电力电子变压器简介

电力电子变压器简介
电力电子变压器简介

电力电子变压器简介

编者按:电力电子变压器是一种有发展前途的电力电子设备。它与目前使用的铁芯铜线变压器,有明显的优点,特别是耐高压(15kV)的碳化硅器件的成熟会给电力电子变压器的发展带来新的机遇。它是未来智能电网的得利电力电子设备。作为一种新型的电力变压器,得到了国内外研究人员越来越多的关注。

此外,电力电子变压器能否将电压变换与电能质量调控结合一起解决?如一条轧钢生产线使用的变压器,采用电力电子变压器,可以即变压,又能实现电能质量调控,能否有可能?我公司已开发成功的‘’27.5k V转10k V‘’装置也是一种电力电子变压器。轻型直流输电系统也可兼有电力电子变压器功能。可见,公司已具备生产电力电子变压器的能力。

根据现有资料选编成“电力电子变压器简介”一文。文中内容不一定十分准确,供公司开发新产品参考。

王春岩2010.10.22

1、定义

电力电子变压器,又称为固态变压器——P E T ( P o w e r E l e c t r o n i c T r a n s f o r m e r ),也有称为EPT。

电力电子变压器是一种含有电力电子变换器,且通过高频变压器实现磁耦合的变电装置,它通过电力电子变换技术和高频变压器实现电力系统中的电压变换和能量传递。

2、电子电力变压器的基本组成和工作原理

2、1 基本组成(以单相为例)

基本组成见图2.1

2、2 直接、AC/AC变换的电力电子变压器(以单为例)

2、3 含直流环节的PET

2、4 单相含直流PET的电路结构

2、5 用于风电、光电和小水电单相并网PET

图2.5用于风电、光电和小水电单相并网PET

3、电力电子变压器优点和缺点:

3、1 优点

1).体积小,重量轻,无环境污染;

2).运行时可保持副方输出电压幅值恒定,不随负载变化;

3).始终保证原、副方电压电流为正弦波形,并且原、副方功率因数任意可调;4).具有高度可控性,变压器原副方电压、电流的幅值和相位均可控:

5).兼有断路器的功能,大功率电力电子器件可以瞬时(微秒级)关断故障大电流,也无需常规变压器的复杂继电保护装置。

将电力电子变压器应用到电力系统后,将会给电力系统带来许多新的特点,有助于解决电力系统中所面临的许多新课题,主要表现在如下几个方面:

第一,PET作为一种高度可控的新型输电设备,其原副方电压的幅值和相位均可控,且可关断故障大电流。这一特点应用到电力系统后,将有望大幅度提高系统的稳定性。

第二,PET交直流环节兼有,所以可灵活地将各种分布式电源接入电力系统。第三,PET具有高度的可控性.广泛应用后,将能够在保证系统稳定性的条件下实现对潮流的实时灵活控制。

第四,与PET相联的同步发电机可实现异步化运行。当系统发生故障时,发电机可实现短时异步化运行而不会与系统解列,提高系统的安全稳定性和供电可靠性。

第五,当前电网中如谐波、电压跌落、闪变等电能质量问题日趋严重,将PET 用于配电系统后,将能够起到电能质量调节器的作用。

3、2电力电子变压器不足之处:

(1) 电力电子装置的使用可能会产生谐波,但通过适当的PWM控制可以减小到最低程度。

(2)按理论计算,电力电子变压器效率高于常规变压器,但在目前技术条件下,实际运行效率可能比常规变压器稍低一些。以后随着电力电子器件发展水平的提高、控制方案的改进优化以及散热方式的改善等,电力电子变压器的运行效率会逐渐提高,一定会超过常规变压器。

