助凝剂实验报告

助凝剂实验报告
助凝剂实验报告

不同助凝剂投加效果的初步研究

一、实验目的

研究聚二甲基二烯丙基氯化铵(PDMDAAC)、聚丙烯酰胺(PAM)和聚甲基二烯丙基氯化铵(HCA)三种助凝剂对混凝效果的影响。

二、实验原理

聚丙烯酰胺(PAM):PAM具有良好的絮凝和助凝作用,在工业给水处理及污水处理中广泛应用。聚丙烯酰胺为低毒产品,但单体丙烯酰胺在动物试验中有致突变性和致癌性可能。柳志刚等人的《聚丙烯酰胺在不同水处理应用中的探讨》发现,通过加入180mg/L的固体聚合氯化铝和0.05mg/L的聚丙烯酰胺,冬天的低温低浊水的浊度降低了18%。

聚甲基二烯丙基氯化铵(HCA):HCA是以二甲基二烯丙级氯化铵均聚而成的高分子阳离子聚电解质,具有除藻降浊及去除有机物的明显效果,常规的水处理投矾量大,成本高,而采用HCA作为助凝剂可以获得较满意的净水效果。在张华梁等人《HCA做助凝剂在生产中的应用》中通过烧杯试验获得的HCA投加量定为0.15mg/L(以氯化铁为混凝剂,投加量为6~12mg/L)。汪琳等人的《HCA强化混凝处理水库水的中试研究》认为,当PAFC投加量为15mg/L、HCA投加量为0.2 mg/L时,沉淀水浊度去除率高达88.48%,沉淀效果最佳。

聚二甲基二烯丙基氯化铵:PDMDAAC是一种水溶性阳离子高分子,通过与铁盐、铝盐混凝剂的复合使用和选择合适的混凝条件对低温低浊水能达到强化混凝的效果。蒋新伟等人的《辐流沉淀池药剂替代投加试验初步效果》研究显示,处理浊度大于1000NTU的原水时,采用药剂复配比例为80%~95%聚合氯化铝+5%~20%PDMDAAC(投加的药剂量均转换为产品固含量),实际应用中采用的是95%聚合氯化铝+5%PDMDAAC的复配药剂,投加复合药剂量为5kg/kt~30 kg/kt。田秉晖等人的《二甲基二烯丙基氯化铵的合成及絮凝效果研究》结果显示,最佳投药量为0.1mg/L。

三、实验材料

聚合氯化铝(PAC)、PDMDAAC、PAM、HCA、六联搅拌仪、pH计、浊度仪、1L烧杯、100mL容量瓶、100mL量筒、胶头滴管、各种规格的移液管、玻璃棒

四、实验方法

1准备工作

(1)取原水20L测定其pH、浊度和温度;

(2)测定本实验中所用液态聚合氯化铝试剂中氧化铝含量,准确称取1g PAC试剂配制成稀释液,计算稀释液中氧化铝固含量;

(3)通过需矾量实验获得PAC最优投加量,设为X mg(X已转化为氧化铝质量)。

2 PAM助凝实验

(1)配制聚丙烯酰胺溶液:由于聚丙烯酰胺不易溶于水,直接投加粉末易造成结块凝结,影响助凝效果,应事先配制好浓度为0.01%的聚丙烯酰胺溶液1,必要时可用温水(不超过40℃)加速溶解2。条件允许时建议使用乳液型聚丙烯酰胺,简化溶解步骤。

(2)向6个烧杯中分别加入1L原水,再分别加入一定量的聚合氯化铝稀释溶液(根据最优投加量和配制的PAC稀释液中氧化铝含量计算所需要加入的体积)。

(3)开启六联搅拌仪,仪器参数设置:加入混凝剂后快速搅拌20秒,转速285r/min,中速搅拌1分30秒,转速185r/min,慢速搅拌2分钟,转速80r/min,慢速搅拌6分30秒,转速60r/min,静置60分钟。

启动混凝搅拌并计时。

(4)搅拌6 min时3-4,分别向六个烧杯中加入0、0.4、0.6、0.8、1.0、1.2mL聚丙烯酰胺溶液,使六个烧杯中聚丙烯酰胺浓度分别为0、0.04、0.06、0.08、0.1、0.12mg/L5。

(5)静置完成后观察矾花特征,用虹吸法分别取6个烧杯上清液测定其pH、浊度,计算浊度去除率。

3 HCA 助凝实验

(1)配制固含量为1‰的HCA溶液;

(2)分别量取1L原水置于6个烧杯中;

(3)分别向烧杯中加入一定量的聚合氯化铝稀释溶液,投加量同2(2);

(4)依次加入0、0.2、0.4、0.6、0.8、1.0 mL 配制好的HCA溶液6-7,六联搅拌仪设置同2(3),启动混凝搅拌并计时;

(5)静置完成后观察矾花特征,用虹吸法分别取6个烧杯上清液测定其pH、浊度,计算浊度去除率。

4 PDMDAAC 助凝实验

(1)配制浓度为0.02%的PDMDAAC溶液(PDMDAAC极易溶于水)。

(2)分别量取1L原水置于6个烧杯中;

(3)分别向6个烧杯中加入一定量的聚合氯化铝稀释溶液,投加量同2(2);

(4)依次加入0、0.2、0.4、0.8、1.2、1.6、2.0mL8-9的PDMDAAC溶液,使烧杯中PDMDAAC含量分别为0、

0.04、0.08、0.12、0.16、0.2mg/L(投加药剂量已换算为产品固含量),六联搅拌机设置同2(3);(5)静置完成后观察矾花特征,用虹吸法分别取6个烧杯上清液测定其pH、浊度,计算浊度去除率。

1滕丽瑞. 投加聚丙稀酰胺处理低温低浊水的应用研究[J]. 科技资讯, 2014,2:59-60.

2李亨枝, 叶润来. 聚丙烯酰胺在净水生产中的应用[J]. 中国给水排水, 1999, 15(4): 52-54.

3张金松,王佳音.助凝剂聚丙烯酰胺在净水生产中的应用[J]. 城镇供水

4叶青旺, 张莉晖, 韦荣. 处理漓江水的不同混凝剂投加效果研究[J]. 城镇供水, 2014,5:41- 45.

5柳志刚, 姚学俊. 聚丙烯酰胺在不同水处理应用中的探讨[J]. 广东化工, 2008, 3(35): 62-64.

6汪林, 曾锦明, 韩燕飞. HCA强化混凝处理水库水的中试研究[J]. 城镇供水, 2014,5:86-88.

7张华梁, 贾霞珍等. HCA做助凝剂在生产中的应用[J]. 城镇供水, 2001,5:3-5.

8田秉晖, 栾兆坤, 李明明, 彭先佳. 二甲基二烯丙基氯化铵的合成及絮凝效果研究[J]. 环境化学, 2006, 25(1): 41-44.

