数值分析龙格现象matlab代码分享

数值分析龙格现象matlab代码分享
数值分析龙格现象matlab代码分享

龙格现象(Runge phenomenon)

高次插值的病态性质

1. 先建立一个n+1个插值节点的拉格朗日插值多项式

function langrange= langrange( x,n )

langrange=0;

xx=linspace(-5,5,n+1);

for i=1:n+1

lix=1;

for j=1:n+1

if j~=i

lix=lix.*((x-xx(j))./(xx(i)-xx(j)));

end

end

langrange=fun(xx(i)).*lix+langrange;

end

end

2. 再建立一个龙格函数

function f= fun( x )

f=1./(1+x.^2);

3.在同一坐标系中画出龙格函数和拉格朗日插值多项式的图像function runge_phen(n)

% n为Lagrange插值节点的个数

x=linspace(-5,5,100);

plot(x,fun(x),'r+',x,langrange(x,n),'b*');

4.在Matlab命令窗口运行如下命令runge_phen(10)

matlab编的4阶龙格库塔法解微分方程的程序

matlab编的4阶龙格库塔法解微分方程的程序 2010-03-10 20:16 function varargout=saxplaxliu(varargin) clc,clear x0=0;xn=1.2;y0=1;h=0.1; [y,x]=lgkt4j(x0,xn,y0,h); n=length(x); fprintf(' i x(i) y(i)\n'); for i=1:n fprintf('%2d %4.4f %4.4f\n',i,x(i),y(i)); end function z=f(x,y) z=-2*x*y^2; function [y,x]=lgkt4j(x0,xn,y0,h) x=x0:h:xn; n=length(x); y1=x; y1(1)=y0; for i=1:n-1 K1=f(x(i),y1(i)); K2=f(x(i)+h/2,y1(i)+h/2*K1); K3=f(x(i)+h/2,y1(i)+h/2*K2); K4=f(x(i)+h,y1(i)+h*K3); y1(i+1)=y1(i)+h/6*(K1+2*K2+2*K3+K4); end y=y1; 结果: i x(i) y(i) 1 0.0000 1.0000 2 0.1000 0.9901 3 0.2000 0.9615 4 0.3000 0.9174 5 0.4000 0.8621 6 0.5000 0.8000 7 0.6000 0.7353 8 0.7000 0.6711 9 0.8000 0.6098 10 0.9000 0.5525 11 1.0000 0.5000 12 1.1000 0.4525 13 1.2000 0.4098

《MATLAB与数值分析》第一次上机实验报告

电子科技大学电子工程学院标准实验报告(实验)课程名称MATLAB与数值分析 学生姓名:李培睿 学号:2013020904026 指导教师:程建

一、实验名称 《MATLAB与数值分析》第一次上机实验 二、实验目的 1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算 操作。(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序) 2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号 转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。(用.m文件编写进行符号因式分解和函数求反的程序) 3. 掌握Matlab函数的编写规范。 4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、 三维曲线和面的填充、三维等高线等。(用.m文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释) 5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。 三、实验内容 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以x, y为坐标显示图像 x(n+1) = a*x(n)-b*(y(n)-x(n)^2); y(n+1) = b*x(n)+a*(y(n)-x(n)^2) 2. 编程实现奥运5环图,允许用户输入环的直径。 3. 实现对输入任意长度向量元素的冒泡排序的升序排列。不允许使用sort 函数。 四、实验数据及结果分析 题目一: ①在Editor窗口编写函数代码如下:

龙格库塔方法matlab实现

龙格库塔方法matlab实现~ function ff=rk(yy,x0,y0,h,a,b)%yy为y的导函数,x0,y0,为初值,h为步长,a,b为区间 c=(b-a)/h+1;i1=1; %c为迭代步数;i1为迭代步数累加值 y=y0;z=zeros(c,6); %z生成c行,5列的零矩阵存放结果; %每行存放c次迭代结果,每列分别存放k1~k4及y的结果 for x=a:h:b if i1<=c k1=feval(yy,x,y); k2=feval(yy,x+h/2,y+(h*k1)/2); k3=feval(yy,x+h/2,y+(h*k2)/2); k4=feval(yy,x+h,y+h*k3); y=y+(h/6)*(k1+2*k2+2*k3+k4); z(i1,1)=x;z(i1,2)=k1;z(i1,3)=k2;z(i1,4)=k3;z(i1,5)=k4;z(i1,6)=y; i1=i1+1; end end fprintf(‘结果矩阵,第一列为x(n),第二列~第五列为k1~k4,第六列为y(n+1)的结果') z %在命令框输入下列语句 %yy=inline('x+y'); %>> rk(yy,0,1,0.2,0,1) %将得到结果 %结果矩阵,第一列为x(n),第二列~第五列为k1~k4第六列为y(n+1)的结果 %z = % 0 1.0000 1.2000 1.2200 1.4440 1.2428 % 0.2000 1.4428 1.6871 1.7115 1.9851 1.5836 % 0.4000 1.9836 2.2820 2.3118 2.6460 2.0442 % 0.6000 2.6442 3.0086 3.0451 3.4532 2.6510 % 0.8000 3.4510 3.8961 3.9407 4.4392 3.4365 % 1.0000 4.4365 4.9802 5.0345 5.6434 4.4401

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

函数功能编辑本段回目录 ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)3。解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解. 使用方法编辑本段回目录 [T,Y] = ode45(odefun,tspan,y0) odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名 tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf] y0 是初始值向量 T 返回列向量的时间点 Y 返回对应T的求解列向量 [T,Y] = ode45(odefun,tspan,y0,options) options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等 [T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options) 在设置了事件参数后的对应输出 TE 事件发生时间 YE 事件解决时间 IE 事件消失时间 sol =ode45(odefun,[t0 tf],y0...) sol 结构体输出结果 应用举例编辑本段回目录 1 求解一阶常微分方程

程序: 一阶常微分方程 odefun=@(t,y) (y+3*t)/t^2; %定义函数 tspan=[1 4]; %求解区间 y0=-2; %初值 [t,y]=ode45(odefun,tspan,y0); plot(t,y) %作图 title('t^2y''=y+3t,y(1)=-2,1

matlab与数值分析作业

数值分析作业(1) 1:思考题(判断是否正确并阐述理由) (a)一个问题的病态性如何,与求解它的算法有关系。 (b)无论问题是否病态,好的算法都会得到它好的近似解。 (c)计算中使用更高的精度,可以改善问题的病态性。 (d)用一个稳定的算法计算一个良态问题,一定会得到他好的近似解。 (e)浮点数在整个数轴上是均匀分布。 (f)浮点数的加法满足结合律。 (g)浮点数的加法满足交换律。 (h)浮点数构成有效集合。 (i)用一个收敛的算法计算一个良态问题,一定得到它好的近似解。√2: 解释下面Matlab程序的输出结果 t=0.1; n=1:10; e=n/10-n*t 3:对二次代数方程的求解问题 20 ++= ax bx c 有两种等价的一元二次方程求解公式

2224b x a c x b ac -±==- 对 a=1,b=-100000000,c=1,应采用哪种算法? 4:函数sin x 的幂级数展开为: 357 sin 3!5!7! x x x x x =-+-+ 利用该公式的Matlab 程序为 function y=powersin(x) % powersin. Power series for sin(x) % powersin(x) tries to compute sin(x)from a power series s=0; t=x; n=1; while s+t~=s; s=s+t; t=-x^2/((n+1)*(n+2))*t n=n+2; end

(a ) 解释上述程序的终止准则; (b ) 对于x=/2π、x=11/2π、x =21/2π,计算的精度是多少?分别需 要计算多少项? 5:指数函数的幂级数展开 2312!3!x x x e x =+++ + 根据该展开式,编写Matlab 程序计算指数函数的值,并分析计算结果(重点分析0x <的计算结果)。