(3)由于目前电力电子器件较贵,因此电力电子变压器价格较常规变压器要贵一些,这将直接影响推广到实际应用。

4、电子电力变压器的应用场合和前景

电子电力变压器能够应用于电力系统的多个领域。将PET应用于输电系统中,取代发电机——变压器组中的传统变压器后,利用其原副方电压的幅值和相位均

可控,可关断故障大电流的特点能够提高系统稳定性;当将其应用于配电系统中时,由于PET既具有变压器的一般的功能,如电能传输、隔离变换等,又具有抑制谐波双向流动、防止负载侧出现故障影响电源电压、消除电压跌落与升高以及过电压、欠电压等电源侧电压的干扰对负荷的影响,对各种电量进行监测、显示、分析处理来判断各种异常情况,以对其自身和系统进行保护并给出报警信号和故障类型等特点,因此可以通过PET向那些对电能质量敏感负荷供电,如造纸厂、纺织厂、挤塑机、生产精密机械的汽车零件制造、大型泵体锻造企业以及半导体制造业、银行、电信、军事、医疗、化工等领域,进而产生巨大的社会和经济效益。此外,由于PET还具有体积小、重量轻、空载损耗小等优点,它还可以应用在对设备的体积、重量有特殊要求的场合,如航海、航空、航天等领域。

5、PET研究现状

1970年,美国GE公司的W.McMurray首先提出了一种具有高频连接的AC /AC变换电路,这种高频变换原理已成为后来基于直接AC/AC变换的电力电子变压器发展的基本思路。1980年,美国海军的一个研究项目提出了一种由AC /AC的降压变换器构成的固态变压器(Solid state transformer)。其后,由美国电力科学研究院

早期的电力电子变压器的理论和实现研究由于受到当时大功率电力电子器

件和高压大功率变换技术发展水平的限制,所提出的各种设计方案均未能进入实用化,特别是在可用于实际输配电系统(10kV以上)的电力电子变压器的研

究方面进展甚微。进入20世纪90年代末,国外在电力电子变压器的研究领域中出现了一些令人鼓舞的进展,特别是在可用于工业配电系统的电力电子变压器的研究方面取得了突破,提出了一些新的技术方案,并制作出了与配电系统电压等级相当的实验室样机。最先是美国德州An大学的Moonshik Kang和Enjeti 提出了一种基于直接AC/AC变换的电力电子变压器的结构。这种电力电子变

压器的首要设计目标是减小变压器的体积和重量并提高其整体效率,其工作原理为:工频信号首先被变换为高频信号(600Hz到1.2kHz)后通过高频隔离变压器耦合到其副方,高频信号随后又被同步还原为工频信号。同W.McMurray所提出的高频变换相似,针对较小功率的应用场合,为简化结构,降低成本M.D.Manjrekar和R.Kieferndorf等人在buck-boost(降压―升压变換器)变换器的基Ronan和Sudnoff于1999年提出了一种由输入级(高压级)、隔离级和输出级(低压级)三级结构组成的电力电子变压器,这是一种降压变压器方案,其特点在于输入级采用多级功率模块串联的结构,高压侧输入电压被均分到每一模块上,从而可减小高压侧单个功率模块上所承受的电压,各模块内部可不必串联。输入级各模块为单位功率因数整流器,但是这些实现方案,由于受当时大功率电力电子器件以及电力电子技术发展水平的限制,而且这方面理论本身不成熟,因而都未能进入实用化。

我国从事电力电子变压器研究、开发生产的单位己有数家,其中有国营、民营和外企业,中国电力科学研究院;中电普瑞科技有限公司、华中科技大学、东南大学等已申请了专利。世界上最大的电子变压器生产厂家美国普思公司和世界上最大的软磁铁氧体生产厂家日本T D K公司都在我国设有生产基地。世界上许多先进的电子变压器技术、生产工艺和产品都在我国汇集在一起。面对这样一个多种化的平台,技术交流是大有可为的。

但是近期耐高压(15kV)的碳化硅器件的成熟会给PET的发展带来新的机遇。

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.360docs.net/doc/087256943.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