9蒋新伟, 贾汝林. 辐流沉淀池药剂替代投加试验初步效果[J]. 城镇供水, 2014,5:26-27.

五、实验结果

表1 PAM助凝实验记录表

表2 HCA助凝实验记录表

表3 PDMDAAC助凝实验记录表

六、注意事项

聚丙烯酰胺溶液存放不宜超过10天,也不能与铁器接触1。

七、实验展望

(1)根据实验效果进一步缩小助凝剂的投加量变化梯度,获得最佳混凝剂和助凝剂配比;(2)研究三种助凝剂的最佳投加时间点;

(3)通过添加碳酸钠或氢氧化钠改变聚丙烯酰胺的水解程度,探讨对助凝效果的影响;(4)尝试降低混凝剂投加量,通过调整配比获得效果较好且成本较少的投剂方式。

公路工程试验检测报告编号方法

试验检测报告编号方法 一、公路工程试验检测报告编号原则 1、统一采用编码编号的方法,标准试验报告及原材料(产品)试验报告编号采用三位编码+流水号,工程实体检测(现场检测)试验报告编号采用四位编码+流水号。 1位编码:合同段号;第第2位编码:检测类别分类,分标准试验、原材料(产品)、工程实体检测(现场检测)三个类别。 第3位编码:对于标准试验部分为标准试验种类;对于原材料(产品)部分为原材料(产品)品种;对于工程实体检测则根据不同的工程结构名称划分。 第4位编码:工程实体检测项目。 2、总监办中心试验室和高监办试验室的试验报告(包括验证试验及抽样试验等)编号,在上述编号前面加“J.”。 二、标准试验报告编号方法及示例1、编号方法:第1位编码+第2位编码+第3位编码+流水号。流水号按试验报告形成时间的先后顺序确定。 2、下列试验报告的编号均应采用标准试验报告的编号方法: ⑴土工击实标准试验报告 ⑵水泥砂浆配合比试验报告1 ⑶水泥混凝土配合比试验报告 ⑷水泥浆配合比试验报告⑸水泥混凝土路面配合比试验报告⑹路

面结构层(底基层、基层)配合比试验报告 ⑺路面结构层(沥青面层)配合比试验报告 ⑻路面稀浆封层和微表处配合比试验报告、标准试验报告编号示例:3示例1:第TL01合同段2009年-2010年土样击实标准试验报告共15份,其中第3份报告的形成时间为2009年11月12日,第14份报告的形成时间为2010年4月6日。则根据编号方法第3份土样击实标准试验报告编号为:TL1-B-JS-3,第14份报告编号为:TL01-B-JS-14。 示例2:第TL03合同段C50砼配合比试验报告,形成时间为2009年12月20日,按时间顺序排列第6。则此试验报告编号为: TL03-B-HNT-6。监理对该报告进行了验证试验,验证试验报告编号为J.TL03-B-HNT-6。 示例3:第TL04合同段水泥稳定碎石基层配合比试验报告有两份,形成时间分别为2010年10月12日、2010年10月25日,则根据编号方法确定配合比试验报告分别为:TL04-B-JC-1,TL04-B-JC-2。示例4:第TL04合同段沥青中面层配合比目标配合比报告形成2 时间为2011年2月10日,生产配合比报告形成时间为2011年2月20日,则生产配合比试验报告编号为TL04-B-ZMC-2。 三、原材料(产品)试验报告编号方法及示例 1、原材料(产品)试验报告编号方法同标准试验报告的编号方法。即编号方法为:第1位编码+第2位编码+第3位编码+流水号。流

矿渣助磨剂实验报告

矿渣助磨剂试验报告 集团领导: 我公司2#矿渣磨生产矿渣粉时存在质量不稳,台时低、电耗高的问题,一直未能得到很好的解决!2011年11月19日**公司矿渣助磨剂(提产型)在我公司从7:30至18:00进行了试验,效果较为明显!但因时间试验时间短,受影响的因素较多,不能完全代表助磨剂的使用效果,后申请采购了四吨进行连续生产试验,经由厂家技术员的现场调试、指导,自2月11号7:30分开始连续使用,经过两了个班的摸索调整,最终找到了助磨剂的最佳掺加量及较为合适的操作参数,产质量取得了较好效果、经济效益较为明显! 生产试验过程总结如下: 一:试验目的 1、提高矿渣磨机台时产量,降低矿粉粉磨电耗; 2、提高矿粉质量,增加在水泥中掺加量,降低吨水泥熟料配比,节约 水泥生产成本; 3、降低吨矿粉机物料消耗,节约生产成本; 二、所用器具 1、助磨剂泵要求流量小,精度高由试验厂方提供; 2、量筒由化验室提供; 三、试验方案、数据统计 1、经与厂方技术人员商定,结合矿粉磨实际情况,试验方案确定如下:

2、助磨剂加入点和掺加量: 加入点:矿粉磨磨头进料溜子; 掺加量:初步加入0.15 ‰,试验中依据磨况及比表数据进行调整; 3、取样分析:试验期间化验室每隔1小时取成品样一次,化验比表面积并做好记录; 4、数据记录:对生产过程中有关数据及操作参数每隔1小时由中控室操作员记录一次; 5、不定时由厂方技术员、化验人员及磨机巡检工抽检助磨剂流量。 6、相关数据统计:

以上数据可以看出:该助磨剂掺加量在万分之一点四时,提高台时产量约百分之九,比表面积稳定在400m2/kg以上; 以上数据(因时间原因强度数据由上次试验提供,本次数据暂时未出)可以看出:在比表面积基本相同的情况下,该助磨剂对7天强度尤其是28天强度均有一定幅度提高; 四:综合经济效益分析(只考虑节约电耗及助磨剂增加成本): 不使用助磨剂时台时为69t/h,系统总功率按5500kw计算,台时电耗为79.5kwh/t;

速凝剂检验方法

喷射混凝土用速凝剂 1规范性引用文件 GB/T 1345水泥细度检验方法(80μm筛筛析法) GB/T 1346水泥标准稠度用水量、凝结时间、安定性检验方法(eqv 150 9597:1989) GB 8076 混凝土外加剂 GB/T 8077混凝土外加剂匀质性试验方法 GB/T 17671水泥胶砂强度检验方法(ISO法)( idt ISO 679:1989) JGJ 63 混凝土拌合用水 2分类 按照产品等级分为:一等品与合格品。 3要求 3.1 匀质性指标 匀质性指标应符合表1 的要求。 实验项目指标 15 细度80μm筛余量% ≦ 2 含水量% ≦ 一等品合格品初凝时间m i n 3 5