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

MATLAB与数值分析课程总结

MATLAB与数值分析课程总结 姓名:董建伟 学号:2015020904027 一:MATLAB部分 1.处理矩阵-容易 矩阵的创建 (1)直接创建注意 a中括号里可以用空格或者逗号将矩阵元素分开 b矩阵元素可以是任何MATLAB表达式,如实数复数等 c可以调用赋值过的任何变量,变量名不要重复,否则会被覆盖 (2)用MATLAB函数创建矩阵如:a空阵[] b rand/randn——随机矩阵 c eye——单位矩阵 d zeros ——0矩阵 e ones——1矩阵 f magic——产生n阶幻方矩阵等 向量的生成 (1)用冒号生成向量 (2)使用linspace和logspace分别生成线性等分向量和对 数等分向量 矩阵的标识和引用 (1)向量标识 (2)“0 1”逻辑向量或矩阵标识 (3)全下标,单下标,逻辑矩阵方式引用 字符串数组 (1)字符串按行向量进行储存 (2)所有字符串用单引号括起来 (3)直接进行创建 矩阵运算 (1)注意与数组点乘,除与直接乘除的区别,数组为乘方对应元素的幂

(2)左右除时斜杠底部靠近谁谁是分母 (3)其他运算如,inv矩阵求逆,det行列式的值, eig特征值,diag 对角矩阵 2.绘图-轻松 plot-绘制二维曲线 (1)plot(x)绘制以x为纵坐标的二维曲线 plot(x,y) 绘制以x为横坐标,y为纵坐标的二维曲线 x,y为向量或矩阵 (2)plot(x1,y1,x2,y2,。。。。。。)绘制多条曲线,不同字母代替不同颜色:b蓝色,y黄色,r红色,g绿色 (3)hold on后面的pl ot图像叠加在一起 hold off解除hold on命令,plot将先冲去窗口已有图形(4)在hold后面加上figure,可以绘制多幅图形 (5)subplot在同一窗口画多个子图 三维图形的绘制 (1)plot3(x,y,z,’s’) s是指定线型,色彩,数据点形的字 符串 (2)[X,Y]=meshgrid(x,y)生成平面网格点 (3)mesh(x,y,z,c)生成三维网格点,c为颜色矩阵 (4)三维表面处理mesh命令对网格着色,surf对网格片着色 (5)contour绘制二维等高线 (6)axis([x1,xu,y1,yu])定义x,y的显示范围 3.编程-简洁 (1)变量命名时可以由字母,数字,下划线,但是不得包含空格和标点 (2)最常用的数据类型只有双精度型和字符型,其他数据类型只在特殊条件下使用 (3)为得到高效代码,尽量提高代码的向量化程度,避免使用循环结构

数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序

(Hilbert 矩阵)病态线性方程组的求解 理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组的求解Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ?=,11 ij h i j = +-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系 2. 对不同的n ,取(1,1,,1)n x =∈K ?,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭 代,SOR 迭代和共轭梯度法求解,比较结果。 3. 结合计算结果,试讨论病态线性方程组的求解。 第1小题: condition.m %第1小题程序 t1=20;%阶数n=20 x1=1:t1; y1=1:t1; for i=1:t1 H=hilb(i); y1(i)=log(cond(H)); end plot(x1,y1); xlabel('阶数n'); ylabel('2-条件数的对数(log(cond(H))'); title('2-条件数的对数(log(cond(H))与阶数n 的关系图'); t2=200;%阶数n=200 x2=1:t2; y2=1:t2; for i=1:t2 H=hilb(i); y2(i)=log(cond(H)); end plot(x2,y2); xlabel('阶数n'); ylabel('2-条件数的对数(log(cond(H))'); title('2-条件数的对数(log(cond(H))与阶数n 的关系图'); 画出Hilbert 矩阵2-条件数的对数和阶数的关系

n=200时 n=20时 从图中可以看出, 1)在n小于等于13之前,图像近似直线 log(cond(H))~1.519n-1.833 2)在n大于13之后,图像趋于平缓,并在一定范围内上下波动,同时随着n的增加稍有上升的趋势 第2小题: solve.m%m第2小题主程序 N=4000;