电力电子变压器理论研究综述

作者简介:晏阳(1988- ),男,硕士研究生,研究方向为电力电子技术在电力系统中的应用。 电力电子变压器理论研究综述 摘 要:介绍了目前国内外电力电子变压器的研究概况,对电力电子变压器发展过程中出现的斩 控式电力电子变压器、交-交-交型电力电子变压器、反激型电力电子变压器、双PWM 变换型电力电子变压器几种典型的设计构想进行了梳理,并且给出了相应的主电路拓扑。通过分析电力电子技术在电力电子变压器研究领域的相关理论及其应用,阐述各种拓扑的优缺点,并给出了主要的研究方向和发展趋势。 关键词:电力电子变压器;电力电子技术;电能质量中图分类号:TM401+.1 文献标识码:A 文章编号:1007-3175(2012)03-0005-04 晏阳 (东南大学 电气工程学院,江苏 南京 210096) Abstract: Introduction was made to the present research survey of power electronic transformers at home and abroad. This paper hackled several typical design schemes such as chop-controlled power electronic transformer, AC-AC power electronic transformer, flyback power electronic transformer and double PWM power electronic transformer and gave the corresponding main circuit topolo-gy. Via analysis to the relevant theory and its application of power electronic technology in power electronic transformer field, this paper expatiated on advantages and disadvantages of various topologies and summarized the main research direction and developing trend of power electronic transformers. Key words: power electronic transformer; power electronic technology; quality of power supply YAN Yang (School of Electrical Engineering, Southeast University, Nanjing 210096, China ) Research Summary of Power Electronic Transformer Theory 0 引言 电力电子变压器(power electronic trans-former,PET),又称固态变压器(solid trans-former),是一种通过电力电子技术实现电力系统电压变换和能量传递的新型变压器。相对于传统变压器而言,电力电子变压器具有如下优点[1]:(1)体积小,重量轻,环境污染小;(2)运行时二次侧输出电压幅值恒定,不随负载变化,且平滑可调;(3)一次、二次侧电压为正弦波形,功率因数可调;(4)一次、二次侧电压、电流和功率均高度可控[2];(5)本身具有断路器的功能,无需传统的变压器继电保护装置。电力电子变压器是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研 究课题,也是解决电能质量问题,建设“绿色电网”、“数字电网”的可行途径之一。目前在国内外,都有很多相关的研究和开发。 在电力电子变压器的设计和研发中,大规模的电力电子器件以及相应的电力电子变流技术得到了广泛的应用。本文总结电力电子变压器研究的发展历史及主要的电路拓扑,并分析各个拓扑的电路原理和应用情况。 1 国内外研究现状 电力电子变压器起源于美国。通用电气公司的W.McMurray于1970年在一份专利中首先提出了基于AC/AC变换电路的电力电子变压器[3]。在随后的发展过程中,科研人员提出了传统AC/AC变换、buck 变换、AC/DC/AC变换等多个研究课题,并取得了一

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.360docs.net/doc/087256943.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.360docs.net/doc/087256943.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

电力电子变压器简介

电力电子变压器简介 编者按:电力电子变压器是一种有发展前途的电力电子设备。它与目前使用的铁芯铜线变压器,有明显的优点,特别是耐高压(15kV)的碳化硅器件的成熟会给电力电子变压器的发展带来新的机遇。它是未来智能电网的得利电力电子设备。作为一种新型的电力变压器,得到了国内外研究人员越来越多的关注。 此外,电力电子变压器能否将电压变换与电能质量调控结合一起解决?如一条轧钢生产线使用的变压器,采用电力电子变压器,可以即变压,又能实现电能质量调控,能否有可能?我公司已开发成功的‘’27.5k V转10k V‘’装置也是一种电力电子变压器。轻型直流输电系统也可兼有电力电子变压器功能。可见,公司已具备生产电力电子变压器的能力。 根据现有资料选编成“电力电子变压器简介”一文。文中内容不一定十分准确,供公司开发新产品参考。 王春岩2010.10.22 1、定义 电力电子变压器,又称为固态变压器——P E T ( P o w e r E l e c t r o n i c T r a n s f o r m e r ),也有称为EPT。 电力电子变压器是一种含有电力电子变换器,且通过高频变压器实现磁耦合的变电装置,它通过电力电子变换技术和高频变压器实现电力系统中的电压变换和能量传递。 2、电子电力变压器的基本组成和工作原理 2、1 基本组成(以单相为例)

