高一数学第二单元函数的表示方法练习题.docx

高一数学第二单元函数的表示方法练习题.docx
高一数学第二单元函数的表示方法练习题.docx

高一数学第二单元函数的表示方法练习题

函数的表示方法

表示函数的方法,常用的有解析法、列表法和图象法三种.

⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.

例如,s=60/2, 2兀 r1, S=27D'l ,y=a x1 +bx+c(a0),y= Vx- 2 (x-2)等等都是用解析式表示函数关系的.

优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量

的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数. ⑵列表法:就是列出表格来

表示两个变量的函数关系.

数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表

优点:不需要计算就可以直接看出与白变量的值相对应的函数值.

⑶图象法:就是用函数图象表示两个变量之I'可的关系.

例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线, 工厂的生产图彖,股市走向图等都是用图彖法表示函数关系的.

优点:能直观形象地表示出自变暈的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.

求函数的解析式:

常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法。

例3?已知人兀)是一次函数,II满足3/x+l)-2Ax-l)=2x+17,求函数7U)的解析式。 (待定系数法) 例4.已知几力+1)二3厂2,求函数几r)的解析式。(配凑法或换元法)

例5.己知函数/U)满足/(%)-2/(-) = x,求幣数/U)的解析式。(消去法)

x

例6. (1)求函数兀+ 1| + |兀一2|的值域;(2)讨论方程|x + l| + |x-2|=^e/?)有解时, 实数a的取值范围。

\— X 1 —兀2

I.已知/(——)=—〒,求函数ZU)的解析式。

1 + x 1 + x

1 ° 1

2已知于(兀+ —)=〒+=,求函数夬兀)的解析式。

x x

3.已知/(兀)+ 2/(-兀)=兀-1,求函数沧)的解析式。例1.画出下列各函数的图象:

(1)/(x) = 2x-2(-2 < x < 2)

(2)/(X)=2X2-4X-3 (0

例2.(课本例5)画出函数/(x) = |x|的图象。

例3.设XG (-00,4-00),求函数y (x) = 2|x-l|-3|x|的解析式,并画出它的图象。 变式1:求函数/(x) =

2|x-l|-3|x|的最大值。

变式2:解不等式2|x-l|-3|x|>-lo

例4.当m 为何值时,方程x 2-4|x| + 5 = m 有4个互不相等的实数根。 变式:1.不等式x 2-4|x| + 5>/n 对xw/?恒成立,求m 的取值范围。

2. 画出函数/(兀)=?? 3<兀<1)的图象。

兀,(x > 1)

基础达标

2 兀

x n 0 1?函数 j(x)= / _

> 则 /(-2)=(

)?

兀(x + 1) <0

A. 1 B .2 C. 3 D.4

2. 某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为血

6. 已知函数f(x) = x + ~,且此函数图象过点(1, 5),实数〃7的值为 ____________ .

x 2 -4

0 < x < 2

7. 已知函数AQ 二

,W(2) = ________ :若/(x 0) = &则勺二 _________ ?

2x, x>2

8. 画出下列函数的图象:(1) y = -x 2 + 21 x| +3 ; (2) y =|-x 2 + 2x + 31.

9. 设二次函数/(x)满足/(x + 2) = /(2-x)且/(%) =0的两实根平方和为10,图象过点(0,3), 求/(x)的解析式

※探究创新(1)若f(x+l) = 2x2+l,求f(x); (2)若函数 躯)=話石,f(2)=l ,又方程f(x)

3?已知函数/(兀)满足 f(ab) = f(a) + f(b),且 /(2) = p , /(3) = q ,那么 /(12)等于().

A. p + q B ? 2p + q

4.