≦ 8 12 终凝时间m i n ≦ 一等品合格品 7.0 6.0 1d抗压强度/M P a ≧ 75 70 28d抗压强度/MP a ≧ 4试验方法 4.1 试验材料 41.1 水泥:符合GB 8076标准中附录A的规定。 4.1.2 砂:符合GB/T 17671中有关ISO标准砂的规定。 4.1.3 水:符合JGJ 63的规定。 4.1.4 速凝剂:受检速凝剂。 4.2 细度按照GB 1345中的手工干筛法进行。 4.3 含水率 4.3.1 仪器 a)分析天平:量程200g,分度值0.lmg; b)鼓风电热恒温干燥箱:0℃~200℃; c)带盖称量瓶:Φ25mmx65; d)干燥器:内盛变色硅胶。 4.3.2 试验步骤

4.3.2.1 将洁净带盖的称量瓶放入烘箱内,于105℃-110℃烘30min。取出置于千燥器内,冷却30min后称量,重复上述步骤至恒量(两次称量之差≤0.3mg),称其质量m0。 4.3.2.2 称取速凝剂试样10g士0.2g,装入己烘至恒量的称量瓶内,盖上盖,称出试样及称量瓶的总质量m1。 4.3.2.3 将盛有试样的称量瓶放入烘箱内,开启瓶盖升温至105℃-110℃,恒温2h,取出后盖上盖,立即置于千燥器内,冷却30min后称量,重复上述步骤至恒量,称其质量m2。 4.3.3 结果计算与评定 含水率按式(1)计算: m1-m2 W= ————×100 (1) m1-m0 式中: W——―含水率,%; m0——―称量瓶质量,单位为克(g); m1——―称量瓶加干燥前试样质量,单位为克(g); m2——―称量瓶加干燥后试样质量,单位为克(g)。 含水率试验结果以三个试样试验结果的算术平均值表示,精确至0.1%。三个数据中有一个与平均值相差超过5%,取剩余两个数据的平均值;有两个数据与平均值相差超过5%,该组数据作废,试验必须重做。 4.4 凝结时间 4.4.1 仪器 a)量程2000g,分度值2g的天平: b)量程100g ,分度值0.1g的天平;

矿渣是冶炼生铁时的副产品

矿渣是冶炼生铁时的副产品,具有较高的潜在活性。目前,矿渣除用作混合材用来生产矿渣水泥外,特别是磨细矿渣微粉作为矿物掺合料已成为制备高性能混凝土必不可少的组分之一。但是矿渣在使用过程中存在易磨性差,早期强度偏低,制约了矿渣的推广应用。延长粉磨时间虽然可以提高粉磨效率,但增加了电耗,增加了粉磨成本,同时在矿渣的粉磨过程中,由于物料在粉磨过程中受各种力的影响导致颗粒内部的电价键断裂,产生电子密度的差异,在断面两侧形成一系列交错的活性点,它们彼此吸引,使断裂面趋向于复合并使物料发生团聚,从而使粉磨产量和质量大幅度下降。为降低粉磨能耗、阻止矿渣断裂面的愈合和减少团聚现象,使用矿渣助磨剂是最简单易行的办法,使用本产品可提高粉磨效率10-15%左右。 武汉理工大学马保国认为:含有羟基的多功能添加剂,掺量在3.5/万,有最佳助磨效果,聚羧酸盐减水剂对矿渣的助磨效果不佳。上海大学化学系认为:A: 20%的三乙醇胺+20%丙三醇(甘油)+15%的硫酸铝溶液+30%的纸浆黑液+5%脂肪酸盐+10%的水,搅拌均匀,静置2小时后,过滤得到溶液。掺量4-8/万。B: 20-25%的三乙醇胺+30-45%乙二醇+15-30%的十二烷基苯磺酸钠+10-25%的三聚磷酸钠。掺量4-8/万。C: 三乙醇胺+六偏磷酸钠,三乙醇胺+丙三醇(甘油)+硫酸钠,以上方案具有较好的助磨效果。同济大学材料学院的研究表明:三乙醇胺,多元醇,硫酸钠,铝酸盐,铵盐,FDN萘系混凝土减水剂,含有羟基的高分子化合物,多元醇,掺量2-3/万,效果最佳。木质素和水玻璃对提高矿渣的助磨效果不佳。安徽建筑工业学院的思路是:三乙醇胺+无机盐具有较好助磨效果。沈阳建筑大学认为:三乙醇胺对提高矿渣助磨效果作用不大;三乙+有机醇类效果最佳。三乙+有机醇+磷酸盐效果也不错。美国道.康宁公司的发明专利表明,某些有机硅类的聚硅氧烷类的有机物对矿渣有良好的助磨作用。 三乙醇胺对提高矿渣助磨效果作用不大,木质素磺酸钠和甘油对矿渣的助磨效果也不好,聚合多元醇加上含有羟基的化合物仍然是矿渣助磨剂的最理想组合。 拿做水泥助磨剂的思路去做矿渣助磨剂肯定行不通。 多元醇对矿渣的助磨作用机理 助磨剂分子在粉磨过程中吸附于固体颗粒表面上,产生列宾捷尔效应--当存在界面吸附时,界面处的内聚力降低了,也就降低了界面张力,使物料颗粒的表面自由能减小,促使颗粒软化。因而在相同的粉磨时间下,使用助磨剂可以得到更高的粉磨细度。由于列宾捷尔效应,加入助磨剂后,颗粒上原有的裂缝在吸附表面活性剂分子井形成吸附层后更容易扩展,防止裂缝的愈合;同时助磨剂吸附在颗粒表面上能平衡因粉碎而产生的不饱和价键,防止颗粒再度聚结,从而加剧了粉碎过程的进行,使颗粒圆度降低,表面粗糙度增大。随着球磨时间的增加,尽管矿渣粒度不再减小,但是颗粒表面仍然可能会产生新的活化点,同时内部产生缺陷和裂纹,多元醇对这种缺陷和微裂纹有很强的浸润渗透作用,阻止裂纹的闭合,减少颗粒的团聚。有资料表明:含有羟基“-OH类”——甲醇,乙醇,1-丁醇,dl-2-丁醇,2-乙烯正正己醇,间苯二酚,对苯二酚,苯酚,邻甲酚,间甲酚,对甲酚,乙二醇,丙二醇,丙三醇,二甘醇,二丙二醇,三丙二醇,单乙醇胺,二乙醇胺,三乙醇胺这些化学物质对矿渣的粉磨都有促进作用。当然,酚类的化学物质一般有毒性,一般不用来做助磨剂。当然,全国各地矿渣的品质不一,选择合适的矿渣助磨剂品种,还要和矿渣的品质相匹配才能达到

