有限元基本概念

有限元基本概念
有限元基本概念

弹性力学基本假设

这些基本假设包括:理想弹性体假设和微小位移假设。是弹性力学讨论问题的基础

其中理想弹性体假设包括:连续性、均匀性、各向同性和完全弹性假设。

微小位移假设是指形变量远小于物体的尺寸。

绝对坐标法总结

(1)这个例子中所有杆件在绝对坐标系中运算。但单元一多,就重复了

(2)整体刚度矩阵的求解是利用“含同一个节点的所有单元在该节点处的位移相同”和“节点处载荷是所有含该节点单元的相应节点的节点力的总和”来求得(3) 一般情况下,当用统一的整体坐标系计算繁杂时,常在单元计算时采用自己的局部坐标系,然后通过坐标变换,集成到整体刚度矩阵中去,使运算过程简捷

首先,要建立结构外部载荷与结构内部应力的关系(平衡方程)

外部载荷包括集中力、表面力和体积力。这就是静力学平衡问题,要建立静力学平衡方程

其次,从物理学的角度,建立材料应力与应变之间的关系(物理方程)

这是材料的本构关系,描述材料在不同环境下的力学性质

最后,从几何学方面入手,建立应变与位移(变形)之间的关系

这一关系不涉及产生变形的原因。相应的方程称为几何方程

()()

()110

11 210

2121x x y y z z xy xy yz yz xz zx E μμ

εσμμεσμμεσμγτμγτμγτ--????????????--????????--????=??????

+??????

??????+??????+??????

?

?

这就是应力边界条件

看到第二章2!!!!

如果在质点系的任何虚位移上,质点系的所有约束反力的虚功之和等于零,则称这种约束为理想约束

可能功:当给出系统的一组可能位移时,作用在系统上的力将因作用点发生位移而做功,这种功就称为可能功,或虚功 虚位移原理:平衡状态中,弹性体上外力在可能位移上所作的功等于外力引起的应力在相应的虚应变上所作的功。

在发生虚位移时,若总势能改变为正(即总势能增加),则总势能为极小,反之为极大。由于稳定平衡系统要发生虚位移时,总需要外力做正功。所以在平衡位置时,势能取极小值。

力法:

力法是以应力分量为未知量进行求解 但在3个平衡方程中有6个应力分量,不能直接从中解出所有6个应力分量。需要在给定的应力边界条件下,由平衡方程和应力协调方程联合求解偏微分方程组 位移法:

以三个位移分量作为未知量求解,将物理方程和平衡方程由位移来表示,以满足位移边界条件和变形协调条件为前提 位移-力法(混合法):

用3个位移,6个应力分量将物理方程中的应变消去,再利用协调方程和边界条件求解

x

yx zx xy y zy xz

yz z l m n X l m n Y l m n Z στττστττσ?++=??

++=??++=??

