CaesarII应力分析模型设计解读

CaesarII应力分析模型设计解读
CaesarII应力分析模型设计解读

第一部分支架形式模拟 (2)

1.0 普通支架的模拟 (2)

1.1 U-band (2)

1.2 承重支架 (3)

1.3 导向支架 (3)

1.4 限位支架 (7)

1.5 固定支架 (7)

1.6 吊架 (8)

1.7 水平拉杆 (8)

1.8 弹簧支架模拟 (9)

2.0 附塔管道支架的模拟 (11)

3.0弯头上支架 (13)

4.0 液压阻尼器 (14)

5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15)

第二部分管件的模拟 (15)

1.0 法兰和阀门的模拟 (15)

2.0 大小头模拟 (17)

3.0 安全阀的模拟 (18)

4.0 弯头的模拟 (19)

5.0 支管连接形式 (20)

6.0 膨胀节的模拟 (21)

6.1 大拉杆横向型膨胀节 (22)

6.2 铰链型膨胀节 (34)

第三部分设备模拟 (42)

1.0 塔 (42)

1.1 板式塔的模拟 (42)

1.2 填料塔的模拟 (44)

1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47)

2.0 换热器,再沸器 (48)

2.1 换热器模拟也分两种情况 (48)

3.0 板式换热器 (51)

4.0 空冷器 (52)

4.1 空冷器进口管道和出口管道不在同一侧 (52)

4.2 空冷器进口管道和出口管道在同一侧 (54)

5.0 泵 (56)

6.0 压缩机,透平 (58)

第四部分管口校核 (59)

1.0 WRC107 (59)

2.0 Nema 23 (62)

3.0 API617 (64)

4.0 API610 (65)

第五部分工况组合 (68)

1.0 地震 (69)

2.0 风载 (70)

3.0 安全阀起跳工况 (72)

4.0 沉降 (74)

第一部分支架形式模拟

1.0 普通支架的模拟

1.1 U-band

在CAESAII的输入界面找到

restraints选项,并双击打勾,

在Node项目,输入该支架位置的节点,

在type项填入支架的约束形式,U-band只需在type项中输入X,y

用户还需输入支架的摩擦系数Mu,

通常规定:钢与钢接触的承重支架摩擦系数输入0.3

不锈钢与PTFE板接触的承重支架摩擦系数输入为0.1

支架选项中,stif代表支架生根部份的刚度,不输代表无穷大,用户可以把生根部件的刚度输入其中,单位为N/cm

1.2 承重支架

1.3 导向支架

1.3.1 水平管道

若导向支架的挡块与管托之间有间隙,可在图中(Gap:)中输入间隙,不输表示导向的间隙为0

1.3.2 垂直管道 1.3.

2.1 四向导向

1.3.

2.2 单边导向

1.4 限位支架

1.5 固定支架

ANC

1.6 吊架

双击restrains选项,承重吊架为+Yrod,并在len中输入吊杆的摆动的长度

1.7 水平拉杆

1.8 弹簧支架模拟

双击Hangers出现如下图框

Node

输入支架的节点号

Hanger Talbe:

选择弹簧的型号,国内项目选择13-Sinopec(China)

Avalable Space(neg for can)

若该点由弹簧支撑,可以输入一个负的距离,该距离为支称点与弹簧底板之间的距离Allowable load Variation(%):

为弹簧的荷载变化率=(热态载荷-冷态载荷)/热态载荷的绝对值乘以100%,

一般弹簧的荷载变化率控制在25%内,但是在一些敏感设备附近,如压缩机,透平管口附近,弹簧的荷载变化率需控制在10%内,这时用户需在此选项中输入10

Rigid Support Displacement Criteria:

在应力计算中,有时软件自选的弹簧热位移很小,例如1mm左右,在不是敏感设备附近,工程上常用刚性支架来代替弹簧支架,用户可以人为输入刚性支架代替弹簧支架热位移标准,如输入1mm,则若软件算出弹簧的热位移小于1mm,软件就自动将该弹簧代替为刚性支架

Max.Allowed Travel Limit:

该项定义了可变弹簧最大位移量,若软件算出的热位移量超过该输入值,则软件将自动把可变弹簧替换为恒力弹簧

No。Hangers at Location:

指该点弹簧的个数,有时立管上某个支点往往要2个或4个弹簧支架支撑,这时就可以输

入弹簧的个数,软件会通过载荷的分配,自动选出每个弹簧的型号

Allow Short Range Springs:

双击该选项,允许软件选择短量程弹簧

Operating Load Case Design Option:

该选项是让用户设定弹簧热态时的载荷,若为两个弹簧时,应输入总的载荷,而不是每个弹簧的热载荷

Multiple load case design option:

该选项让用户定义按哪个工况来设计弹簧,默认为T1,即Temp1工况,但是在有一开一备工况下,有时设计弹簧需切换相应工况,确保弹簧是按管道正常操作温度下的工况选择的Free Restrains at Node:

该选项常用在压缩机,透平,泵的第一个弹簧支架中,由于这些动设备都需要无应力安装,通过该选项可以通过调节弹簧的载荷,确保管口受力最小,比如透平口法兰面节点号为10点,20点为靠近其管口的最近一个弹簧支架,并且使法兰上Y方向受力最小则输入如下

Spring Rate:

此项可以输入弹簧的刚度,此项主要用在模拟已购买好的弹簧

Theoretical Cold(Installation) Load:

此项可以输入弹簧的安装载荷,此项主要用在模拟已购买好的弹簧

Constant Effort Support Load:

此项输入可以输入恒力弹簧的工作载荷。

2.0 附塔管道支架的模拟

在支架模拟中,附塔管道支架的模拟较为复杂,因为附塔管道支架是生根在塔上面,而塔由于热胀往往有较大的热位移,因此需将该热位移准确模拟到附塔管道的支架上。

双击restrains选项:

说明:

1000点为与该支架同一标高塔中心点位置,1010为塔外壁。

10点为管道上的支架,11点为与10点连接点,

在from 11点to 1010点需输入常温和常压,并双击rigid ,在直径和壁厚选项中需输入附塔设备的直径和壁厚,

From 1010 to 1000点需输入设备的温度和压力,在直径和壁厚选项中需输入附塔设备的直径和壁厚

3.0弯头上支架

在装置中,我们经常看到在弯头有支架,如何在CAESARII中弯头上输入支架,

最常见的也是最简单的模拟方法就是在弯头的中点位置输入支架

先双击bend选项,找到angle 为M的节点号(该节点号往往自动生成)

再双击restrains,选项,在node一览中输入angle 为M的节点,并在type栏中输入支架的形式。

对于靠近敏感设备附近的弯头支架,Caesar II指导说明中给出更为精确的模拟方法

该法称为偏移输入法,该模拟方法可使假腿位置准确定位在弯头曲线上,并且假腿作用在垂直管道的中心线上,缺点是模拟比较复杂.

具体模拟方法见application guide hangers Vertical Dummy Leg on Bends:Offset Element Method

4.0 液压阻尼器

液压阻尼用来控制管道的振动,模拟液压阻尼器步骤如下

1先运行不带阻尼器情况下该位置的操作工况

2记录上述工况下该点的位移及转角

3输入阻尼器,并在CNode点中输入上述位移和转角

4将附加位移值加在操作工况下

并在load case editor中找到所有含有动载荷的工况(如地震,风载,安全阀反力等)并激活阻尼器,

5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟

虾米弯的模拟方法较为复杂,可参考caesarII自带的application guide chapter 2 mitered bends

第二部分管件的模拟

1.0 法兰和阀门的模拟

法兰、阀门为装置中的重要原件,在应力计算中,它们往往是集中载荷,必需对法兰、阀门的重量进行模拟,首先根据阀门、法兰的类型,在对应的标准或样本中找出相应的重量并输入模型,现以阀门带配对法兰为例:

710点到720点为管道上法兰

先输入法兰高度,点击rigid,在rigid weight中输入法兰的重量

720点到730点为阀门

首先输入阀门的长度

点击

在rigid weight中输入阀门的重量

730点到740点为阀门另一侧管道上的法兰,输法与710点到720点相同

2.0 大小头模拟

440点为大小头的大头端,管道直径为大小头大头侧的直径和壁厚(此例为406.4x9.525)450点为大小头的小头端,管道直径为大小头小头侧的直径和壁厚(此例为273.05x9.271) 440点到450点输入大小头的长度(如dx:356mm),若是同心大小头无需输入偏移量

对与偏心大小头,偏移量需模拟(如dy:67mm)

点击

输入大小头另一段的直径和壁厚(此例为小头端直径x壁厚273x9.2710)即可。

3.0 安全阀的模拟

先模拟安全阀入口侧管道上的配对法兰,输入方法见法兰模拟

再输入安全阀的垂直部份(node125-130)并在rigid中输入rigid weight(安全阀垂直部份的重量为安全阀总重量的一半)