基本组成见图2.1 2、2 直接、AC/AC变换的电力电子变压器(以单为例) 2、3 含直流环节的PET

2、4 单相含直流PET的电路结构 2、5 用于风电、光电和小水电单相并网PET 图2.5用于风电、光电和小水电单相并网PET 3、电力电子变压器优点和缺点: 3、1 优点 1).体积小,重量轻,无环境污染; 2).运行时可保持副方输出电压幅值恒定,不随负载变化; 3).始终保证原、副方电压电流为正弦波形,并且原、副方功率因数任意可调;4).具有高度可控性,变压器原副方电压、电流的幅值和相位均可控:

现代电力电子技术发展及其应用

现代电力电子技术发展及其应用 摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 二、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压

和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

配电系统电力电子变压器的研究

配电系统电力电子变压器的研究 作者:佚名转贴自:电力安全论坛点击数: 35 更新时间:2008-7-28 配电系统电力电子变压器的研究 方华亮,黄贻煜,X澍,陆继明,毛承雄 (华中科技大学电气与电子工程学院,XX430074) 摘要: 供电可靠性及电能质量一直是用户和供电部门密切关注的问题。在电网中,变压器是电能转换的最基本的元件,但常规变压器难以对供电可靠性的提高和电能质量的改善作出贡献。本文介绍了一种全新的产品-电力电子变压器,它具有提高供电可靠性、改善电能质量并且体积小、重量轻、环保效果好等一系列优点,可以较好地解决这些问题。在对电力电子变压器现有方案进行分析的基础上,本文提出了一种新的实现方案,计算机仿真结果表明:变压器原方可以实现输入电流波形为正弦和功率因数接近于1,变压器副方可以获得良好的输出电压、电流。 关键词: 电力电子变压器; 高频变压器; 供电可靠性; 电能质量; 脉宽调制 1引言 当今社会经济的快速发展,使得人们对供电可靠性以及改善电能质量提出了越来越高的要求。如果一个供电系统的可靠性不能保证,停电不只是给供电企业带来损失,给用户将造成更大的经济损失。就电能质量而言,一种频率、电压、波形的电能已远远不能满足用户要求,经过变换处理后再供用户使用的电能占全国总发电量的百分比比值的高低,已成为衡量一个国家技术进步的主要标志之一。如在美国,2000年末,发电厂生产的40%以上的电能都是经变换和处理后再供负载使用,预计到21世纪二、三十年代,美国发电站生产的全部电能都将经变换和处理后再供负载使用。 如何更进一步提高供电可靠性和改善电能质量已成为供电部门十分重视和不断努力解决的问题,在供电系统中,变压器是实现电能转换的最基本、最重要的元件之一,对供电可靠性和电能质量有着重大的影响。目前广泛使用的配电系统变压器通常是采用铁芯油浸式,其运行可靠和效率较高;但同时,也存在以下一些不足之处[1]: ·不能维持副方电压恒定; ·铁芯饱和时,会造成电压电流的波形畸变,产生谐波; ·原副方电压、电流紧密耦合,负荷侧的波动会影响到电网侧; ·需装备继电保护装置; ·体积大,笨重; ·矿物油会带来环境问题,且不易维护; 基于以上常规变压器的一些不足之处,如何进一步提高变压器的功能、改善其运行特性以更好的发挥其在供电系统中的作用,从而实现进一步提高供电可靠性、改善电能质量的愿望,是一个十分值得我们深入研究的课题。目前随着电力电子变流技术和大功率电力电子器件的迅速发展,以及在电力系统中的应用日益广泛,所有的这些为我们研制新型变压器奠定了很好的基础。我们要研制的新型变压器主要是采用电力电子技术实现的,我们称之为电力电子变压器。 对电力电子变压器的研究,国内在这方面还基本上未开展,国外在十多年前就已提出了这个概念。首先是美国海军的一个研究计划,提出了一种“交流-交流”的降压变换器构成的电力电子变压器;在这之后,由美国电力科学研究院(EPRI)赞助的一个研究项目