有限元变分原理

1有限元变分原理 有限元是求解偏微分方程的数值方法,在数学上属于变分法范畴,是古典的 Ritz-Galerkin方法与分片多项式插值的结合。古典的Ritz-Galerkin方法的试函 数是求解域内的连续函数,有限元法的试函数是分片多项式。作为变分法的试函 数产生了很大区别:古典的Ritz-Galerkin方法的试函数要求域内的连续或平方 可积且满足位移边界条件,试函数定义在泛函分析的Hilbert空间,或称为内积 空间。有限元法的试函数要求在单元域内连续或平方可积,且不用考虑位移边界 条件,因为有限元是以节点位移参数为未知数,可以直接代入位移边界条件,但 是单元间出现了连续性条件,即所谓的平面和三维弹性问题的C0连续,和薄板 问题的C1连续等,相对古典的Ritz-Galerkin方法的试函数是一种广义函数。有 限元试函数定义在泛函分析的Sobolev空间,或称为广义导数空间。 2 分片检验 2.1分片检验 长期以来在有限元收敛理论中的分片检验成为关注的焦点,同时也是一个疑难症。分片检验所以倍受关注,是因为它不仅可以用于检验单元的收敛性还可以用于构造收敛单元,而且十分方便。分片检验的研究大致经历了如下三个里程。第一,1965年Irons提出了不协调元的分片检验条件(Patch Test) [1,2],这是一个通过数值计算检验单元的收敛性的方法,可以通过对一小片有限元问题的数值计算检验单元的收敛性,也是有限元法中最实用的检验单元收敛性的方法,但是,作为一种数值检验的方法,在数学和力学原理上的提法都不够严密,而有限元的单元收敛性又是不能回避的问题。鉴于这个方法的有效性和实用性,人们一直对其开展系列的理论研究工作。1972年Strang首先给出分片检验的数学描述[3],后来,这个条件被解释成对一个单元的约束条件,称之为单体条件[4],这个条件使用很方便,可以做为单体的约束条件构造单元函数,但是,对这个分片检验一直缺少严格的数学证明。第二,1980年Stummel 基于严格的数学理论,建立了不协调元收敛的充分必要条件-广义分片检验[5],并且,通过举反例证明Irons的分片检验即不充分也不必要[6]。这个严格的理论是整体条件,而非单体条件,应用很困难,只限于用于少量单元的检验,而且需要有相当的泛函分析基础,对于大多数单元无法得到应用,更是无法用于指导构造不协调元,因此深入研究实用的不协调元收敛性条件是十分必要的。 此间,还推出了一些实用的充分条件,例如,F-E-M检验[7] 和IPT 检验[8]等,1995年建立了C0类非协调元收敛准则—强分片检验(SPT) [9],1997年基于加权Sobolev 空间理论,建立了轴对称非协调元收敛准则—强分片检验(ASPT) [10]。但是,数学的严格理论(例如,广义分片检验)难以在力学中应用,实用的力学准则(例如,分

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

有限元单元介绍

第二章单元 在显式动态分析中可以使用下列单元: ·LINK160杆 ·BEAM161梁 ·PLANE162平面 ·SHELL163壳 ·SOLID164实体 ·COMBI165弹簧阻尼 ·MASS166质量 ·LINK167仅拉伸杆 本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。 除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。因此,实体单元和壳体单元的缺省算法采用单点积分。当然,这两种单元也可以采用全积分算法。详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。 这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。 值得注意的是,显单元不直接和材料性能相联系。例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。 2.1实体单元和壳单元 2.1.1 SOLID164 SOLID164单元是一种8节点实体单元。缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。单点积分的优点是省时,并且适用于大变形的情况下。当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于

有限元概述

有限元 百科名片 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后 再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 目录 简介 1)物体离散化 2)单元特性分析 3)单元组集 4)求解未知节点位移 5)有限元的未来是多物理场耦合 编辑本段简介 英文:Finite Element 有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下: 编辑本段1)物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 编辑本段2)单元特性分析 A、选择位移模式

一般有限元原理

一般有限元原理 一、基本理论 有限元单元法是数值计算方法中发展较早、应用最广的一种方法。利用有限元法,可以解决经典的传统的方法难以解决或无法求解的许多实际问题。其优点是部分地考虑边坡岩土体的非均质、不连续的介质特征,考虑岩土体的应力应变特征,可以避免将坡体视为刚体,过于简化边界条件的缺点,能够接近实际从应力应变的角度分析边坡的变形破坏机制。对了解边坡的应力分布及应变位移变化很有利。 有限单元法实质是变分法的一种特殊的有效形式,其基本思想是:把连续体离散化为一系列的连接单元,每个单元内可以任意指定各种不同的力学形态,从而可以在一定程度上更好地模拟地质体的实际情况,特殊的节理元,可以有效地模拟岩土体中的结构面。 在大多数情况下岩土体材料应采用非线形模型,其中包括岩体弹塑性、蠕变、不抗拉特性以及结构面性质的影响。下面简要叙述有限元法的求解过程和原理。 有限单元法的基本原理 1.有限单元法的实施步骤 有限元的重要步骤归纳起来,主要有以下几步: (1)建立离散化的计算模型,包括以一定型式的单元进行离散化,按照求解问题的具体条件确定荷载及边界条件; (2)建立单元的刚度矩阵; (3)由单元刚度矩阵组集总体刚度矩阵,并建立系统的整体方程组; (4)引入边界条件,解方程组,求得节点位移; (5)求各单元的应变、应力及主应力。 2位移模式与单元类型 在一般的有限单元法问题中,我们常以位移作为未知数,称为位移法。为保证解的收敛性,要求位移模式必须满足以下三条: (1)位移模式必须能包含单元的刚体位移。即当节点位移是由某个刚体位移所引起时,弹性体内不会有应变。 (2)位移模式必须能包含单元的常应变,即与位置坐标无关的那部分应变。