然后输入安全阀泄压侧即水平段(node130-140)并在rigid中输入rigid weight(安全阀水平部份的重量为安全阀总重量的一半)

最后输入泄压侧的管道上的配对法兰

安全阀反力的模拟在工况中详细说明

4.0 弯头的模拟

在管道拐弯处往往要用弯头连接

点击

raidus中可输入弯头的半径,默认弯头半径为1.5倍的管道直径type:single flange 为弯头附近带一片法兰的形式

double flange 为弯头附近带片法兰的形式

注:法兰离开弯头末端两倍直径内,才需使用上述选项

Angle1: 和node定义了弯头的具体部位

例如angle1:M Node1:9

表示弯头中点的节点号为9,

Angle 2:0 Node2:8

表示第8点为弯头起始点

在输出报告中,可以读出弯头相应部位的应力5.0 支管连接形式

通过点击

出现对话框

在node中输入支管连接处节点号

Type中输入支管连接的形式

1 Reinforced 带补强圈或鞍件的增强制造三通

分析设计中应力分类的一次结构法

1997年7月14日收到初稿,1997年10月6日收到修改稿。 分析设计中应力分类的一次结构法 陆明万陈勇李建国(清华大学工程力学系,北京,100084)(全国压力容器标准化技术委员会,北京,100088)摘要我国新的设计规范JB 24732295《钢制压力容器———分析设计标准》于1995年3月颁布 实施。如何将有限元分析或实验应力分析得到的总应力场分解成规范中定义的各种应力类别是应用JB 24732295或美国ASME 《锅炉及压力容器规范》第Ⅲ篇和第Ⅷ篇第2分册时必须解决的关键问题。本文提出应力分类的两步法和一次结构法,将它们和等效线性化方法相结合,给出了圆满解决该问题的有效方法。文中还阐述了应力分解的不唯一性、自限应力、约束分类和一次结构等重要概念。 关键词分析设计应力分类一次结构法等效线性化方法 1引言 “分析设计法”是一种以弹性应力分析和塑性失效准则为基础的设计方法,已被世界各国公开承认和广泛采用。我国也于1995年3月颁布了采用分析设计法的设计规范JB 24732295。在分析设计法中弹性计算应力被分成:一次总体薄膜应力(P m )、一次局部薄膜应力(P L )、一次弯曲应力(P b )、二次应力(Q )和峰值应力(F )等五大类。以塑性失效准则来判断,各类应力对结构破坏的危害程度是不同的,所以规范中根据等强度设计原则对不同的应力规定了不同的许用极限,其差别达3倍,甚至更多。这样,如何正确地进行应力分类,将有限元分析或实验应力分析所得到的总应力场分解成规范中定义的各类应力成为应用中最为关心、且必须解决的关键问题。国内外发表了大量文章来讨论这一问题,其中等效线性化方法是已被广泛采用的典型方法。一些著名的有限元分析程序如ANSY S 、M ARC 、NAST RAN 等都已实现了等效线性化的后处理功能。我们也曾在文献[1~3]中作了讨论。 等效线性化方法要求设计者在所考虑结构的几个可能的危险部位指定一些贯穿壁厚的(通常是垂直于中面的)应力分类线,然后根据合力等效和合力矩等效的原理将沿应力分类线分布的弹性计算应力分解出薄膜应力和线性弯曲应力,剩下的非线性分布应力就是一个与平衡外载无关的自平衡力系。等效线性化概念起源于ASME 规范,被K roenke 等首先应用于二维轴对称问题[4~6]。对于三维一般情况,H ollin g er 和H echm er 两人就基于应力线性化的三维应力准则问题发表了一系列的重要文章[7~13]。 本文将首先介绍文献[1]中提出的应力分类的两步法。然后,作为等效线性化方法的扩充,提出一种有效的应力分解方法“一次结构法”。 第4期年8月第19卷 1998核动力工程Nuclear Power En g ineerin g Vol.19.No.4Au g .1998