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电力电子变压器及其发展综述_潘诗锋

#科普园地# 电力电子变压器及其发展综述 Summary of Development of Power Electronic Transformer 潘诗锋,赵剑锋 (东南大学电气系,江苏南京210096) 摘要:介绍了电力电子变压器的优点、工作原理、目前研究状况。指出了用电力电子变压器解决电能质量问题是今后 的发展趋势,拓宽了电力电子变压器的应用场合,使得其不但可以使用在对能量转换装置的体积、重量有特殊要求的场 合,如航海、航空、航天等领域,还可以为电能质量敏感负荷供电。它是建设/绿色电网0/数字电网0的关键设备之一,对 其进行研制和使用可取得巨大的经济和社会效益。 关键词:电力电子变压器;电能质量;绿色电网;数字电网 中图分类号:TM41文献标识码:E文章编号:1009-0665(2003)06-0052-03 收稿日期: 2003-06-28 传统的电力变压器具有制作工艺简单、可靠性高 等优点,在电网中得到广泛应用。但是,它的缺点也十 分明显,如体积、重量、空载损耗大;过载时易导致输出 电压下降、产生谐波;负载侧发生故障时,不能隔离故 障,从而导致故障扩大;带非线性负荷时,畸变电流通 过变压器耦合进入电网,造成对电网的污染;电源侧电 压受到干扰时,又会传递到负载侧,导致对敏感负荷的 影响;使用绝缘油造成环境污染;需要配套的保护设备 对其进行保护[1]。 作为一种新型的能量转换设备,与传统的变压器 相比,电力电子变压器具有体积小、重量轻、空载损耗 小、不需要绝缘油等优点。它是集电力电子、电力系 统、计算机、数字信号处理以及自动控制理论等领域为 一体的电力系统前沿研究课题,通过电力电子器件和 电力电子变流技术,对能量进行转换与控制,以替代传 统的电力变压器。 研究电力电子变压器的初衷是为了降低传统变压 器的体积和重量。因为,变压器的体积和重量与它的运 行频率成反比,借助于电力电子技术提高其变换频率, 就可减小体积和重量。美国海军于20世纪70年代末 至80年代初,首先对其进行了研究[2],美国电科院于 1995年也进行了相关研究[3]。以上2个项目研究,试验 样机都不实用,因为它们采用的是降压型变换器 (Buck),不能很好地抑制输入的谐波电流,而且变压器 输入和输出是不隔离的[1]。20世纪90年代末,美国密 苏里大学在ABB和爱默生公司资助下对电力电子变压 器进行了研究,完成了10 kV A,7 200 V/240 V的实验 样机,但仅实现了基本的电压变换功能和对输入的功率 因数控制。另外,设计时为减小对开关器件的应力,输

现代电力电子技术

现代电力电子技术

现代电力电子技术二、主观题(共12道小题) (主观题请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答案。) 11. 电力电子技术的研究内容? 12. 电力电子技术的分支? 13. 电力变换的基本类型? 14. 电力电子系统的基本结构及特点? 15. 电力电子的发展历史及其特点? 16. 电力电子技术的典型应用领域? 17. 电力电子器件的分类方式? 18. 晶闸管的基本结构及通断条件是什么? 19. 维持晶闸管导通的条件是什么? 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 21. 整流电路的主要分类方式? 22. 单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=________。