C ? p + 2q D. p 2

+ q 设集合A={x I O0W6}, B={y I 0W )W2},从A 到B 的对应法则/不是映射的是( ). £ 1 D £ 1 一 豪 1 —?

f : x~^y = —x B ? /: x~^y = —x '

-2 - 3 4 - 3.71J0

「1 给出,其中加是

1.06_(0.5 [m] + 2),(加 > 4) 不超过加的最大整数,如:[3.74] = 3,从甲地到乙地通话5.2分钟的话费是( ).

A. 3.71 B ? 4?24 C. 4.77 D. 7.95

A. 5. C. f :兀一*)=丄兀 D. f : x~^y= — x 4 ? 6 拟定从甲地到乙地通话加分钟的话费由/(m)= 离开家里的路程为么下面图形屮,能反映该同学的行程的是( )?

=x 有唯一解,求f (x ).

高一数学第二单元函数的表示方法练习题

一、选择题

1. 下列各组中,函数7U )和g (x )的图象相同的是

2. 函数y=Jl — / —J/一]的定义域为

A.{x| — 1 WxW 1 }

B.{x|xW —1 或 xNl }

C.{x|0WxW 1 }

D.{ —1,1} 3. 已知函数/U )的定义域为[0, 1],则人/)的定义域为 A.(-l, 0 B.(—l, l )C.(0, 1) D. [0, 1]

4. 设函数兀)对任意兀、),满足y (x+y )=ygt/e ),且人2)二4,则人一 1)的值为

A.-2

B.土丄

C.±l

D.2

2

5.

函数尸 一-的定义域为 A..r>0 B.x>0 或兀W —

lC.x 〉0 或 x<— 1 D.0

6. 函数图象可以分布在四个象限的函数只可能为 A.正比例函数B.反比例函数C.一次函数

D.二次函数

二、 填空题

7. __________________________________________________ 函数y=x-l,xez,且炸[ — 1,4],则此函数的值域为 ________________________________________ .

&已知函数的=2 一 2x+2,那么人1 )求一 1)裁馅)之间的大小关系为 _______ .

9. __________________________ 设 Xx-l )=3x-l,则 /U )= . 10. ____________________________ 函数y 二725-X 2的值域为 ?

11. __________________________________ 函数尸x —护(_ 1总冬1)的值域为 ?

三、 解答题

12. (7 分)设他*+1,求 Af C/0)] }的值.

3/T 13. (7分)若函数尸 ——的定义域为R ,求实数&的范圉.

kx_ +4总+3

14. (7分)己知:函数尸J15-的定义域为A,函数尸。一2兀一疋的值域为3,若

求G 的取值范围. 练习题:

1. 函数 y 二一 的定义域是()。(A ) {x| xWR, xHO} (B ) {x| xWR, xHl} (C )

1 +丄

A./x)=x, g(x)=(Vx)2

B =l,g(x)=x°

(0,+oo)

(一

8,0)

(x| xWR, xHO,xHl} (D) {x| xGR, xHO,xH — l}

2.对于函数f (x)二ax'+bx+c, (a0)若它的顶点的横坐标为1,则方程ax2+bx+c = 0的两根之

和为( )A0?5 B 1 C 2 D 4

3.从集合?帖{m, n}到集合N={1, 2}可以建立映射的个数共有()。

(A) 1 (B) 2 (C) 3 (D) 4

4.下列各对函数中,图彖完全相同的是()。

(A) y二x 与y二(B) y二兰与y=x°

x

(C) y二(J?)'与y=|x| (D) y二』x+1 ? Jx-1 与y=J(x + l)(x_l)

5.已知函数f (x)满足f (a)+f (b)=f (ab),且f (2)=p, f (3)=q,那么f (72)=()。

(A) p + q (B) 3p + 2q (C) 2p + 3q (D) p’+q'

9[ 2% -1 (x > 0)

6.已知函数 /(x)=-兀2 + 3x , g(x)= 则g(_l) + gLf(l)]= _________ .

[V2 (x<0)

7.函数f (x)二-- +』\一 x + Vx + 1的定义域是_________________ .