X射线衍射在残余应力分析中应用

X射线衍射在材料分析中的应用 一、X射线衍射原理 X射线照射晶体,电子受迫振动产生相干散射,同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。由此可知,衍射的本质是晶体中原子相干散射波叠加(合成)的结果。 二、X射线衍射在材料分析中的应用 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途: 1)物相分析:物相分析是指确定材料由哪些相组成和确定各组成相的含量。物相是决定或影响材料性能的重要因素,因而物相分析在材料、冶金、机械等行业中得到广泛应用。物相分析有定性分析和定量分析2 种: ①相定性分析的目的是检测固体样品中的相组成,采用未知样品衍射图谱与标 准图谱比较的办法. 如果衍射图谱相同即可确定为该物相。但如果样品为多相混合试样时,衍射线条谱多,谱线可能发生重叠,就需要根据强度分解组合衍射图谱来确定。 ②物相定量分析就是确定物质样品中各组成相的相含量. 根据衍射强度理论,物质中某相的衍射强度Ii与其质量百分数Xi 成如下关系 .Ii = KiXi/ Um 其中, Ki 为由实验条件和待测相而共同决定的常数;Xi 为质量百分数;Um 为待测样品的平均质量吸收系数,与Xi 有关。根据Um 的校正提出一系列物相定量分析方法,如内标法、K 值法、直接对比法,一般相定量分析误差可控制在5%以下; 2)结晶度:X 射线衍射图谱中,在一些情况下,结晶物质的图谱和非晶物质图谱重叠. 结晶度定义为结晶部分质量与总的试样质量之比的百分数. 目前非晶态合金用处很多,如软磁材料等. 而结晶度直接影响其材料的性能、损耗等. 测定结晶度方法主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,也可根据衍射线位置来确定结晶度; 3)残余应力分析:将产生应力的各种外部因素去除后,物体内部依然存在的应力称为残余应力. 在固体样品中,固体处于弹性极限内,该物质将随所受外力的大小而发生形变,从微观的角度来讲其晶面间距d 将发生改变,因此, 可根据d 值变化来测量残余应力σ.由于残余应力测试的特殊性,所以必须在X 射线衍射仪基础上加应力附件测试; 4) 微晶大小:X射线衍射图中峰宽β表现了构成物质的晶粒大小,峰宽化的原因除了晶粒的大小还有晶粒内部的非均匀应变. 使用Scherrer 公式和Hall 公式可计算微晶大小和非均匀应变; 5)晶体取向的测定:又称为单晶定向,是指测定晶体样品中晶体取向与样品外观坐标系的位向关系通过建立合适的外坐标系之后,对样品进行所要求的晶面或晶向的方位测定材料的性质与它的物相组成、结晶度和结晶粒子的大小、材料内部微观应变都有密切关系。

CaesarII应力分析模型设计解读

第一部分支架形式模拟 (2) 1.0 普通支架的模拟 (2) 1.1 U-band (2) 1.2 承重支架 (3) 1.3 导向支架 (3) 1.4 限位支架 (7) 1.5 固定支架 (7) 1.6 吊架 (8) 1.7 水平拉杆 (8) 1.8 弹簧支架模拟 (9) 2.0 附塔管道支架的模拟 (11) 3.0弯头上支架 (13) 4.0 液压阻尼器 (14) 5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15) 第二部分管件的模拟 (15) 1.0 法兰和阀门的模拟 (15) 2.0 大小头模拟 (17) 3.0 安全阀的模拟 (18) 4.0 弯头的模拟 (19) 5.0 支管连接形式 (20) 6.0 膨胀节的模拟 (21) 6.1 大拉杆横向型膨胀节 (22) 6.2 铰链型膨胀节 (34) 第三部分设备模拟 (42) 1.0 塔 (42) 1.1 板式塔的模拟 (42) 1.2 填料塔的模拟 (44) 1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47) 2.0 换热器,再沸器 (48) 2.1 换热器模拟也分两种情况 (48)

3.0 板式换热器 (51) 4.0 空冷器 (52) 4.1 空冷器进口管道和出口管道不在同一侧 (52) 4.2 空冷器进口管道和出口管道在同一侧 (54) 5.0 泵 (56) 6.0 压缩机,透平 (58) 第四部分管口校核 (59) 1.0 WRC107 (59) 2.0 Nema 23 (62) 3.0 API617 (64) 4.0 API610 (65) 第五部分工况组合 (68) 1.0 地震 (69) 2.0 风载 (70) 3.0 安全阀起跳工况 (72) 4.0 沉降 (74) 第一部分支架形式模拟 1.0 普通支架的模拟 1.1 U-band

压力容器分析设计的应力分类法与塑性分析法

压力容器分析设计的应力分类法与塑性分析法 作者:宋诚 来源:《石油研究》2020年第07期 摘要:压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。 关键词:压力容器;应力分类法;塑性分析法 近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。 1应力分类法 1.1一次应力 一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。一次应力超过材料屈服极限时压力容器就会发生变形破坏。主要可以分为以下几种情况:第一,总体薄膜应力。因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。第二,局部薄膜应力。是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。第三,一次弯曲应力。由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。 1.2二次应力 二次应力是指压力容器部件受到约束而出现的剪应力。二次应力满足变形条件。例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。在这种情况下,连接部位会附加剪力应力,从而形成二次应力。二次应力的出现,也是由于局部范围之内材料出现少量变形,相连部位之间约束缓和,变形协调化,变形不会继续发展,将应力值限制