椭圆型方程的有限元法

两点边值问题有限元法(必做) 从Galerkin 原理出发用线性元解两点边值问题: "2,01(0)(1)0u u x x u u ?-+=<

平面三角形单元有限元程序的设计说明

. . P 9 m 9 m 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m,E=200GPa,=0.25,t=0.1m,忽略自重。试计算薄板的位移及应力分布。 要求: 1.编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2.采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3.提交程序编写过程的详细报告及计算机程序; 4.所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算 单元刚度的集成:[ ][][][][][]' '''''215656665656266256561661e Z e e e Z e Z e e e e k k k K k k k k k k +?++=? =?==?==?=?????? 边界约束的处理:划0置1法 X Y P X Y P 节点编号 单元编号

有限元动力学分析方程及解法

动力分析中平衡方程组的解法 1前言 描述结构动力学特征的基本力学变量和方程与静力问题类似,但所有的变量都是时间的函数。 基本变量 三大类变量(,)i u t ξ、(,)ij t εξ和(,)ij t σξ是坐标位置(,,)x y z ξ和时间t 的函数,一般将其记为()()()i ij ij u t t t εσ。 基本方程 (1) 平衡方程 利用达朗贝尔原理将惯性力和阻尼力等效到静力平衡方程中,有 ,()()()()0ij j i i i t b t u t u t σρν+--=&&& (1) 其中ρ为密度,ν为阻尼系数。 (2) 几何方程 ,,1 ()(()())2ij i j j i t u t u t ε=+ (2) (3) 物理方程 ()()ij ijkl kl t D t σε= (3) 其中ijkl D 为弹性系数矩阵。 (4) 边界条件 位移边界条件()BC u 为, ()()i i u t u t = 在u S 上 (4) 力的边界条件()BC p 为, ()()ij j i t n p t σ= 在p S 上 (5) 初始条件 0(,0)()i i u t u ξξ== (6) 0(,0)()i i u t u ξξ==&& (7)

虚功原理 基于上述基本方程,可以写出平衡方程及力边界条件下的等效积分形式, ,() ()0p ij j i i i ij j i S u u b u d n p dA δσρνδσΩ∏=---+Ω+-=??&&& (8) 对该方程右端第一项进行分部积分,并应用高斯-格林公式,整理得, ()()0p ijkl ij kl i i i i i i i i S D u u u u d b u d p u dA εδερδνδδδΩΩ-++Ω-Ω+=???&&& (9) 有限元分析列式 单元的节点位移列阵为, 111222()[(),(),(),(),(),()(),(),()]e t k k k U t u t v t w t u t v t w t u t v t w t =L (10) 单元内的插值函数为, (,)()()e t u t N U t ξξ= (11) 其中()N ξ为单元的形状函数矩阵,与相应的静力问题单元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。 基于上面的几何方程和物理方程及(11)式,将相关的物理量表达为节点位移的关系,有, (,)[](,)[]()()()()e e t t t u t N U t B U t εξξξξ=?=?= (12) (,)()()()()e e t t t D DB U t S U t σξεξξ=== (13) (,)()()e t u t N U t ξξ=&& (14) (,)()()e t u t N U t ξξ=&&&& (15) 将(12)-(15)供稿到虚功方程(9)中,有, [()()()()]()0e e e e e e e T e t t t t t M U t C U t K U t R t U t δδ∏=++-=&&&g (16) 由于()e t U t δ具有任意性,消去该项并简写有, e e e e e t t t t U C U KU R ++=&&& (17) 其中, e e T M N Nd ρΩ= Ω? (18) e e T C N Nd νΩ=Ω? (19)