& /(x) = x2+x + l,则/(V2)= __________________ : /(-)= _____________ :

a

f(a-b) =____________ ;/(/(2)) = ___________

9.已知/(2X +1)= X2-2X,则/(V2)= ___________________ 。

10.画出下列函数图象并有图象观察起定义域和值域。

(1) y = x + 3| (2) y = |2x-3|

高一数学第二单元函数的表示方法练习题

1>函数y = /(^)的图象与直线x-m的交点个数为()

A.可能无数个

B.只有一个

C.至多一个

D.至少一个

2、设M={x\-2

A. B.

表示成兀的函数为(

A. y = 5Ox(x>0)

B. y = 100x(x>0)

C. 7、函数/ (尢)=厶2一4+丄的定义域为(

x 3

A [2,+ oo) U (-8, - 2]

B [2,3)U(3, + 8)

C [2,3)U(3, + 8)U(—°°,—2]

D (YO ,-2] x+l,(x>0)

8、设/(x)=龙,(x = 0),则/{/[/(-l)]}的值是(

)

0,(兀 v 0)

A. 7T +1

B. 0

C. 71

D. —1

9己知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为………() A. f(x)=-x B. f(x)=x —lC. f(x)=x+l D. f(x) = —x+l 10已知函数f (X -1)=X 2-3,则f (2)的值为… ........................... (

)

A. -2

B. 6

C. 1

D. 0

-2 0

D.

4、 A.

5、 A.

6、

0 存1

D.

已知/(兀)是一次函数 K2/(2)-3/(l) = 5,2/(0)-/(-l) = lJ'J/(x)=( )

设函数/(x) = [5 16

B? 3x — 2

C. 2x + 3

D. 2兀一 3

27

B.--------

16 c

-1

D. 18

-个面积为1 OOcm 2的等腰梯形,上底长为x cm,下底长为上底长的3倍,则把它的高y %>0)

X

)

B.

C-

A.

的值为(

严2

:。

则/

ii已知f(x)=Wr g(g+i,则f@(x))的表达式是…

1 X X 1

A- 7+27 B. 口C.不莎 D.

12己知函数y=f(n + ])=f(n)+3, *审,则f⑶等于…............ - .... ()

A. 0

B. 3

C. 6

D. 9

13、己知/(頁 + 1)=兀一1,贝U/(x)= _________ 。

14、已知区间[一2G,3Q +5],则G的取值范围是____________ o

15、函数f(x)= —的定义域为 __________________ o

、72X2-3^-2

三、解答题

16>若函数y = /(x) = x2+(6Z +2)X+3,XG [a.b]的图象关于直线兀=1对称,求方的值。

17、已知/心)是一次函数,且/{/[/(^)]} = 8^ + 7,求/(兀)的解析式。

18、用长为/的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2兀,求此框架围成的面积y与无的函数关系y = f(x)f并求其定义域。

19、求下列函数的值域:

(1) y = x2 -2x(-1

(2) y = x2 +1

20作下列各函数的图象:

(1) y=2x2—4x—3 (0

(完整版)高一数学复合函数讲解

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地,当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

高一数学二次函数知识点归纳

2019 高一数学二次函数知识点归纳为了帮助考生们了解更多高中知识点,查字典数学网分享了高一数学二次函数知识点归纳,供您参考! I. 定义与定义表达式 一般地,自变量x 和因变量y 之间存在如下关系: y=ax A2+bx+c (a , b, c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0 时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 II. 二次函数的三种表达式 一般式:y=axA2+bx+c(a ,b,c 为常数,a0) 顶点式:y=a(x-h)A2+k[ 抛物线的顶点P(h,k)] 交点式:y=a(x-x?)(x-x?)[ 仅限于与x 轴有交点A(x? ,0) 和 B(x?,0) 的抛物线] 注:在3 种形式的互相转化中,有如下关系: h=-b/2ak=(4ac-bA2)/4ax? ,x?=(-bbA2-4ac)/2a III. 二次函数的图像在平面直角坐标系中作出二次函数y=xA2 的图像,可以看出,二次函数的图像是一条抛物线。 IV. 抛物线的性质 1. 抛物线是轴对称图形。对称轴为直线