应力分析设计规定

目次 1 总则 (1) 1.1 范围 (1) 1.2 管道应力分析的任务 (1) 2 引用文件 (2) 3 设计 (2) 3.1 一般规定 (2) 3.2 管道冷紧 (3) 3.3 摩擦力 (3) 3.4 弹簧支吊架 (3) 3.5 设计条件 (4) 3.6 应力计算 (5) 3.7 力与力矩计算 (5) 3.8 管道应力分析评定标准 (5) 3.9 应力分析的方法 (8) 3.10 应力分析管道分类 (9) 4 应力分析报告 (12)

1 总则 1.1 范围 本标准规定了石油化工装置内管道应力分析的原则和相关要求。 本规定适用于石油化工装置设计压力不大于 42MPa,设计温度不超过材料允许使用温度的碳钢、合金钢及不锈钢管道的应力设计。 专利设备或成套设施,其设备的操作、维修、管道布置还应满足设备制造厂的特殊要求及标准。 执行本规定的同时,尚应符合国家现行有关标准。 1.2 管道应力分析的任务 管道应力分析的任务是保证管道系统布置的安全和经济性,避免发生以下情况: a) 因管道应力过大或金属疲劳而引起管道或支架损坏; b) 管道连接处发生泄漏; c) 因管道的推力和力矩过大而使管道或与管道连接的设备产生不允许的应力或变形; d) 管道从所在支架上脱落; e) 由于外部振动或管内流体引起的管道共振; f) 管道挠度过大,尤其是对于带有一定坡度自流排液的管道。 2 引用文件 GB50009 建筑结构荷载规范 GB/T20801 压力管道规范工业管道 SH/T3039 石油化工非埋地管道抗震设计通则 ASME B31.3 Process Piping API610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries API617 Centrifugal Compressors for Petroleum, Chemical, and Gas Service Industries API661 Air-Cooled Heat Exhangers for General Refinery Service NEMA SM23 Steam Turbines for Mechanical Drive Service 3 设计

表面残余应力分析

表面残余应力 胡宏宇 (浙江工业大学机械工程学院,浙江杭州 310032) 摘要:残余应力主要是由构件内部不均匀的塑性变形引起的。各种工程材料和构件在毛坯的制备、零件的加工、热处理和装配的过程中都会产生不同程度的残余应力。残余应力因其直观性差和不易检测等因素往往被人们忽视。残余应力严重影响构件的加工精度和尺寸稳定性、静强度、疲劳强度和腐蚀开裂。特别是在承力件和转动件上,残余应力的存在易导致突发性破坏且后果往往十分严重。因此,研究残余应力的产生机理、检测手段、消除方法以及残余应力对构件的影响[1]。 关键词:残余应力;切削变形;磁测法;喷丸强化; Surface residual stress (S chool of mechanical engineering,Zhejiang University of Technology,Hangzhou 310032,China) Abstract:Residual stress is mainly caused by the uneven plastic deformation of component. All kinds of engineering materials in the preparation of blank, parts and components processing, heat treatment and assembly process will produce different degree of residual stress. Residual stress because of its intuitive factors such as poor and difficult to detect is often neglected. Seriously affect the residual stress of component machining precision and dimension stability, static strength, fatigue strength and corrosion cracking. Especially on the bearing and rotating parts, the existence of the residual stress can lead to sudden destruction and the consequences are often very serious. Therefore, to study the mechanism of residual stress, detection means, elimination method and the influence of residual stress of components。 Key words:Residual stress;machining deflection;magnetic method;Shot peening strengthening; 前言 随着现代制造技术的发展,大飞机、高铁、核设施等大型设备相继出现;这些设备具有高速、重载和长时间运行的特点,其零部件工作环境恶劣、复杂,且往往对安全性有着极其苛刻的要求,因而对这些设备的关键部件,如轴承、曲轴、传动轴的疲劳寿命和可靠性也有很高的要求,对它们的疲劳寿命预测 和分析成为研究的重点. 金属切削加工是一个伴随着高温、高压、高应率的塑性大变形过程, 在已加工表面上存在着相当大 的残余应力; 同时又由于切削过程切削力和切削热作用及刀具与工件的摩擦等综合因素的影响, 使得零件内部初始的残余应力重新分布并与表面层残余应力耦合作用形成新的残余应力分布规律。残余应力以平衡状态存在于物体内部, 是固有应力域中局部内应力的一种。残余应力是一种不稳定的应力状态, 当物体受到外力作用时, 作用应力与残余应力相互作用, 使其某些局部呈现塑性变形, 截面内应力重新分配; 当外力作用去除后, 整个物体由于内部残余应力的作用将发生形变。 根据理论分析和实验研究的结果,工件的疲劳寿命和加工表面的残余应力状态有重要的关系:残余压应力能抑制工件的疲劳破坏,延长疲劳寿命;残余拉应力则相反,会加速疲劳破坏的出现[2].因此,了解