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。 (Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn') Yn+1=Yn+h*f(Xn,Yn) 另外根据微分中值定理,存在0

所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。 仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。编写的定步长的龙格库塔计算函数: function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数) n=floor((b-a)/h);%求步数 x(1)=a;%时间起点 y(:,1)=y0;%赋初值,可以是向量,但是要注意维数 for ii=1:n x(ii+1)=x(ii)+h; k1=ufunc(x(ii),y(:,ii)); k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2); k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2); k4=ufunc(x(ii)+h,y(:,ii)+h*k3); y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6; %按照龙格库塔方法进行数值求解

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

第2讲 matlab的数值分析

第二讲MATLAB的数值分析 2-1矩阵运算与数组运算 矩阵运算和数组运算是MATLAB数值运算的两大类型,矩阵运算是按矩阵的运算规则进行的,而数组运算则是按数组元素逐一进行的。因此,在进行某些运算(如乘、除)时,矩阵运算和数组运算有着较大的差别。在MATLAB中,可以对矩阵进行数组运算,这时是把矩阵视为数组,运算按数组的运算规则。也可以对数组进行矩阵运算,这时是把数组视为矩阵,运算按矩阵的运算规则进行。 1、矩阵加减与数组加减 矩阵加减与数组加减运算效果一致,运算符也相同,可分为两种情况: (1)若参与运算的两矩阵(数组)的维数相同,则加减运算的结果是将两矩阵的对应元素进行加减,如 A=[1 1 1;2 2 2;3 3 3]; B=A; A+B ans= 2 2 2 4 4 4 6 6 6 (2)若参与运算的两矩阵之一为标量(1*1的矩阵),则加减运算的结果是将矩阵(数组)的每一元素与该标量逐一相加减,如 A=[1 1 1;2 2 2;3 3 3]; A+2 ans= 3 3 3 4 4 4 5 5 5 2、矩阵乘与数组乘 (1)矩阵乘 矩阵乘与数组乘有着较大差别,运算结果也完全不同。矩阵乘的运算符为“*”,运算是按矩阵的乘法规则进行,即参与乘运算的两矩阵的内维必须相同。设A、B为参与乘运算的 =A m×k B k×n。因此,参与运两矩阵,C为A和B的矩阵乘的结果,则它们必须满足关系C m ×n 算的两矩阵的顺序不能任意调换,因为A*B和B*A计算结果很可能是完全不一样的。如:A=[1 1 1;2 2 2;3 3 3]; B=A;

A*B ans= 6 6 6 12 12 12 18 18 18 F=ones(1,3); G=ones(3,1); F*G ans 3 G*F ans= 1 1 1 1 1 1 1 1 1 (2)数组乘 数组乘的运算符为“.*”,运算符中的点号不能遗漏,也不能随意加空格符。参加数组乘运算的两数组的大小必须相等(即同维数组)。数组乘的结果是将两同维数组(矩阵)的对应元素逐一相乘,因此,A.*B和B.*A的计算结果是完全相同的,如: A=[1 1 1 1 1;2 2 2 2 2;3 3 3 3 3]; B=A; A.*B ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 B.*A ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 由于矩阵运算和数组运算的差异,能进行数组乘运算的两矩阵,不一定能进行矩阵乘运算。如 A=ones(1,3); B=A; A.*B ans= 1 1 1 A*A ???Error using= =>