x=-b/2a 。对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0 时,抛物线的对称轴是y 轴(即直线x=0) 2. 抛物线有一个顶点P,坐标为 P(-b/2a , (4ac-bA2)/4a) 当-b/2a=0 时,P在y轴上;当=bT-4ac=0时,P在x轴上。 3. 二次项系数a 决定抛物线的开口方向和大小。 当a0 时,抛物线向上开口;当a0 时,抛物线向下开口。 |a| 越大,则抛物线的开口越小。 4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。当a 与 b 同号时(即ab0),对称轴在y 轴左; 当a 与b 异号时(即ab0),对称轴在y 轴右。 5. 常数项c 决定抛物线与y 轴交点。抛物线与y 轴交于(0 ,c) 6. 抛物线与x 轴交点个数 =b A2-4ac0时,抛物线与x轴有2个交点。 =b A2-4ac=0时,抛物线与x轴有1个交点。 =bA2-4ac0 时,抛物线与x 轴没有交点。X 的取值是虚数(x=-bbA2-4ac 的值的相反数,乘上虚数i ,整个式子除以2a) V. 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=axA2+bx+c , 当y=0 时,二次函数为关于x 的一元二次方程( 以下称方程) ,

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18) 一、选择题(本大题共9小题,共45.0分) 1. 若a >b ,则下列正确的是( ) A. a 2>b 2 B. ac >bc C. ac 2>bc 2 D. a ?c >b ?c 2. 不等式?2x 2+x +3≤0的解集是( ) A. {x|?1≤x ≤3 2} B. {x|x ≤?1或x ≥3 2} C. {x|x ≤?3 2或x ≥1} D. {x|?3 2≤x ≤1} 3. 下列各函数中,最小值为2的是( ) A. y =x +1 x B. y =sinx +1 sin x ,x ∈(0,π 2) C. y =2√x 2+2 D. y =x ?2√x +3 4. 下列四个结论中正确的个数是( ) (1)对于命题p:?x 0∈R 使得x 02?1≤0,则?p:?x ∈R 都有x 2?1>0; (2)已知X ~N(2,σ2),则P(X >2)=0.5 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为y ?=2x ?3; (4)“x ≥1”是“x +1 x ≥2”的充分不必要条件. A. 4 B. 3 C. 2 D. 1 5. 已知集合A ={y |y =1 2},B ={x|x 2<4},则A ∪B = A. (0,2) B. (?2,2) C. (?1,+∞) D. (?2,+∞) 6. 函数f(x)=?x 2+3x ?2a ,g(x)=2x ?x 2,若f(g(x))≥0对x ∈[0,1]恒成立,则实数a 的取 值范围为 A. (?∞,?2] B. (?∞,?1] C. (?∞,0] D. (?∞,1] 7. 已知函数f(x)=xe x +1 2x 2+x +a ,g(x)=xlnx +1,若存在x 1∈[?2,2],对任意x 2∈[1 e 2,e], 都有f (x 1)=g (x 2),则实数a 的取值范围是( ) A. [?3?1 e ?2e 2,e ?3?2e 2] B. (?3?1 e ?2e 2,e ?3?2e 2) C. [e ?3?2e 2,3 2] D. (e ?3?2e 2,3 2) 8. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π 3,则该三角形面积的最 大值是( ) A. 2√2 B. 3√3 C. 4√3 D. 4√2

高一数学复合函数讲解(最新整理)

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g (x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

高一数学函数一二次函数知识点测试题

高一数学第二单元一二次函数知识点及测试题 一次函数二次函数知识点: 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。

高一数学人教版必修一 第一章 1.2.2 复合函数问题练习(含答案)

2[()]()()f f x af x b a ax b b a x ab b =+=++=++复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二 复合函数解析式 1、待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ?=+=3 42b ab a , ∴??????=-===3 212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 2、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2 -=∴x x f )2(≥x . 3、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配 凑法一样,要注意所换元的定义域的变化. 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+= x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 4、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点.