有限元d 分析与介绍

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

(完整版)有限元法的基本原理

第二章有限元法的基本原理 有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。 2.1等效积分形式与加权余量法 加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。 2.1.1 微分方程的等效积分形式 工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组 12()()()0A A A ?? ?== ? ??? u u u M (在Ω内) (2-1) 域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件 12()()()0B B B ?? ?== ? ??? u u u M (在Γ内) (2-2) 要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。 以二维稳态的热传导方程为例,其控制方程和定解条件如下: ()()()0A k k q x x y y φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4) 这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。 在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。 由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有 1122()(()())0u d v A u v A u d ΩΩ Ω≡++Ω≡? ?T V A L (2-5) 其中 12v V v ?? ?= ? ??? M (2-6) 其中V 是函数向量,它是一组和微分方程个数相等的任意函数。 式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立 1122 ()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式 ()()0u d u d ΓΓ Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。 2.1.2等效积分的“弱”形式 在一般情况下,对(2-7)式进行分部积分得到另一种形式: ()()()()0T T v d v d ΩΓ Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

有限元法的概述

有限元法的概述 有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。有限元法在设计过程中有极为关键的作用。 人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。 有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而

有限元八种三维单元介绍

有限元八种三维单元介绍 有限元三维体单元常见单元有四面体4、10节点单元、六面体8、20、27节点单元、三棱柱6、15节点单元。我们在2000年新问世的四面体20节点单元。下面分别介绍如下: 1 四面体4节点单元(常应变单元、一次单元),见图一。 单元内部的位移插值函数为一次多项式,即只含常数项和Z Y X ,,四项。应变是位移的偏导数,故在单元内部,应力和应变为常数,位移和应力收敛速度都很慢,是非常落后的单元。 图一 四面体4节点单元(常应变单元) 2 四面体10节点单元(二次单元),见图二。 用体积坐标定义的单元:单元内位移插值函数为二次完全多项式,即含常数项和Z Y X ,,,YZ XZ XY Z Y X ,,,,,222十项,在单元内部,应力和应变为一次完全多项式,位移收敛速度很快,但应力收敛速度仍较慢。由于整体加密使用的节点数太多,而局部加密生成的单元奇异,刚度阵病态,故应力集中问题中很难得到精度较高的解,在不考虑应力集中、疲劳寿命的问题中,由于该单元使用节点较少、几何适应性强,被人们经常使用。 用直角坐标定义的单元:由六面体20节点单元通过节点重合退化得到。这种单元误差较大,无法求节点应力,只能求出 GAUSS 积分点的应力值,不推荐使用。 3 四面体20节点单元(三次单元),见图三。 用体积坐标定义的单元,单元内位移插值函数为完全三次多项式,即含常数项和Z Y X ,,, YZ XZ XY Z Y X ,,,,,222,XYZ Y Z X Z Z Y X Y Z X Y X Z Y X ,,,,,,,,,222222333二十项, 在单元内部,应力和应变为完全二次多项式,位移和应力收敛速度都很快,精度最高、几何适应性强,在应力集中、疲劳寿命分析问题中使用是非常有用和令人放心的单元。 4 三棱柱6节点单元(一次单元),见图四。 与四面体4 节点单元类似。

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列阵(δ)e表示: {δ}e=[u i v i u j v j u m v m]T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[F ix F iy F jx F jy F mx F my]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系

有限元

有限元结课作业 班级:071221 姓名:王丹 学号:07122032

一、有限元法简介 有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

二、有限元法的基本思想和特点 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 有限元方法(FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的