压力容器应力分析设计方法的进展和评述优选稿

压力容器应力分析设计方法的进展和评述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。

分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理 论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿 命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。 综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法 和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME 新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为:

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。 分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用

理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、

管道应力分析设计规定——寰球标准

2003年 月 日发布 2003年 月 日实施 质 量 管 理 体 系 文 件 HQB-B06-05.306PP-2003 设计规定 管道应力分析设计规定 版 号:0 受控号:

管道应力分析设计规定HQB-B06-05.306PP- 2003版号编制校核审核批准批准日期 主编部室:管道室参编部室: 参编人员: 参校人员: 会签部室 签署 会签部室 签署 会签部室 签署 说明: 1.文件版号为A、B、C......。 2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。

本规定(HQB-B06-05.306PP-2003)自2003年月实施。 目录 1. 总则 (1) 2. 应力分析管线的分类及应力分析方法 (2) 3. 管道应力分析设计输入和设计输出 (6) 4. 管道应力分析条件的确定 (9) 5. 管道应力分析评定准则 (11) 附件1 管线应力分析分类表 (14) 附件2 设备管口承载能力表 (15) 附件3 柔性系数k和应力增强系数i (16) 附件4 API 610《一般炼厂用离心泵》(摘录) (17) 附件5 NEMA SM23 (摘录) (22) 附件6 API 661 《一般厂用空冷器》(摘录) (23)

1. 总则 1.1 适用范围 1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。 本规定所列内容为管道应力分析设计工作的最低要求。 1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题: 1)管道的应力过大或金属疲劳引起管道或支架破坏。 2)管道连接处泄漏。 3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应 力,而影响了设备的正常运行。 4)管架因强度或刚度不够而造成管架破坏。 5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。 6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管 道振动及破坏。 1.2 应力分析设计工作相关的标准、规范: 1) GB150-1999 《钢制压力容器》 2) GB50316-2000 《工业金属管道设计规范》 3) HG/T20645-1998 《化工装置管道机械设计规定》 4) JB/T8130.2-95 《可变弹簧支吊架》 5) JB/T8130.1-95 《恒力弹簧支吊架》

明钢管的管身应力分析及结构设计

明钢管的管身应力分析及结构设计 一、明钢管的荷载 明钢管的设计荷载应根据运行条件,通过具体分析确定,一般有以下几种: (1)内水压力。包括各种静水压力和动水压力,水重,水压试验和充、放水时的水压力。 (2)钢管自重。 (3)温度变化引起的力。 (4)镇墩和支墩不均匀沉陷引起的力。 (5)风荷载和雪荷载。 (6)施工荷载。 (7)地震荷载。 (8)管道放空时通气设备造成的负压。 钢管设计的计算工况和荷载组合应根据工程的具体情况参照钢管设计规范采用。 二、管身应力分析和结构设计 明钢管的设计包括镇墩、支墩和管身等部分。前二者在上节中已经讨论过,这里主要讨论管身设计问题。 明钢管一般由直管段和弯管、岔管等异形管段组成。直管段支承在一系列支墩上,支墩处管身设支承环。由于抗外压稳定的需要,在支承环之间有时还需设加劲环。直管段的设计包括管壁、支承环和加劲环、人孔等附件。 支承在一系列支墩上的直管段在法向力的作用下类似一根连续梁。根据受力特点,管身的应力分析可取如图13-14所示的三个基本断面:跨中断面1-1;支承环附近断面2-2和支承环断面3-3。以下介绍明钢管计算的结构力学方法。 图13-14 管身计算断面 (一)跨中断面(断面1-1) 管壁应力采用的坐标系如图13-15所示。以x表示管道轴向,r表示管道径向,θ表示管道切向,这三个方向的正应力以、、表之,并以拉应力为正。图中表明了管壁单元体的应力状态,剪应力r下标的第一个符号表此剪应力所在的面(垂直x轴者称x面,余同),第二个符号表示剪应力的方向,如表示在垂直x轴的面上沿e向作用的剪应力。 1.切向(环向)应力。 管壁的切向应力主要由内水压力引起。对于水平管段,管道横截面上的水压力如图13-16(a),它可看作由图13-16(b)的均匀水压力和图13-16(c)的满水压力组成。这两部分的水压力在管壁中引起的切向应力为 式中D、δ--管道内径和管壁计算厚度,cm; γ--水的容重,0.001;