矿渣助磨剂的研究.doc

矿渣助磨剂的研究 摘要:尝试用数种化学试剂作为矿渣助磨剂,以评定它们的助磨效果。每种试剂都在完全相同的粉磨条件下与矿渣共磨,每隔一定时间测其比表面积并与矿渣空白样对比;之后对其中掺入有效助磨剂粉磨得到的矿粉试样进行激光粒度分析和图像分析仪的颗粒形貌分析;同时,又研究了助磨剂对矿渣-水泥体系标准稠度用水量、凝结时间、胶砂强度等各项性能的影响。并对有效助磨剂的合适掺量进行探索。 关键词:矿渣;助磨剂;颗粒群分布及形貌;比表面积;标准稠度用水量;凝结时间;强度 Abstract:Several kinds of chemical agents were used as slag grinding aid to study their grinding effects.Every agent was added to slag which was grinded in the same condition.Specific areas of slag with grinding acid were tested after certain grinding time and compared with that of the slag without grinding aid.The samples which were grinded with effective aid were analyzed by laser granulometer and image analysis.Furthermore,water requirement of normal consistency,setting time and mortar strength of the samples were tested.The suitable addition content of the grinding aid was also studied. Key words:slag;grinding aid;particle size distribution and particle pattern;specific surface;water requirement of normal consistency;setting time;strength 中图分类号:TQ172.463文献标识码:A文章编号:1002-9877(2003)04-0009-04 0引言 超细磨矿渣、粉煤灰以及硅灰等作为高性能混凝土的一种矿物外加剂在混凝土界已被进行了广泛的研究。然而,矿物外加剂达到一定细度后,再进一步磨细相当困难。因此,它制约了超细磨矿物外加剂的推广应用。 而对于矿物外加剂助磨剂的研究,远不如对水泥助磨剂那样广泛和深入。对水泥助磨剂的研究中,三乙醇胺是公认的高效助磨剂,但由于价格昂贵,难以推广。文献[1-5]研究了其它一些水泥助磨剂。南京化工大学的江朝华等人深入研究了助磨剂的助磨机理及增强机理,并在此基础上开发成功A助磨剂(含羟基的非离子表面活性剂)。加拿大的N.Bouzoubaa和M.H.Zhang等人在粉磨水泥时加入了一种萘系超塑化剂作为助磨剂共同粉磨。在给定粉磨时间和粉磨细度2种条件下测定了粉磨细度、时间以及由粉磨好的水泥制成的胶砂的坍落度损失、空气含量稳定性、泌水性、自热升温、凝结时间和抗压强度等各方面性能;并且与标准硅酸盐水泥和在胶砂中加入相同量萘系超塑化剂的水泥的各方面性能情况作了横向比较。

矿渣的活性激发剂

矿渣的活性激发剂 王樾,张伟 (南京永能新材料有限公司,江苏南京211100) 摘要:综述了近年来国内外关于矿渣结构的观点,矿渣潜在活性的激发方法及其激发机理。分别介绍了矿渣的物理激发、化学激发和复合激发方法,提出了矿渣活化技术的发展方向。 关键词:矿渣;潜在活性;激发;机理 Abstract:The views about the structure of slag,the ways and mechanism to activate potential activity of slag are recommended.The physical,chemical and multiple methods of the potential activatity of slag are expatiat-ed.The development of slag activation technique in the future is emphasized. Key words:slag;potential activity;activate;mechanism 0引言 “矿渣”的全称是“粒化高炉矿渣”,是钢铁厂冶炼生铁时产生的废渣,具有较高的潜在活性。矿渣作为传统的水泥工业的原材料之一,主要是基于矿渣潜在活性的利用。如何充分和有效地将矿渣的潜在活性激发出来成为人们关注的课题。 1矿渣的活性来源 矿渣的主要成分与硅酸盐水泥中的氧化物基本相同,即CaO、SiO2、Al2O3、MgO等,只是氧化物之间的比例不同而已。影响矿渣活性因素主要有两个:一是化学成分,活性组分主要指氧化钙、氧化铝、氧化镁;二是玻璃体的含量,矿渣是结晶和玻璃相的聚合体。前者是惰性组分,而后者是活性组分,矿渣中玻璃体占90%左右,而且玻璃相的组分越多矿渣的潜在活性就越大。研究表明[1],矿渣的活性不仅取决于玻璃体的含量,而且取决于矿渣玻璃体的结构。玻璃体是由网架形成体和网架改性体组成。网架形成体主要由SiO42-组成;网架改性体主要由Ca2+组成,它存在于网架形成体的空隙中,以平衡电荷;矿渣中的Al3+和Mg2+不仅是网架的形成体,而且又是网架的改性体。钙离子(Ca2+)以离子键形式存在于六元配键位内,钙或其他类似离子类含量的增加伴随着硅氧四面体网络结果的解聚而增加。而这层稳定的硅氧四面网络是矿渣具有潜在活性的原因[2]。矿渣玻璃体中存在着含有两相的分相结构[3-4]。其中一相为富含钙的连续相,另一相为含硅的、呈类似球状或柱状粒子的非连续相。富钙相所占的比例越大,矿渣在碱性环境中的水化就越迅速,表现的水硬活性就越高;矿渣玻璃体富硅相所占的比例越大,矿渣在碱性环境中的水化就越迟,在水化初期表现出的水硬活性就越低。 2矿渣的活性激发机理 矿渣含氧化铝(7%~20%),氧化铝是使矿渣具有活性和化学安定性的主要成分。氧化铝的含量高,矿渣的活性大。矿渣玻璃体在水中近乎是惰性的,要使矿渣呈现胶凝性能,必须加以激发。矿渣活性的激发常用方法有物理激发、化学激发和复合激发等方法。 2.1物理激发 固体物料在施加冲击、剪切、摩檫、压缩、延伸等机械力作用后,其内部晶体结构会不规则化和产生多相晶型转变,导致晶格缺陷发生、比表面积增大、表面能增加等,随之物料的热力学性质、结晶学性质、物理化学性质等都会发生规律性变化。 高树军则认为[5-6],随着球磨时间的增加,尽管矿渣粒度不再减小,但是颗粒表面仍然可能会产生新的活化点,同时内部产生缺陷和裂纹,使矿渣粉体在碱性水溶液中易于均匀分散,有利于OH-离子

速凝剂标准

JC477-2005 喷射混凝土用速凝剂 1 范围 本标准规定了喷射混凝土用速凝剂的术语与定义、分类、要求、试验方法、检验规则、包装运输与贮存等。 本标准适用于水泥混凝土采用喷射法施工时掺加的速凝剂。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡就是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究就是否可使用这些文件的最新版本。凡就是不注日期的引用文件,其最新版本适用于本标准。 GB/T1345 水泥细度检验方法(80um筛筛析法) GB/T1346 水泥标准稠度用水量、凝结时间、安定性检验方法(eqv ISO9597:1989) GB 8076 混凝土外加剂 GB/T8077混凝土外加剂匀质性试验方法 GB/T17671水泥胶砂强度检验方法(ISO)法(idt ISO679:1989) JGJ 63混凝土拌合用水 3术语与定义 下列术语与定义适用于本标准。 速凝剂 用于喷射混凝土中,能使混凝土迅速凝结硬化的外加剂。 4 分类 4.1 按照产品形态分为:粉状速凝剂与液体速凝剂。 4、2按照产品等级分为:一等品与合格品。 5 要求 5.1 匀质性指标 匀质性指标应符合表1要求。 5、2掺速凝剂的净浆与硬化砂浆性能指标 掺速凝剂净浆及硬化砂浆的性能应符合表2要求 表2掺速凝剂净浆及硬化砂浆的性能要求

