车辆碰撞后基本不变形的护栏。混凝土护栏是主要代表形式,车辆碰撞时通过爬高并转向来吸收碰撞能量。 半刚性护栏:车辆碰撞后有一定的变形,又具有一定强度和刚度的护栏。波形梁护栏是主要代表形式,车辆碰撞时利用土基、立柱、波纹状钢板的变形来吸收碰撞能量 柔性护栏:具有较大缓冲能力的韧性护栏结构。缆索护栏是主要代表形式,车辆碰撞时依靠缆索的拉应力来吸收碰撞能量。 缓冲设施:设置于公路互通式立体交叉、服务区、停车区出口处的分流鼻端、收费岛头,或者护栏端部等,可以减缓冲击,降低碰撞车辆和车内人员伤害的设施,主要形式有防撞端头、防撞垫等。 防撞端头:设置于护栏的迎车流方向起点,和护栏连接在一起,对碰撞车辆车辆起阻挡、缓冲和导向作用的设施。 防撞垫:设置于公路交通分流处的障碍物或其他位置的障碍物前端的一种缓冲设施,车辆碰撞时通过自体变形吸收碰撞能量,从而降低乘员的伤害程度。防撞垫可分为可导向防撞垫和非导向防撞垫。 隔离设施:分隔双向或同向交通,机动车和非机动车,车辆和行人等的设施。桥梁与高路堤坝段必须设置路侧护栏;整体式断面中间带宽度小于或等于12m 时,必须连续设置中央分隔带护栏;不同形式的护栏连接时,应进行过渡设计;中央分隔带开口处必须设置开口护栏;出口分流三角端应设置防撞垫。 桥梁与高路堤路段必须设置路侧护栏;不同形式的护栏连接时,应进行过渡设计;高速公路中央分隔带开口处必须设置开口护栏。 桥梁与高路堤路段必须设置路侧护栏;一级公路整体式断面中间带应设置保障行车安全的隔离设施。 路侧有不满足计算净区宽度要求的悬崖、深谷、深沟、江河湖海等路段应设置路侧护栏。 设置避险车道时,应设置配套的交通标志、标线及隔离防护、缓冲等设施。 作用在人行道或自行车道栏杆立柱顶上的水平推力标准值应采m,作用在栏杆扶

避险车道专项施工方案

1.工程概况 羊曲水电站对外交通专用公路全线均为连续下坡,为保证道路的安全运行在对外交通专用公路Ⅱ标段桩号K2+390设置避险车道。该避险车道主要结构由渐变段、避险车道、救援车道三部分组成。其中渐变段起点桩号K0+000为主路桩号K2+390处,高程EL2819.23m于主路相接部位宽55m,路面结构与主路相同长60m,坡比i=-1.89%。避险车道起点桩号K0+060,起点高程EL2818.87m,终点桩号K0+120终点高程EL2823m,路面长60m,路面宽6.5m,平均纵坡为8%,路面为60cm厚碎石摊铺,不需碾压,石料粒径≤3cm。避险车道两侧采用防撞护栏,护栏基础埋置深度65cm,前端重力式挡土墙埋置深度为2.5m。救援车道长约60m,宽8m,平均纵坡为8%,救援车道开口宽度为24.8m。 避险车道端头设计有重力式端头防撞墙长8.3m、顶宽0.8m、底宽3.55m。避险车道于救援车道衔接处设有防撞墙弧线长18.78m、高1.8m、顶宽0.3m、底宽1.25m。渐变路段路面和救援车道底面1.5m深度内,压实度按95%控制:路面以下1.5m至地基表层压实度按93%控制:地基表层压实度按90%进行控制。 2.编制依据 (1)羊曲水电站工程设计通知书(2013年)001号 (2)黄河羊曲水电站对外交通专用公路(K0+000.00~ K8+832.89m)施工详图设计第三册共五册避险车道设计图YQS-P81-2-12-01和YQS-P81-2-12-02 3.主要工程量

4.施工工期 开工日期:2013年7月23日。 完工日期:2013年8月31日,总工期为40日历天。 5.施工布置 5.1施工道路布置 施工道路主要利用左岸高线交通公路经通往Ⅱ标段的临时道路进入施工现场。 5.2施工供风、 施工供风主要为混凝土施工缝凿毛用风,用风量相对较小使用0.9m3的气泵可满足施工要求。5.3施工供水 施工用水主要是路基、路面碾压洒水用一辆5t洒水车运至施工现场即可。 5.4施工供电 现场施工用电主要为施工设备用电,25kw发电机即可满足要求。 施工供电主要材料、设备表 表5-1 6.1路基工程 6.1.1路基工程施工工序 准备工作→测量放样→基底处理→分层填筑→摊铺平整→碾压夯实→检查验收。6.1.2路基工程施工方法 (一)施工准备 (1)首先进行施工放样,然后清除表土和树根草皮或腐殖土。 (2)填方路基施工前,通过土工试验选择合适的路基填土。 (二)基底处理 原地面地基表层为松散土层,厚度不超过30cm时,可清除杂草后进行碾压,原地面压实度应≥90%;当松散层厚度大于30cm时,应将其翻开,分层压实至90%。如需进行地基清表处理时,清除表土厚度按30cm计,原地面压实度应≥90%,夯实厚度按

相关文档
最新文档