XRD在残余应力分析中的应用

XRD 在残余应力分析中的应用 摘要 X 射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。 关键词 X 射线衍射 残余应力 XRD 0.引言 X 射线衍射在残余应力分析中具有重要的作用。X 射线应用在残余应力的分析中,是科技的一项重大突破。其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体;检测输片惰性轮中的残余应力;检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器);检测由于全回火引起的残余应力(家用电器、结构部件);检测气体传导时所存在的工作压力;检测大幅度拉伸结构件中的工作应力;通过检测应力来测量工件喷丸和轧制的效率;检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件);检测焊接引起的应力(激光和电焊);研究铝合金汽车轮廓中的残余应力和应力阻抗的关系;优化切削去除的工作参数以提高机械部件的应力阻抗;检测螺旋式和叶式弹簧的残余应力;研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。 1.X 衍射射线分析 1.1 原理简介 X 射线衍射分析是利用晶体形成的X 射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X 射线照射到结晶性物质上时,X 射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象,图1为X 射线衍射的产生。衍射X 射线满足布拉格(W.L.Bragg )方程:λθn d =sin 2 式中:λ是X 射线的波长;θ是衍射角;d 是结晶面间隔;n 是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X 射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。]1[ 图1 X 射线衍射的产生 1.2 应用——物相分析

涂层残余应力预测分析模型

涂层残余应力预测解析模型:平面几何模型 热喷涂涂层:熔化的金属颗粒高速碰撞基板然后快速冷却(淬火),在几毫秒时间内冷却。形成大的拉应力。蠕变和屈服是主要的应力释放的机理。 一个典型的预测热喷涂涂层残余应力分布的数学模型。 1 模型公式 建立在平面几何的基础之上。 1.1 沉积应力 1.1.1 第一层 应变(1)σq——内(淬火)应力;E d——杨氏模量 假设每一个部位产生的应变是不相等的,并产生反作用力F(图1),于是有 (2) 可以写为(3) 在涂层形成一个很大的拉应力,同时,在基板上上产生一个对等的平衡的反作用力——压应力。 形成弯矩(banding moment)(4) 中性层δ1 (5) Composite beam stiffness

(6) 平衡弯矩M1,产生曲率变化,κ1-κ0 (7) 通常,κ0可以处理为零。如果涂层在凹面,则曲率是可以明确的。图1的情况。 假设双向应力相等(σx =σz),厚度方向应力可以忽略(σy =0)。 由泊松效应(Poisson effect),σz将在x方向导致一个应变。X方向的net应变可以写为 (8) 于是,x方向的应力应变关系可以表示为: (9) Effective young’s modulus value. 由于仅考虑弹性状态,因此,基板内沿着厚度方向的应力变化应该是线性的,只需要计算基板的底部和顶部的应力即可。从材料力学可以计算: (10) (11) 于是,可以得出涂层第一层中部的应力: (12) 1.1.2 第二层 考虑在基板(镀层)上冲击形成第二层,如图2所示。

不等应变的大小与前面相同。平衡应变改为: (13) 该式中,F2是作用在前面的镀层与基板构成的复合板上的,其中性层δ1如图1所示。这一层与基板具有相同的应变,E2e是等效杨氏模量: (14) 代入上式,可以得到F2的表达式: (15) F2分摊在镀层第一层和基板中。 作用在基板上的力为: (16) 同样,作用第一层镀层上的力为: (17) 显然地,F2s和F2w都是压应力。在镀层的第二层上存在与F2大小相等的拉应力。 大小相等方向相反的力对形成力矩M2: (18) 平衡弯矩M2,产生曲率变化,κ2-κ1 (19) 组合板的硬度(强度)可以写为: (20) 而且可以确定δ2为: (21)