数值分析算法在matlab中的实现

数值分析matlab实现高斯消元法: function[RA,RB,n,X]=gaus(A,b) B=[A b];n=length(b);RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 for k=p+1:n m=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); end else disp('请注意:因为RA=RB0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1);C=zeros(1,n+1); for p=1:n-1

数值分析matlab代码

1、%用牛顿法求f(x)=x-sin x 的零点,e=10^(-6) disp('牛顿法'); i=1; n0=180; p0=pi/3; tol=10^(-6); for i=1:n0 p=p0-(p0-sin(p0))/(1-cos(p0)); if abs(p-p0)<=10^(-6) disp('用牛顿法求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次牛顿迭代后无法求出方程的解') end 2、disp('Steffensen加速'); p0=pi/3; for i=1:n0 p1=0.5*p0+0.5*cos(p0); p2=0.5*p1+0.5*cos(p1); p=p0-((p1-p0).^2)./(p2-2.*p1+p0); if abs(p-p0)<=10^(-6) disp('用Steffensen加速求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次Steffensen加速后无法求出方程的解') end 1、%使用二分法找到方程 600 x^4 -550 x^3 +200 x^2 -20 x -1 =0 在区间[0.1,1]上的根, %误差限为 e=10^-4 disp('二分法')

a=0.2;b=0.26; tol=0.0001; n0=10; fa=600*(a.^4)-550*(a.^3)+200*(a.^2)-20*a-1; for i=1:n0 p=(a+b)/2; fp=600*(p.^4)-550*(p.^3)+200*(p.^2)-20*p-1; if fp==0||(abs((b-a)/2)0 a=p; else b=p; end end if i==n0&&~(fp==0||(abs((b-a)/2)

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

龙格-库塔法MATLAB

1. matlab 新建.m文件,编写龙格-库塔法求解函数 function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数) n=floor((b-a)/h); %求步数 x(1)=a;%时间起点 y(:,1)=y0;%赋初值,可以是向量,但是要注意维数 for ii=1:n x(ii+1)=x(ii)+h; k1=ufunc(x(ii),y(:,ii)); k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2); k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2); k4=ufunc(x(ii)+h,y(:,ii)+h*k3); y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6; %按照龙格库塔方法进行数值求解 end 2.另外再新建一个.,m文件,定义要求解的常微分方程函数 function dx=fun1(t,x) dx =zeros(2,1);%初始化列向量 dx(1) =0.08574*x(2)-1.8874*x(1)-20.17; dx(2) =1.8874*x(1)-0.08574*x(2)+115.16; 3,再新建一个.m文件,利用龙格-库塔方法求解常微分方程 [T1,F1]=runge_kutta1(@fun1,[46.30 1296 ],1,0,20); %求解步骤2定义的fun1常微分方程,@fun1是调用其函数指针,从0到20,间隔为1 subplot(122) plot(T1,F1)%自编的龙格库塔函数效果 title('自编的龙格库塔函数') grid 运行步骤3文件即可得到结果,F1为估测值 或者可以调用matlab自带函数ode45求解 方法如下:

数值分析幂法与反幂法-matlab程序

数值分析幂法与反幂法 matlab程序 随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。 要求 1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC文件。 3)程序清单,生成M文件。 解答: >> A=rand(5) %随机产生5*5矩阵求随机矩阵 A = 0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A矩阵和A的转置相加,得到随机对称矩阵B B = 1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286

B=?? ????? ???? ?? ???6286.13929.03467.15979.08044 .03929.00944 .12144.18506 .13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613 .09173 .04187.1 编写幂法、反幂法程序: function [m,u,index,k]=pow(A,u,ep,it_max) % 求矩阵最大特征值的幂法,其中 % A 为矩阵; % ep 为精度要求,缺省为1e-5; % it_max 为最大迭代次数,缺省为100; % m 为绝对值最大的特征值; % u 为对应最大特征值的特征向量; % index ,当index=1时,迭代成功,当index=0时,迭代失败 if nargin<4 it_max=100; end if nargin<3 ep=1e-5; end n=length(A); index=0; k=0; m1=0; m0=0.01; % 修改移位参数,原点移位法加速收敛,为0时,即为幂法 I=eye(n) T=A-m0*I while k<=it_max v=T*u; [vmax,i]=max(abs(v)); m=v(i); u=v/m; if abs(m-m1)