6 试验方法 6、1 试验材料 6.1.1 水泥:符合GB 8076标准中附录A的规定。 6.1.2砂:符合GB/T 17671中有关ISO标准砂的规定。 6.1.3 水:符合JGJ 63的规定。 6.1.4速凝剂:受检速凝剂。 6、2 密度、氯离子含量、总碱量、PH值、含固量 按照GB 8077进行。 6.3 细度 按照GB 1345中的手工干筛法进行。 6、4含水率 6.4.1仪器 a)分析天平:量程200g,分度值0、1mg; b)鼓风电热恒温干燥箱:0℃~200℃; c)带盖称量瓶:¢25㎜×65㎜; d)干燥器:内盛变色硅胶。 6.4.2试验步骤 6.4.2.1 将洁净带盖的称量瓶放入烘箱内,于105℃~110℃烘30min。取出置于干燥器内,冷却30mi n后称量,重复上述步骤至恒量(两次称量之差≤0、3mg),称其质量m0。 6.4.2.2 称取速凝剂试样10g±0.2g,装入已烘至恒量的称量瓶内,盖上盖,称出试样及称量瓶的总质量m1。 6.4.2、3将盛有试样的称量瓶放入烘箱内,开启瓶盖升温至105℃~110℃,恒温2h,取出后盖上盖,立即置于干燥器内,冷却30min后称量,重复上述步骤至恒量,称其质量m2。 6.4.3 结果计算与评定 含水率按式(1)计算: W=(m1-m2)/(m1-m0)×100 (1) 式中: W——含水率,%; m0——称量瓶质量,单位为克(g); m1——称量瓶加干燥前试样质量,单位为克(g); m2——称量瓶加干燥后试样质量,单位为克(g)。 含水率试验结果以三个试样结果的算术平均值表示,精确至0、1%。三个数据中有一个与平均值相差超过5%,取剩余两个数据的平均值;有两个数据与平均值相差超过5%,该组数据作废,试验必须重做。 6、5 凝结时间 6.5.1仪器 a)量程2000g,分度值2g的天平; b) 量程100g,分度值0.1g的天平; c) 水泥净浆标准稠度与凝结时间测定仪;

水泥与混凝土外加剂相容性的试验研究

水泥与混凝土外加剂相容性的试验研究 水泥与外加剂相容性是生产优质混凝土的重要影响因素,本文通过检测水泥净浆流动度,对比不同矿物组成的熟料及不同条件下的水泥与外加剂相容性的差异,为高性能水泥生产提供参考。 1 试验用材料 1)水泥、熟料:选择江山南方水泥生产过程中有代表性的样品及小磨制备对比样品。 2)混凝土外加剂:不同时间用户提供的多种外加剂。 2 试验方法 检测水泥、熟料掺入外加剂后的净浆流动度,外加剂掺量按用户提供的推荐掺量加入。 3 试验结果及分析 3.1 熟料矿物组成对净浆流动度的影响 表1 熟料净浆流动度试验记录 试样编号 熟料矿物组成(%) 水泥净浆流动 度 (mm) 窑型 外加剂 C 3S C 2S C 3A C 4AF f-CaO A0 57.57 18.76 6.77 9.73 0.94 238 5000t/d 江山南方 温州用户提 供 聚羧酸1.0% A1 56.77 19.87 7.27 9.46 0.89 257 A2 58.44 18.65 7.75 9.50 0.88 240 A3 51.54 22.45 8.17 9.83 1.06 249 A4 53.57 20.73 8.43 9.90 1.07 244 A5 56.88 17.83 8.86 9.96 1.10 238 B0 56.29 19.31 7.05 9.28 1.27 233 2500t/d 江山南方 B1 47.52 26.68 7.96 9.65 1.54 244 B2 50.08 25.96 7.98 9.44 0.98 238 B3 43.61 31.18 8.43 9.75 1.18 247 B4 56.25 16.88 9.12 10.12 1.75 255 C0 51.23 25.29 7.96 9.94 / 249 5000t/d 常山南方 C1 55.64 20.61 8.24 9.15 / 247 从表1熟料净浆流动度试验结果看: 江山南方5000t/d 和2500t/d 两条生产线熟料,其C 3A 含量从6.77%逐步增加至9.12%,C 3S 含量在43.61%至58.44%之间变动,检测熟料净浆流动度结果比较接近,熟料矿物组成与净浆流动度之间没有形成一定的规律性,与常山南方5000t/d 的熟料相比,其净浆流动度结果也未有明显差异。 3.2 水泥混合材料对净浆流动度的影响 3.2.1试验用材料 1)熟料:江山南方5000t/d 生产线生产的熟料; 2)矿渣:本地钢铁厂矿渣;

水泥助磨剂配方技术

水泥助磨剂配方技术 一、背景 水泥助磨剂广泛应用于建筑行业水泥制品添加剂,禾川化工引进国外高端配方破译技术,专业从事水泥助磨剂配方还原、配方分析,配方检测、成分分析,配方研制,为水泥助磨剂相关企业提供整套技术解决方案一站式服务;水泥助磨剂是一种改善水泥粉磨效果和性能的化学添加剂,可以显著提高水泥台时产量和各项技术指标。水泥助磨剂能大幅度降低粉磨过程中形成的静电吸附包球现象,并可以降低粉磨过程中形成的超细颗粒的再次聚结趋势。水泥助磨剂也能显著改善水泥流动性,提高磨机的研磨效果和选粉机的选粉效率,从而降低粉磨能耗。使用助磨剂生产的水泥具有较低的压实聚结趋势,从而有利于水泥的装卸,并可减少水泥库的挂壁现象。作为一种化学激发剂,助磨剂能改善水泥颗粒分布并激发水化动力,从而提高水泥早期强度和后期强度。 二、水泥助磨剂 常见水泥助磨剂有液体和粉体(固体)两种,都能显著地提高磨机产量,或提高产品质量,或降低粉磨电耗。在湿法粉磨过程中的水泥助磨剂又称之为:分散剂。 按化学结构分类,水泥助磨剂可以分为三种:聚合有机盐助磨剂、聚合无机盐助磨剂和复合化合物助磨剂。目前使用的水泥助磨剂产品大都属于有机物表面活性物质。由于单组分助磨剂价格较高,使用效果也不十分理想,近年来,复合化合物助磨剂应用较为广泛。 粉体(固体)水泥助磨剂的组分常有:硬脂酸盐类、胶体二氧化硅、胶体石墨、碳黑、粉煤灰、石膏等; 2.1水泥助磨剂的组分 国内研究及应用的水泥助磨剂,有液体助磨剂和固体助磨剂,其基本成分大都属于有机表面活性物质。主要为醇类,醇胺类,木质素磺酸盐类,脂肪酸及其盐类,烷基磺酸盐类等。 1)醇类的选择 使用醇类有机物做助磨剂后水泥粉体止角和细度的变化如下图所示。随着单羟基醇有机物碳链长度的增长,水泥粉体休止角变大,筛余逐渐增多,