复合函数习题及答案

复合函数练习题 1、 已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域( )。 析:由已知,]1,1[]1,1[],1,0[2--∈∈。所以所求定义域为故x x 2、 已知函数)x 23(f -的定义域为]3,3[-,求)x (f 的定义域( ) 析:]5,1[)(],5,1[23],1,1[的定义域为从而的范围为那么的范围为由已知x f x x -- 3、 已知函数)2x (f y +=的定义域为)0,1(-,求|)1x 2(|f -的定义域( )。 析:)23,1()1,21(),2,1(12)12(),2,1()()2(?-∈∈--+x x x f x f x f 解得的定义域应满足则求的定义域为的定义域可知由 4、设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为( ) A. ()()4,00,4Y - B. ()()4,11,4Y -- C. ()()2,11,2Y -- D. ()()4,22,4Y -- 析:?? ???????--∈>-<<<-<<-<<<<->-+>-+B ),4,1()1,4(,1144,222222-.22,0)2)(2(022选综上或解得那么由题意应有得,即由已知,x x x x x x x x x x x 5.函数y =2 1log (x 2-3x +2)的单调递减区间是( ) A .(-∞,1) B .(2,+∞) C .(-∞,23) D .(2 3,+∞) 析:本题考查复合函数的单调性,根据同增异减。 B ),2(,2 32312 10).,2()1,(,02322为增函数,所以选择上在的定义域内,在函数,其对称轴为区间。内函数为函数的增的减区间,只需要求内求为底,故为减函数。则由于外函数是以得定义域为应先求定义域,即对于对数型复合函数,+∞=+-=<<+∞?-∞>+-t y x x x t y x x 6.找出下列函数的单调区间. (1))1(232>=++-a a y x x ; 解析:此题为指数型复合函数,考查同增异减。

高一数学《二次函数》试题

二次函数 1.解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且 2212269 x x += ,试问该二次函数的图像由()()2 31f x x =--的图像向上平移几个单位得到? 2.图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +?? = ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关 系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2 f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.)单调性 已知函数()2 2f x x x =-,()()2 2[2,4]g x x x x =-∈. (1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值. 变式1:已知函数()2 42f x x ax =++在区间(),6-∞内单调递减,则a 的取值范围是 A .3a ≥ B .3a ≤ C .3a <- D .3a ≤- x y O

高一数学《二次函数在闭区间上的最值》练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: ; (1)当[]n m a b ,∈-2时,)(x f 的最小值是a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

复合函数相关性质和经典例题

定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。 求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行: (1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =; (2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等; (3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数 )]([x g f y =的一个单调区间; 若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间; (5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性; (6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。 (7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减. (12) 结论:同曾异减 (13) 例1. 求函数222)(-+=x x x f 的单调区间. (14) 解题过程: (15) 外层函数:t y 2= (16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],2 1[+∞-∈x (18) 内层函数的单调减区间:2 1,[--∞∈x (19) 由于外层函数为增函数 (20) 所以,复合函数的增区间为:],2 1[+∞-∈x (21) 复合函数的减区间为: 2 1,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间. (23) 解 原函数是由外层函数u y 2 1log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 2 1log =的单调减区间; (25) 令0232>--=x x u ,解得x 的取值范围为)1,3(-; (26) 解题过程:

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知 f x ()的定义域,求[]f g x ()的定义域 思路:设函数 f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范 围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数 f u ()的定义域为(0,1) ,则函数f x (ln )的定义域为_____________。 解析:函数 f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<f x ()的定义域为