MATLAB与数值分析实验报告一

MATLAB与数值分析实验报告 报告人:秦旸照 学号: 2015020901033 时间: 2016.4.8 电子科技大学电子工程学院

一、实验目的 实验一:MATLAB软件平台与程序设计实验 二、实验原理 1.熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算操作。(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序) 2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。(用.m文件编写进行符号因式分解和函数求反的程序) 3. 掌握Matlab函数的编写规范。 4.掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、三维曲线和面的填充、三维等高线等。(用.m文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释) 5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。 三、实验方案 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以 x,y为坐标显示图像 x(n+1) = a*x(n)-b*(y(n)-x(n)^2); y(n+1) = b*x(n)+a*(y(n)-x(n)^2) 2. 编程实现奥运5环图,允许用户输入环的直径。 3. 实现对输入任意长度向量元素的冒泡排序的升序排列。 不允许使用sort函数。 四、实验结果 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以 x,y为坐标显示图像

龙格库塔法求微分方程2

《MATLAB 程序设计实践》课程考核 一、编程实现“四阶龙格-库塔(R-K )方法求常微分方程”,并举一 例应用之。 【实例】采用龙格-库塔法求微分方程: ?? ?==+-=0 , 0)(1 '00 x x y y y 1、算法说明: 在龙格-库塔法中,四阶龙格-库塔法的局部截断误差约为o(h5),被广泛应用于解微分方程的初值问题。其算法公式为: )22(6 3211k k k h y y n n +++=+ 其中: ?????????++=++=++ ==) ,() 21 ,21()21 ,21() ,(34 23121hk y h x f k hk y h x f k hk y h x f k y x f k n n n n n n n n 2、流程图: 2.1、四阶龙格-库塔(R-K )方法流程图:

2.2、实例求解流程图:

3、源程序代码 3.1、四阶龙格-库塔(R-K)方法源程序: function [x,y] = MyRunge_Kutta(fun,x0,xt,y0,PointNum,varargin) %Runge-Kutta 方法解微分方程形为 y'(t)=f(x,y(x)) %此程序可解高阶的微分方程。只要将其形式写为上述微分方程的向量形式 %函数 f(x,y): fun %自变量的初值和终值:x0, xt %y0表示函数在x0处的值,输入初值为列向量形式 %自变量在[x0,xt]上取的点数:PointNum %varargin为可输入项,可传适当参数给函数f(x,y) %x:所取的点的x值 %y:对应点上的函数值 if nargin<4 | PointNum<=0 PointNum=100; end if nargin<3 y0=0; end y(1,:)=y0(:)'; %初值存为行向量形式h=(xt-x0)/(PointNum-1); %计算步长 x=x0+[0:(PointNum-1)]'*h; %得x向量值 for k=1:(PointNum)%迭代计算 f1=h*feval(fun,x(k),y(k,:),varargin{:}); f1=f1(:)'; %得公式k1 f2=h*feval(fun,x(k)+h/2,y(k,:)+f1/2,varargin{:}); f2=f2(:)'; %得公式k2 f3=h*feval(fun,x(k)+h/2,y(k,:)+f2/2,varargin{:}); f3=f3(:)'; %得公式k3 f4=h*feval(fun,x(k)+h,y(k,:)+f3,varargin{:}); f4=f4(:)'; %得公式k4 y(k+1,:)=y(k,:)+(f1+2*(f2+f3)+f4)/6; %得y(n+1) end 3.2、实例求解源程序: %运行四阶R-K法

相关文档
最新文档