材料送检报审表

预拌混凝土,现场拌制混凝土配合比试验报告报验申请表工程名称:孟村矿井井底车场工程 致:西安煤炭建设监理中心孟村矿井工程项目监理部(监理单位)我单位已完成预拌混凝土,现场拌制混凝土配合比试验工作,现报上该工程报验申请表,请予以审查和验收。 附件:1、预拌混凝土,现场拌制混凝土配合比试验报告单 承包单位(章) 项目经理 日期 审查意见: 项目监理机构 总/专监理工程师 日期

混凝土抗压强度检验报告报验申请表 工程名称:孟村矿井井下主排水泵房 致:西安煤炭建设监理中心孟村矿井工程项目监理部(监理单位)我单位已完成混凝土抗压强度检验工作,现报上该工程报验申请表,请予以审查和验收。 附件:1、混凝土抗压强度检验 承包单位(章) 项目经理 日期 审查意见: 项目监理机构 总/专监理工程师 日期

钢绞线物理性能试验报告报验申请表 工程名称:孟村矿井井下主变电所 致:西安煤炭建设监理中心孟村矿井工程项目监理部(监理单位)我单位已完成钢绞线物理性能试验工作,现报上该工程报验申请表,请予以审查和验收。 附件:1、钢绞线物理性能试验报告单 承包单位(章) 项目经理 日期 审查意见: 项目监理机构 总/专监理工程师 日期

钢材物理性能试验报告报验申请表 工程名称:孟村矿井井下管子道及行人斜巷 致:西安煤炭建设监理中心孟村矿井工程项目监理部(监理单位)我单位已完成钢材物理性能试验工作,现报上该工程报验申请表,请予以审查和验收。 附件:1、钢材物理性能试验报告单 承包单位(章) 项目经理 日期 审查意见: 项目监理机构 总/专监理工程师 日期

钢材理性能试验报告报验申请表 工程名称:孟村矿井井下主变电所 致:西安煤炭建设监理中心孟村矿井工程项目监理部(监理单位)我单位已完成钢材物理性能试验工作,现报上该工程报验申请表,请予以审查和验收。 附件:1、钢材物理性能试验报告单 承包单位(章) 项目经理 日期 审查意见: 项目监理机构 总/专监理工程师 日期

高细粉磨激活矿渣的主要注意事项

高细粉磨激活矿渣的主要注意事项 发布: 2010-12-24 09:15 | 编辑: 刘辉 | 来源: 中国建材报 【水泥人网】高细粉磨激活矿渣的主要注意事项包括以下几点: 1.粉磨平衡 利用球磨机高细粉磨的方法,可以使矿渣的潜在水硬性被激活。但是,随着粉磨时间的延长,物料比表面积逐渐增大,其比表面能也增大,因而,微细颗粒相互聚集、结团的趋势也逐渐增强。经过一段时间后,磨内会处于一个“粉磨圮团聚”的动态平衡过程,达到所谓的“粉磨极限”。在这种状态下,即使再延长粉磨时间,矿渣也难以粉磨得更细,有时甚至使粒度变粗,同时,粉磨能耗成倍增加,粉磨效率降低。这种现象在普通粉磨时并不明显,但在高细粉磨和超细粉磨中经常出现,解决办法是添加矿渣助磨剂。矿渣助磨剂能形成物料颗粒表面的包裹薄膜,使物料表面达到饱和状态,不再互相吸引黏结成团,并通过裂纹形成和扩展过程中的防“闭合”与吸附,降低颗粒硬度、减弱强度,改善其易磨性。由于矿渣助磨剂是通过保持颗粒的分散来阻止颗粒之间的聚集或团聚,因此,要求矿渣微粉产品的比表面积越高,使用矿渣助磨剂的效果就越明显。 2.矿渣质量检验与分选 不同钢铁企业由于自己钢铁产品生产的需要,其排放的高炉粒化矿渣的化学成分也不尽相同,再加上冶炼环境、水淬条件不一样,同一工厂不同时段排放的矿渣在质量上的差异有时也相当大。如质量系数的变化对矿渣微粉的活性指数影响十分明显,而水淬条件的不同会使矿渣的易磨性系数在20~26k W h /t 波动,还有矿渣中的大颗粒、氧化铁和碎铁块含量对矿渣微粉的节能高产也都有敏感的反应。因此,有条件的企业,应按国家标准选择性地订购矿渣资源,与钢铁企业签订必要的技术合同,对进厂的矿渣必须按每一批次进行检验,以便生产线对工艺参数实施控制与调整。此外,矿渣入磨之前一定要经过筛选或篦条筛分流,并在供料输送过程中安装除铁器或金属探测器,对杂质进行仔细分选处理。 3.粉磨工艺参数调整 矿渣比水泥熟料难磨,易磨性系数一般会比水泥熟料高出5k W h /t 以上,而矿渣微粉产品的比表面积又比水泥要求高,因此,用球磨机生产矿渣微粉,在相同工艺装备条件下,相比水泥磨的产量会下降40%~50%。在单独粉磨矿渣时,关键技术是要严格控制物料在磨内的停留时间,原球磨机水泥粉磨系统应作如下调整: (1)研磨体级配。由于经筛分处理后的入磨矿渣粒度减小,球磨机磨内研磨体的平均球径也应随之减小。一般来说,最大球的球径不要超过60m m ,平均球径一般不超过45m m 。根据磨机的仓位,减大球、换小球。

混凝土外加剂和速凝剂性能试验记录

混凝土外加剂性能试验记录(一)表号:铁建试录021 批准文号:铁建设[2009]027号委托单位______________________________________________ 记录编号 _ ____________________________________ 工程名称_______________________________________________ 委托编号__________________________________________________________ 使用部位_______________________________________________ 委托日期__________________________________________________________ 样品产地_______________________________________________ 试验日期__________________________________________________________ 规格及种类_____________________________________________ 代表数量___________________________________________________________ 试验: 计算: 复核:

表号:铁建试录022 批准文号:铁建设[2009]027号(5)收缩率比 项目试件序号试件标距L b (mm) 试件长度初始读数 L o (m) 试件在28d期长 度读数L t (mm) 试件在28d期收缩值 £t ( £c) (%) 收缩 R = 率比R, (%) (£ / £c)X 100 单个值平均值r\ £ 掺外加剂混凝土收缩率£t (2861 2 3 基准混凝土收缩率£c (28d)1 2 3 (6)相对耐久性指标 项目 试件批次 平均值 相对耐久性指标P (%) P=f n2/f O2X100 123 掺外加剂混凝土冻融200次后试件横向基频f n(Hz) 掺外加剂混凝土冻融试验前试件横向基频f o (Hz) (7)对钢筋锈蚀作用 试验方法试件批次 锈蚀时间(min) 2468101520253060 新拌砂浆法(硬化 砂浆法) 阳极极化 电位值 (mV) 1 2 3 平均值 恒电流、电位一时间曲线分析图:对钢筋锈蚀作用结论:电位(mV) ----------------------------------------- 时间(min) 附注: 试验: 计算: 复核:

喷射混凝土用速凝剂-JC477-2005

?喷射混凝土用速凝剂JC477-2005 1 范围 本标准规定了喷射混凝上用速凝剂的术语和定义、分类、要求、试验方法、检验规则、包装、运输和贮存等。 本标准适用于水泥混凝土采用喷射法施工时掺加的速凝剂。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1345水泥细度检验方法(80μm筛筛析法) GB/T 1346水泥标准稠度用水量、凝结时间、安定性检验方法(eqv 150 9597:1989) GB 8076 混凝土外加剂 GB/T 8077混凝土外加剂匀质性试验方法 GB/T 17671水泥胶砂强度检验方法(ISO法)(idt ISO 679:1989) JGJ 63 混凝土拌合用水 3 术语和定义 下列术语和定义适用于本标准。 速凝剂 用于喷射混凝土中,能使混凝土迅速凝结硬化的外加剂。 4 分类 4.1 按照产品形态分为:粉状速凝剂和液体速凝剂。 4.2 按照产品等级分为:一等品与合格品。

5 要求 5.1 匀质性指标 匀质性指标应符合表1 的要求。 表1 速凝剂匀质性指标 5.2 掺速凝剂的净浆和硬化砂桨性能指标

掺速凝剂净浆及硬化砂浆的性能应符合表2的要求。 表2 掺速凝剂净桨及硬化砂桨的性能要求 6 试验方法 6.1 试验材料 6.1.1 水泥:符合GB 8076标准中附录A的规定。 6.1.2 砂:符合GB/T 17671中有关ISO标准砂的规定。 6.1.3 水:符合JGJ 63的规定。 6.1.4 速凝剂:受检速凝剂。 6.2 密度、氮离子含量、总碱量、pH值、含固量 按照GB 8077进行。 6.3 细度

常规建筑材料检测原始、报告

目录 1.水泥物理力学性能试验原始记录 2.粉煤灰试验原始记录 3.砂试验原始记录 4.砂试验原始记录 5.石试验原始记录 6.石试验原始记录 7.混凝土外加剂(减水剂)试验原始记录 8.混凝土外加剂(引气剂)试验原始记录 9.混凝土外加剂(早强剂)试验原始记录 10.混凝土外加剂(防冻剂)试验原始记录 11.混凝土外加剂(膨胀剂)试验原始记录 12.混凝土外加剂(泵送剂)试验原始记录 13.混凝土外加剂(速凝剂)试验原始记录 14.混凝土外加剂(防水剂)试验原始记录 15.砂浆外加剂(防水剂)试验原始记录 16.砂浆外加剂(引气剂类)试验原始记录 17.混凝土配合比试验原始记录 18.砂浆配合比试验原始记录 19.混凝土抗压试验原始记录 20.砂浆抗压试验原始记录 21.混凝土抗渗试验原始记录 22.轻集料混凝土小型空心砌块试验原始记录 23.烧结空心砖试验原始记录 24.烧结普通砖试验原始记录 25.烧结多孔砖试验原始记录 26.外墙面砖试验原始记录 27.回填土击实试验原始记录 28.回填土密度试验(环刀法)原始记录 29.钢材物理性能试验原始记录 30.钢材化学分析原始记录 31.钢材焊接接头物理性能试验原始记录 32.钢筋机械连接接头抗拉强度试验原始记录 33.钢材应力松弛试验原始记录 34.锚具静载试验原始记录 35.扭剪型高强度螺栓连接副紧固轴力试验原始记录 36.高强度大六角头螺栓连接副扭矩系数试验原始记录 37.抗滑移系数(扭剪型螺栓紧固)试验原始记录 38.抗滑移系数(大六角头螺栓紧固)试验原始记录 39.膨胀聚苯板物理性能试验原始记录 40.绝热用挤塑聚苯乙烯泡沫塑料试验原始记录 41.耐碱玻璃纤维网格布试验原始记录

(完整版)《建筑材料试验检测》考试(A卷)

《建筑材料实验检测》试卷(A卷) 单位姓名准考证号成绩 一.单项选择(30题/15分) 1.道路水泥在水泥分类中属于. A.通用水泥 B.专用水泥 C.特性水泥 2.水泥粉磨时助磨剂地加入量不得超过水泥重量地 %. A.1 B.3 C.5 D.2 3.低碱普通水泥地碱含量不得超过%. A.1 B.0.5 C.0.6 D.0.8 4.复合水泥中混合材料总掺加量按重量百分比不得超过%. A.30 B.40 C.50 D.60 5.散装水泥工地检验取样,按同一厂家,同一等级.同一批号,每批不应超过吨. A.200 B.300 C.400 D.500 6.用负压筛检测水泥细度时,应将负压调节至 Pa. A.1000—2000 B.2000—3000 C.3000—4000 D.4000—6000 7.水泥胶砂强度检验(ISO法)水灰比为. A.0.50 B.0.60 C.0.65 D.0.40 8.水泥胶砂抗折强度实验取三条试件地平均值,如三个值中有超过平均值±%时应将此值剔除. A.5 B.10 C.15 D.20 9.一批水泥经检验项不符合标准规定,故判定为废品. A.强度 B.初凝时间 C.终凝时间 D.细度 10.建筑用砂地空隙率应小于%. A.45 B.46 C.47 D.42 11.一批砂地细度模数为2.9,应属砂. A.细 B.粗 C.中 D.特细 12.用石灰岩碎石配制C30公路桥涵混凝土,其压碎指标应不大于%. A.10 B.12 C.16 D.20 13.配制C20混凝土,所用粗集料地针片状颗粒含量应不大于 %. A.15 B.20 C.25 D.30 14.拌合钢筋混凝土用水地硫酸盐含量(以SO42-计)不应大于mg/L. A.2000 B.2700 C.3000 15.配制C40级混凝土所用粗集料地母岩抗压强度至少应为MPa. A.40 B.50 C.60 D.70 16.设计普通配筋率钢筋混凝土结构地配合比时,其坍落度可采用mm. A.10—30 B.30—50 C.50—70 D.70—90 17.设计公路桥涵工程混凝土配合比时,当混凝土强度等级为C20—C35时,标准 差б值取MPa为宜. A.3 B.4 C.5 D.6 18.在粉煤灰化学成分中,约占 45%—60%. A.Al 2O 3 B.Fe 2 O 3 C.SiO 2 D.CaO