焊接应力的分类

1.焊接应力的分类 焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。 焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。2.焊接残余应力对结构性能的影响 (1)对结构静力强度的影响:焊接应力不影响结构的静力强度。 (2)对结构刚度的影响:焊接残余应力降低结构的刚度。 (3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。 (4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。 (5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。 焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。 减少焊接应力与变形的工艺措施主要有: 1.预留收缩变形量。根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工时预先考虑收缩余

量,以便焊后工件达到所要求的形状、尺寸。 2.反变形法。根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 3. 刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 4. 选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。 5. 锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 6. 加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。 7. 焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。工件达到所要求的形状、尺寸。在制造过程中的工艺措施和方法: 1.采用线能量小的工艺参数和焊接方法,或强制冷却措施

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

应力分类

管道在内压、持续外载以及热胀、冷缩和其它位移等荷载作用下,其最大应力往往超过材料的屈服极限,使材料在工作状态下发生塑料变形。高温管道的蠕动和应力松弛,也将使管系上的应力状态发生变化。这些情况说明,管系上的应力与一般结构、机械分析中所遇到的低温的和稳定的应力不同。因此,对于不同种类的应力应当区别对待,根据它可能产生的效应和对于破坏所起的作用不同,给予不同的限定。 对于管道上的应力,一般分为一次应力、二次应力和峰值应力三类。 一、一次应力 一次应力是由所加荷载引起的正应力和剪应力。它必须满足外部、内部力和力矩的平衡法则。一次应力的基本特征是非自限性的,它始终随所加荷载的增加而增加,超过屈服极限或持久强度,将使管道发生塑性变形。因此,必须防止发生过度的塑性变形,并为爆破或蠕变失效留有足够的裕度。 管道承受内压和持续外载而产生的应力,属于一次应力。管道承受风荷载、地震荷载、水冲击和安全阀动作冲击等荷载而产生的应力,也属于一次应力,但这些荷载都是属于偶然荷载,这些应力属动荷载产生的应力,应当在动力计算中考虑。 一次应力有三种类型:一次一般薄膜应力、一次局部薄膜应力和一次弯曲应力。 一次一般薄膜应力,是在所研究的截面厚度上均匀分布的,且等于该截面应力平均值的法向应力(即正应力)的分量。如果这种应力达到屈服极限时,将引起截面整体屈服,不出现荷载的再分配。 一次局部薄膜应力,是由内压或其它机械荷载产生的,由于结构不连续或其它特殊情况的影响而在管道或附件的局部区域有所增强的一次薄膜应力。这类应力虽然具有二次应力的一些特征,但为安全计,通常仍划为一次应力。这种应力达到屈服极限时,只引起局部屈服,塑性应变仍然受到周围弹性材料的约束,所以屈服是允许的。假若有一个应力区域,其应力强度超过1.1倍的基本许用应力,在纵向方向的延伸距离不大于图片点击可在新窗口打开查看,并且与另一个超过一次一般薄膜应力极限的区域沿纵向方向的距离不小于图片点击可在新窗口打开查看(这里的图片点击可在新窗口打开查看和S是超过一次一般薄膜应力极限处的管子平均半径和壁厚),此应力区域可以认为是局部的,划为一次局部薄膜应力,否则就应按一次一般薄膜应力考虑。例如,在固定支架处或接管连接处由于外载产生的一次薄膜应力,通常划为一次局部薄膜应力。 一次弯曲应力是在所研究的截面上法向应力(即正应力)从平均值算起的沿厚度方向变化的分量。这种应力达到屈服极限时,也只引起局部屈服。在应力验算中,通常不单独评价一次弯曲应力强度。

金属热处理残余应力及其影响分析

热处理残余应力是指工件经热处理后最终残存下来的应力,对工件的形状、尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 1 钢的热处理应力 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的用下最终使工件表层受压而心部受拉。 这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。 另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀,工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度、形状、材料的化学成分等因素有关。 实践证明,任何工件在热处理过程中,只要有相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。 不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。 2 热处理应力对淬火裂纹的影响 存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(尤其是在最大拉应力下)才会表现出来,若在压应力场内并无促裂作用。 淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 姓名:XXX 部门:XXX 日期:XXX

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 第 2 页共 6 页

2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、工艺和检测水平是保证分析设计能得以实施的前提条件。应力分类法 3.1.应力分类法是当今分析设计的主流方法 应力分类法有如下优点: 3.1.1.简单。采用工程设计人员非常熟悉的弹性应力分析方法。应力评定时直接给出各类等效应力的许用值,因而应力分类后的强度校核与常规设计类似。 第 3 页共 6 页

相关文档
最新文档