矩阵的标准型

矩阵的各种标准形研究

玉林师范学院本科生毕业论文 反例在数学证明中的运用Study about the Kind of Matrix Standard Form Question 院系数学与信息科学学院 专业数学与应用数学 学生班级2010级1班 姓名 学号201004401137 指导教师单位数学与信息科学学院 指导教师姓名 指导教师职称副教授

数学与应用数学2010级1班梁玉漫 指导老师钟镇权 摘要 数学与应用数学专业本科生撰写学位论文应当符合写作规范和排版格式的要求.以下格式为依据国家标准和行业规范所编制的学士学位论文格式模板,供我系毕业生参照使用.理工科论文句号一律用实心圆点. 摘要部分说明: “摘要”是摘要部分的标题,不可省略. 标题“摘要”可选“标题1+四号”或手动设置成字体:黑体,居中,字号:四号,1.5倍行距,段前为0,段后11磅. 论文摘要是学位论文的缩影,文字要简练、明确。内容要包括目的、方法、结果和结论。单位制一律换算成国际标准计量单位制,除特别情况外,数字一律用阿拉伯数码。文中不允许出现插图. 摘要正文选用模板中的样式所定义的“正文”,每段落首行缩进2个汉字;或者手动设置成每段落首行缩进2个汉字,字体:宋体,字号:小四,行距:多倍行距1.25,间距:前段、后段均为0行,取消网格对齐选项. 摘要篇幅以一页为限,字数为300-500字. 摘要正文后,列出3-5个关键词。“关键词:”是关键词部分的引导,不可省略。关键词请尽量用《汉语主题词表》等词表提供的规范词. 关键词与摘要之间空一行.关键词词间用逗号间隔,末尾不加标点,3-5个,黑 体,小四.

Mathematics and Applied Mathematics 2007-2 Supervisor Su Derong Abstract Study about the question of matrix not only is the foundation of studying classical mathematics, also is useful value for the mathematics theory. It is not only an important branch of mathematics, also already become the powerful tool of processing massive question in the modern science and technology .Specially, computer has been used, which is opened the broad prospect for studying about the question of matrix. But the standard form of matrix has very important status whether in the theory or in the application. This article takes standard form of matrix as research object, starting from equal normal form, according to characteristic nature and qualitative, draws about two kind of different standard forms----similar standard form and contract standard form. What is more , sums up these two kinds of standard form convergence point as the solid symmetrical matrix standard form, through many examples, make every standard form expresses itself clearly, also causes the relation between them clearer. In the end , sums up the relation of several standard forms. Make us to understand the problem more profound. Key words: matrix, equal standard form, similar standard form, contract standard form

求矩阵的Jordan标准形的两种方法

求矩阵的Jordan 标准形的两种方法 方法1. 利用矩阵的初等因子 原理: 由于矩阵的每一个初等因子与一个Jordan 块相对应, 反之亦然. 求出全部的初等因子即可得出其Jordan 标准形. 方法2. 利用特征值和特征向量可求的可逆矩阵T 使得AT T 1-为Jordan 标准形. 原理: 在复数域上, 每一个矩阵都与一个Jordan 标准形相似, 即存在可逆矩阵T 使得AT T 1-为Jordan 标准形. 例. 设??? ? ? ?? -----=411301621A , 分别用两种方法求A 的Jordan 标准形. 解: 方法1. .)1(0 001000 1120011000123101100 014111102310411316212222 )1(232132???? ? ??-- →????? ??-+---??→?????? ??-+----→?? ? ? ? ??----+--???→?????? ??---+=-++--λλλλλλλλλλλλλλλλ λλλλλλr r r r r r A E 得A 的初等因子为2)1(,1--λλ, 于是A 的Jordan 标准形为 . 1100 1000121??? ? ? ??=???? ??=J J J 方法2. (1) 首先求A 的特征值. 3)1(||-=-λλA E , 所以特征值为1,1,1. (2) 求出相应的特征向量. 求解齐次线性方程组0)(=-X A E 的全部解: .000000311311311622???? ? ??-→????? ?? ---=-A E 相应的特征向量为)0,1,1(1-=α, )1,0,3(2=α. 1α,2α为特征值空间V 1的基. (3) 求出一组基, 使得A 在此基下的矩阵为Jordan 标准形.

矩阵的分类

合同矩阵(等价矩阵、相似矩阵、置换矩阵、若尔当标准型) (2012-04-05 13:58:14) 分类:工作篇 标签: 校园 合同矩阵 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵和是合同的,当且仅当存在一个可逆矩阵,使得 。 对于二次型的矩阵表示来说,做一次非退化的线性替换相当于将二次型的矩阵变为一个与其合同的矩阵。 性质 合同关系是一个等价关系,也就是说满足: 反身性: 对称性:合同于,则可以推出合同于。 传递性:合同于,合同于,则可以推出合同于。 由于每个二次型都可以经过线性替换变成若干个平方和的形式,对于矩阵来说,就是每个对称矩阵都合同于一个对角矩阵,后者称为一个标准形。根据谱定理,替换的过渡矩阵可以是一个正交矩阵。 如果不考虑替换矩阵的正交性,那么在复数域中,每个对称矩阵都合同于一个对角线上元素只由0和1构成的对角矩阵。对角线上的1的个数等于原来的矩阵的秩。因此每个可逆的对称矩阵都合同于单位矩阵。 在实数域中,根据惯性定理,每个对称矩阵都合同于一个对角线上元素只由0和正负1构成的对角矩阵。如果设1的个数是p,-1的个数是q,那么给定(p,q)后,就确定了一个关于合同关系的等价类。数对(p,q)称为一个对称矩阵(或相应二次型)的惯性指数其中1的个数p 称为正惯性指数,-1的个数q称为负惯性指数,p-q叫做符号差。据此可以得出:合同关系将所有的对称矩阵分为个等价类。 正定二次型 主条目:正定二次型 一个二次型被称为半正定的,如果它对应的对称矩阵在实数域内合同到一个一个对角线上元素只由0和1构成的对角矩阵。如果一个二次型的矩阵在实数域内合同于单位矩阵,那么称其为正定二次型。一个二次型是半正定二次型当且仅当它的正惯性指数等于它对应的矩阵的秩;是正定二次型当且仅当它的正惯性指数是n。正定二次型必然是可逆矩阵,而且它的行列式大于0。 同样的可以定义半负定、负定和不定的二次型。 参看 相似矩阵

相关文档
最新文档