现代电力电子技术二、主观题(共12道小题) 11. 电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 12. 电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 13. 电力变换的基本类型? 参考答案: 包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC (3)斩波DC-DC (4)交交电力变换AC-AC 14. 电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。'

15. 电力电子的发展历史及其特点? 参考答案:主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势 16. 电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 17. 电力电子器件的分类方式? 参考答案: 电力电子器件的分类 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型 18. 晶闸管的基本结构及通断条件是什么? 参考答案:晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 19. 维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 参考答案:I L__〉____I H 21. 整流电路的主要分类方式? 参考答案: 按组成的器件可分为不可控(二极管)、半控(SCR)、全控(全控器件)三种; 按电路结构可分为桥式电路和半波电路; 按交流输入相数分为单相电路和三相电路。

电力电子变压器原理、现状、应用场合介绍复习过程

电力电子变压器原理、现状、应用场合 介绍

电力电子变压器介绍 0、前言 电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。 1、基本原理 PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。因高频变压器起隔离和变压作用, 因铁心式变压器的体积与频率成反比, 所以高频变的体积远小于工频变压器, 其整体效率高。 图1 电力电子变压器基本原理框图 PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换,

再将直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC 变换。比较两种方案, 后种控制特性良好, 通过PWM 调制技术可实现变压 器原副边电压、电流和功率的灵活控制, 有望成为今后的发展方向。 2、研究现状 自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各种不同结构的具有高频连接的AC/AC 变换器进行了深 入的探讨和研究, 并提出了PET 的概念。美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。 早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技 术发展水平的限制, 所提出的各种设计方案均未能实用化, 特别是在可用 于实际输配电系统(10kV以上)的PET的研究方面进展不大。进入20 世纪 90 年代,国外在这一研究领域中取得了一些新进展, 提出了新的技术方案, 并制作了与配电系统电压等级相当的实验室样机。如美国密苏里大学在ABB 和爱默生公司资助下对电力电子变压器进行了研究,完成了10kVA,7200 V /240 V的实验样机,但仅实现了基本的电压变换功能和对输入的功率因数控制。另外,设计时为减小对开关器件的应力,输入采用多个变流器串联 工作,使系统的可靠性大大降低,当其中任意一个器件出现故障都会导致 工作异常。美国威斯康星一麦迪逊大学与ABB公司合作,德克萨斯农机大 学也于20世纪90年代末对电力电子变压器进行了研究,但以上工作只对 其电压变换的功能进行了分析和研究。

《现代电力电子技术》离线作业答案

现代电力电子技术第1次作业 一、单项选择题(只有一个选项正确,共4道小题) 1. 在晶闸管应用电路中,为了防止误触发应将幅值限制在不触发区的信号是( ) (A) 干扰信号 (B) 触发电压信号 (C) 触发电流信号 (D) 干扰信号和触发信号 正确答案:A 2. 当晶闸管承受反向阳极电压时,不论门极加何种极性触发电压,管子都将工作在( ) (A) 导通状态 (B) 关断状态 (C) 饱和状态 (D) 不定 正确答案:B 3. 晶闸管工作过程中,管子本身产生的管耗等于管子两端电压乘以() (A) 阳极电流 (B) 门极电流 (C) 阳极电流与门极电流之差 (D) 阳极电流与门极电流之和 正确答案:A 4. 电阻性负载三相半波可控整流电路,相电压的有效值为U2,当控制角α=0°时,整流输出电压平均值等于() (A) 1.41U2 (B) 2.18U2 (C) 1.73U2 (D) 1.17U2 正确答案:D 四、主观题(共14道小题) 5. 电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 6. 电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 7. 电力变换的基本类型? 参考答案:包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC

(3)斩波DC-DC (4)交交电力变换AC-AC。 8. 电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。 9. 电力电子的发展历史及其特点? 参考答案: 主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势。 10. 电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 11. 电力电子器件的分类方式? 参考答案:电力电子器件的分类如下 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型。 12. 晶闸管的基本结构及通断条件是什么? 参考答案: 晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 13. 维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 14. 对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL______IH。 参考答案:IL〉IH。 15. 电力电子技术的定义和作用? 参考答案:电力电子技术是研究利用电力电子器件实现电能变换和控制的电路,内容涉及电力电子器件、功率变换技术和控制理论,作用是把粗电变成负载需要的精电。 16. 双极型器件和单极型器件的特点与区别? 参考答案: 双极型,电流驱动,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂; 单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。

电力电子变压器研究综述

电力电子变压器研究综述 李璟 摘要:电力电子变压器(PET ) 是一种采用电力电子变换器和高频开关变压器的电能传输装置。首先,介绍了电PET 的基本工作原理及其研究现状。其次,介绍了发展过程中出现的几种典型拓扑结构。再次,对PET 的控制方法进行了总结。最后,对将来PET 的应用及发展做出了展望。 关键词:电力电子变压器 电力系统 控制 拓扑 0 引言 PET 除了具有传统电力变压器电能变换与传输功能外,其突出优点在于体积小、重量轻,通过变压器原、副方电压源变换器对其交流侧电压幅值和相位的实时控制,可以实现变压器原、副方电压、电流和功率的灵活调节,在暂态过程中控制性能良好,本身具有断路器的功能,无需传统的变压器继电保护装置等[1~3]。因此PET 具备解决电力系统相关问题的潜力,应用前景广阔。随着电力系统朝着智能电网不断发展,PET 也受到越来越多的专家学者的关注。 1 PET 基本工作原理 电力电子变压器是一种将电力电子变换技术和基于电磁感应原理的电能变换技术相结合,实现将一种电力特征的的电能转变为另一种电力特征的电能的静止电气设备。[4]上述电力特征包括电压或者电流的幅值、相位、相序、波形、频率和相数等。它的主要功能包括变压、变流、电气隔离、能量传递和电能控制。 在结构上,电力电子变压器主要包括两个部分:高频变压器和电力电子变换器。电源接到一次侧时,电力电子变换器1将输入的工频交流电变换成高频交流电,高频交流电经高频变压器耦合后与这电力电子变换器2相连接,通过电力电子变换器2输出到负载上。 图1 电力电子变压器中电力电子变换器的主要功能是实现电压或者电流的频率控制、相位控制和谐波控制;电力电子变压器中的高频变压器主要功能是电压等级的变换和电气隔离。变压器容量S 可以表示为下式: m e c B A A J f K S ******=22.2 (1) 式中K 为铜导线饱和因数;f 为励磁频率(Hz );c A 、e A 分别表示为铁芯和绕组导线面积(m 2);J 为导体中的电流密度(2 /m A );m B 为最大磁通密度(T)。可见在其他条件相同的情况下,f 与e c A A *成反比,因此高频变压器体积远小于同容量的工频变压器。[5]