ansys有限元网格划分技巧与基本原理

一、前言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值汁算分析结果的精确性。网格划分涉及单元的形状及英拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平而应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的而内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一泄的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲而混合造型两种方法。Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。现有CAD软件对表而形态的表示法已经大大超过了CAE 软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD 模型中苴他表示法的表面形态转换到CAE软件的表示法上,转换精度的髙低取决于接口程序的好坏。在转换过程中,程序需要解决好几何图形(曲线与曲而的空间位苣)和拓扑关系(各图形数据的逻借关系)两个关键问题。英中几何图形的传递相对容易实现,而图形间的拓扑关系容易岀现传递失败的情况。数据传递而临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲而等。这些细肖往往不是基于结构的考虑,保留这些细肖,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负而影响。 CAD模型的“完整性”问题是困扰网格剖分的障碍之一。对于同一接口程序,数据传递的品质取决于CAD模型的精度。部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。值得庆幸的是,这种问题通常可通过CAD软件的'‘完整性检查”来修正。改造模型可取的办法是回到CAD系统中按照分析的要求修改模型。一方而检查模型的完整性,另一方而剔除对分析无用的细卩特征。但在很多情况下,这种"回归”很难实现,模型的改造只有依靠CAE软件自身。CAE中最直接的办法是依靠软件具有的"重构”功能,即剔除细部特征、缝补而和将小而“融入”大曲而等。有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。当几何模型距CAE 分析的要求相差太大时,还可利用CAE程序的造型功能修正几何模型。“布尔运算”是切除细节和修理非完整特征的有效工具之一。 目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE程序兼容的数据格式。另一种方式是通过标准图形格式如IGES、SAT和ParaSolid传递。现有的CAD 平台与通用有限元平台一般通过IGES、STL、Step. Parasolid等格式来数搦交换,早期IGES接口应用比较广泛,但由于该标准本身的不严格性,导致多数复杂模型的传递以失败告终,如图1所示为某汽车覆盖件在UGII中以IGES格式输出时产生的信息,可以看岀其包含大量有限元分析不必要的几何信息。而SAT与ParaSolid标准较为严格,被多数CAD程序采用。由于典型通用有限元软件(如MSC.PATRAN、MSC.MARC. ANSYS、 ABAQUS. ADINA等)的建模功能都不是很强,尤苴是在而对包含复杂空间曲而的产品结构时表现出明显的不足,同时不利于建立后续的单元网格划分模型。因此,利用现有CAD 平台(如CATIA、

有限元动力学分析方程及解法

动力分析中平衡方程组的解法 1前言 描述结构动力学特征的基本力学变量和方程与静力问题类似,但所有的变量都是时间的函数。 基本变量 三大类变量(,)i u t ξ、(,)ij t εξ和(,)ij t σξ是坐标位置(,,)x y z ξ和时间t 的函数,一般将其记为()()()i ij ij u t t t εσ。 基本方程 (1) 平衡方程 利用达朗贝尔原理将惯性力和阻尼力等效到静力平衡方程中,有 ,()()()()0ij j i i i t b t u t u t σρν+--= (1) 其中ρ为密度,ν为阻尼系数。 (2) 几何方程 ) ,,1()(()())2 ij i j j i t u t u t ε=+ (2) (3) 物理方程 ()()ij ijkl kl t D t σε= (3) 其中ijkl D 为弹性系数矩阵。 (4) 边界条件 位移边界条件()BC u 为, ()()i i u t u t = 在u S 上 (4) 力的边界条件()BC p 为, ()()ij j i t n p t σ= 在p S 上 (5) 初始条件 0(,0)()i i u t u ξξ== (6)

{ 0(,0)()i i u t u ξξ== (7) 虚功原理 基于上述基本方程,可以写出平衡方程及力边界条件下的等效积分形式, ,()()0p ij j i i i ij j i S u u b u d n p dA δσρνδσΩ∏=---+Ω+-=?? (8) 对该方程右端第一项进行分部积分,并应用高斯-格林公式,整理得, ()()0p ijkl ij kl i i i i i i i i S D u u u u d b u d p u dA εδερδνδδδΩΩ-++Ω-Ω+=??? (9) 有限元分析列式 单元的节点位移列阵为, 111222()[(),(),(),(),(),()(),(),()]e t k k k U t u t v t w t u t v t w t u t v t w t = (10) 单元内的插值函数为, (,)()()e t u t N U t ξξ= (11) % 其中()N ξ为单元的形状函数矩阵,与相应的静力问题单元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。 基于上面的几何方程和物理方程及(11)式,将相关的物理量表达为节点位移的关系,有, (,)[](,)[]()()()()e e t t t u t N U t B U t εξξξξ=?=?= (12) (,)()()()()e e t t t D DB U t S U t σξεξξ=== (13) (,)()()e t u t N U t ξξ= (14) (,)()()e t u t N U t ξξ= (15) 将(12)-(15)供稿到虚功方程(9)中,有, [()()()()]()0e e e e e e e T e t t t t t M U t C U t K U t R t U t δδ∏=++-= (16) 由于()e t U t δ具有任意性,消去该项并简写有, e e e e e t t t t U C U KU R ++= (17)

相关文档
最新文档