速凝剂标准修订稿

速凝剂标准 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

JC477-2005 喷射混凝土用速凝剂 1 范围 本标准规定了喷射混凝土用速凝剂的术语和定义、分类、要求、试验方法、检验规则、包装运输和贮存等。 本标准适用于水泥混凝土采用喷射法施工时掺加的速凝剂。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1345 水泥细度检验方法(80um筛筛析法) GB/T 1346 水泥标准稠度用水量、凝结时间、安定性检验方法(eqv ISO 9597:1989)GB 8076 混凝土外加剂 GB/T 8077 混凝土外加剂匀质性试验方法 GB/T 17671 水泥胶砂强度检验方法(ISO)法(idt ISO 679:1989) JGJ 63 混凝土拌合用水 3 术语和定义 下列术语和定义适用于本标准。 速凝剂 用于喷射混凝土中,能使混凝土迅速凝结硬化的外加剂。 4 分类 按照产品形态分为:粉状速凝剂和液体速凝剂。 按照产品等级分为:一等品与合格品。 5 要求 匀质性指标 匀质性指标应符合表1要求。 掺速凝剂净浆及硬化砂浆的性能应符合表2要求

6 试验方法 试验材料 6.1.1 水泥:符合GB 8076标准中附录A的规定。 6.1.2 砂:符合GB/T 17671中有关ISO标准砂的规定。 6.1.3 水:符合JGJ 63的规定。 6.1.4 速凝剂:受检速凝剂。 密度、氯离子含量、总碱量、PH值、含固量 按照GB 8077进行。 细度 按照GB 1345中的手工干筛法进行。 含水率 6.4.1 仪器 a)分析天平:量程200g,分度值; b)鼓风电热恒温干燥箱:0℃~200℃; c)带盖称量瓶:¢25㎜×65㎜; d)干燥器:内盛变色硅胶。 6.4.2 试验步骤 6.4.2.1 将洁净带盖的称量瓶放入烘箱内,于105℃~110℃烘30min。取出置于干燥器内,冷却30min后称量,重复上述步骤至恒量(两次称量之差≤),称其质量m 。 6.4.2.2 称取速凝剂试样10g±0.2g,装入已烘至恒量的称量瓶内,盖上盖,称出试样及 称量瓶的总质量m 1 。 6.4.2.3 将盛有试样的称量瓶放入烘箱内,开启瓶盖升温至105℃~110℃,恒温2h,取出 后盖上盖,立即置于干燥器内,冷却30min后称量,重复上述步骤至恒量,称其质量m 2 。 6.4.3 结果计算与评定 含水率按式(1)计算: W=(m 1-m 2 )/(m 1- m )×100 (1) 式中: W——含水率,%; m ——称量瓶质量,单位为克(g); m 1 ——称量瓶加干燥前试样质量,单位为克(g); m 2 ——称量瓶加干燥后试样质量,单位为克(g)。 含水率试验结果以三个试样结果的算术平均值表示,精确至%。三个数据中有一个与平均值相差超过5%,取剩余两个数据的平均值;有两个数据与平均值相差超过5%,该组数据作废,试验必须重做。 凝结时间 6.5.1 仪器 a) 量程2000g,分度值2g的天平; b) 量程100g,分度值0.1g的天平;

混凝土配合比试验报告20150917

四川省南江县红鱼洞水库及灌区工程大坝枢纽建筑及安装工程 混凝土配合比试验报告 SDSJSYZX-HYD-PHB2015-01 中国水利水电第四工程局有限公司 勘测设计研究院试验中心红鱼洞试验室 报告日期:2015年09月17日

批准:审核:校核:编制:

红鱼洞水库及灌区工程大坝枢纽建筑及安装工程 混凝土配合比试验报告 1、概述 受中国水利水电第四工程局有限公司红鱼洞项目部的委托,按红鱼洞水库及灌区工程大坝枢纽建筑及安装工程招标文件及相关设计技术要求,现根据相关原材料出厂检测成果提交C25喷射砼、M35净浆、M20砂浆、C15W4F50/ C20W4F50/ C25W4F50/ C25W6F100常态砼等混凝土配合比报告如下: 2、试验依据 《四川省红鱼洞水库及灌区工程大坝枢纽建筑及安装工程施工招标文件》技术要求;《红鱼洞水库及灌区工程大坝枢纽工程标混凝土、边坡支护设计技术要求》; 《通用硅酸盐水泥》GB175-2007; 《水工混凝土掺粉煤灰技术规范》DL/T5055-2007; 《水工混凝土试验规程》SL352-2006; 《水工混凝土施工规范》SL677-2014; 《水工混凝土配合比设计规程》DL/T5330-2005; 《水工混凝土砂石骨料试验规程》DL/T5151-2014; 《砌筑砂浆配合比设计规程》JGJ/T98-2010; 《水利水电工程锚喷支护技术规范》SL377-2007; 《水工混凝土外加剂技术规程》DL/T5100-2014; 3、混凝土设计指标及配置强度 混凝土设计指标及配置强度表1

4、原材料检测成果 4.1水泥 水泥采用四川南威水泥有限公司生产的“海螺牌”P.O42.5R、P.O42.5普通硅酸盐水泥,水泥品质出厂检测结果如下: 水泥物理力学性能试验结果表2 由表2可见,“海螺牌” P.O42.5R及P.O42.5普通硅酸盐水泥各项被测指标均符合《通用硅酸盐水泥》GB175-2007的有关要求。 4.2速凝剂 为了缩短混凝土凝结时间,提高混凝土的早期强度,减少回弹损失,需在混凝土中加入适量的速凝剂。掺加速凝剂时,应充分考虑其对水泥的适应性。试验拟采用四川攀枝花市吉源科技有限公司生产的JY-AA速凝剂,推荐掺量为5%。出厂试验成果见表3: 速凝剂试验成果表3 从试验结果来看,JY-AA速凝剂各项被测指标满足《喷射混凝土用速凝剂》(JC477-92)的要求,可用于现场施工。 4.3减水剂 减水剂采用江苏苏博特新材料股份有限公司生产的SBTJM?-Ⅱ缓凝高效减水剂,其出厂性能试验结果见表4:

相关文档
最新文档