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

现代电力电子技术应用及发展探讨

现代电力电子技术应用及发展探讨 现代电力电子技术自上世纪六十年代开始出现,其发展势头迅猛。这是一项能够对电能进行控制和转换的技术,在多个行业都起到非常重要的作用,应用领域十分广泛。文中分析了现代电力电子技术的发展趋势,并进一步对现代电力电子技术的应用进行了具体的阐述。 标签:电力电子技术;发展趋势;应用 前言 现代电力电子技术的发展经历了几个不同的阶段,整流器时代、逆变器时代和变频器时代,现代电力电子技术属于变频器时代,同时又与微电子技术有效地进行了结合,这不仅使其应用范围十分广泛,而且在国民经济中的地位也变得越来越重要。 1 现代电力电子技术的发展趋势 在当前科学技术快速发展的新形势下,随着电力电子技术的不断革新,其发展达到了一个较高的水平。现代电力电子技术主要是对电源技术进行开发和应用,可以说电源技术的发展是当前电力电子技术发展的主要方向。 1.1 现代电力电子技术向模块化和集成化转变 电源单元和功率器件作为现代电力电子技术的重要组成部分,是电子器件智能化的核心所在,其组成器件具有微小性,因此电力电子器件结构也更为紧凑,体积较小,但其能够与其他不同器件的优点进行有效综合,所以其具有显著的优势。也加快了现代电力电子技术向模块化和集成化转变的进程,为电力系统使用性能的提升奠定了良好的基础。 1.2 现代电力电子技术从低频向高频化转变 变压器供电频率与变压器的电容体积、电感呈现反比的关系,在电力电子器件体积不断缩小的情况下,现代电力电子技术必然会加快向高频化方向转化。可控制关断型电力电子器件的出现即是现代电力电子技术向高频转化的重要标志。而且随着科学技术发展速度的加快,电力电子技术也必然会向着更高频的方向发展。 1.3 现代电力电子技术向全控化和数字化转变 传统的电力电子器件在使用过程中存在着一些限制,而且关断电器时还会产生一些危险,自关断的全控型器件在市场上出现后,有效地弥补了这些限制和避免了危险的发生,这也是现代电力电子技术变革的重要体现,表明现代电力电子

电力电子变压器原理、现状、应用场合介绍

电力电子变压器介绍 0、前言 电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。 1、基本原理 PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。因高频变压器起隔离和变压作用, 因铁心式变压器的体积与频率成反比, 所以高频变的体积远小于工频变压器, 其整体效率高。 图1 电力电子变压器基本原理框图 PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换, 再将

直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC变换。比较两种方案, 后种控制特性良好, 通过PWM 调制技术可实现变压器原副边电压、电流和功率的灵活控制, 有望成为今后的发展方向。 2、研究现状 自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各种不同结构的具有高频连接的AC/AC 变换器进行了深入的探讨和研究, 并提出了PET 的概念。美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。 早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技术发展水平的限制, 所提出的各种设计方案均未能实用化, 特别是在可用于实际输配电系统(10kV以上)的PET的研究方面进展不大。进入20 世纪90 年代,国外在这一研究领域中取得了一些新进展, 提出了新的技术方案,并制作了与配电系统电压等级相当的实验室样机。如美国密苏里大学在ABB和爱默生公司资助下对电力电子变压器进行了研究,完成了10kVA,7200 V/240 V的实验样机,但仅实现了基本的电压变换功能和对输入的功率因数控制。另外,设计时为减小对开关器件的应力,输入采用多个变流器串联工作,使系统的可靠性大大降低,当其中任意一个器件出现故障都会导致工作异常。美国威斯康星一麦迪逊大学与ABB公司合作,德克萨斯农机大学也于20世纪90年代末对电力电子变压器进行了研究,但以上工作只对其电压变换的功能进行了分析和研究。

电力电子的课程设计--BUCK变换器的设计

目录 一、设计要求 (2) 二、设计方案 (2) 三、电路的设计 (3) 四、主电路参数计算和元器件选择 (4) 1、IGBT (4) 2、二极管 (4) 3、电感 (4) 4、电容 (5) 五、各模块所选器件说明 (5) 1、变压器EI86 (5) 2、误差放大器UC3842 (5) 3、脉宽调制器SG3525 (6) 4、驱动器MC34152 (7) 5、三端正稳压器7815 (8) 六、电气原理总图及元器件明细表 (8) 七、课程设计心得 (10) 八、参考资料 (10)

汽车电力电子技术课程设计 ——BUCK变换器的设计 一、设计要求 设计一稳压直流电源,输入为交流220V/50HZ,输出为直流15V的直流稳压电源,如下图1所示,其中DC-DC变换时主要采用BUCK变换器,变换器主器件采用IGBT,控制方式采用PWM控制。 图1 总电路原理框图 二、设计方案 小功率直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,其原理框图如2所示。

图2 直流稳压电源原理框图 三、电路的设计 G a b c Vi 0WM V G d 图3 Buck 变换器电路及相关波形 Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series

相关文档
最新文档