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

高一数学二次函数与一元二次方程教案 苏教版

高一数学二次函数与一元二次方程教案 高邮市送桥中学 知识目标:(1)会用判别式的符号解释二次函数图象与x 轴交点及一元二次方程的根。 (2)理解解函数的零点与方程根的联系及判断函数的零点所在的大致区间。 能力目标:体验并理解函数与方程相互转化的数学思想培和数形结合的数学思想。 情感目标:培养学生积极探索,主动参与,大胆创新,勇于开拓的精神 教学过程: 一、引入 等式2 0ax bx c ++=()0a ≠是关于x 的一元二次方程,关系式2 y ax bx c =++()0a ≠则 是关于自变量x 的二次函数。今天我们将进一步研究它们之间的关系。 二、新授 观察思考: 1、 几个具体的一元二次方程及其对应的二次函数,如 ①方程2230x x --=与函数2 23y x x =--; ②方程2 210x x -+=与函数2 21y x x =-+; ③方程2 230x x -+=与函数223y x x =-+。 研讨探究 问题:一元二次方程的根与二次函数图象和x 轴交点坐标有什么关系 ? 探究点一:二次函数图象与一元二次方程根的关系。 ⑴以①为例(幻灯片) 结论:一元二次方程2230x x --=的判别式?>0 ?一元二次方程2 230x x --=有两个 不相等的实数根?对应的二次函数2 23y x x =--的图象与x 轴有两个交点为(3,0),(–1,0)。 (2)再研究②③,能得类似的结论吗? 结论:一元二次方程2210x x -+=判别式?=0一元二次方程2 210x x -+=?有两 等根?对应的二次函数2 21y x x =-+的图象与x 轴有唯一的交点为(1,0)。 一元二次方程判别式2230x x -+=?﹤0 ?一元二次方程2 230x x -+= 方程无实数根?对应的二次函数2 23y x x =-+的图象与x 轴没有交点。 联想发散 2、一元二次方程2 0ax bx c ++=(a >0)根的个数及其判别式与二次函数 2y ax bx c =++(a >0)图象与x 轴的位置之间有什么联系?)

人教B版高中数学必修一二次函数练习题及答案

A B C D O x y 高中数学学习材料 金戈铁骑整理制作 1.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( ) A.5 B.4 C.3 D.2 2.二次函数c bx ax y ++=2的图象如图所示,下列结论: ①0b ;③024>++c b a ;④042>-ac b . 其中正确的有 ( ) (A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个 3.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________. 4.把抛物线y=12 x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 5.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________. 6.抛物线c bx ax y ++=2 如右图所示,则它关于y 轴对称 的抛物线的解析式是__________. 7.已知二次函数y=2x 2-mx-4的图象与x 轴的两个交点的横坐标的倒数和为2,则m=_________. 8.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上, 图 1 y O 3 3 1

O M A N B C y x C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 . 9.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 . 10、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点 (0,1),(-1,0),则S=a+b+c 的变化范围是 ( ) (A) 01 (C) 1

苏教版高中数学必修一第课时——二次函数与一元二次方程

第三十课时二次函数与一元二次方程 【学习导航】 知识网络 学习要求 1.能利用二次函数的图象与判别式的符号,判断一元二次方程根的存在性及根的个数; 2.了解函数的零点与方程根的联系及判断函数的零点所在的大致区间; 3.体验并理解函数与方程相互转化的 数学思想和数形结合的数学思想. 自学评价 1.二次函数的零点的概念 一元二次方程20ax bx c ++=()0a ≠的根也称为二次函数2y ax bx c =++(a ≠0)的零点. 2. 二次函数的零点与对应一元二次方程根的关系 (1)一元二次方程20ax bx c ++=(a ≠0)有两个不相等的实数根1x ,2x ?判别式0?>?对应的二次函数2y ax bx c =++(a ≠0)的图象与x 轴有两个交点为()1,0x ,()2,0x ?对应的二次函数2y ax bx c =++(a ≠0)有两个不同的零点1x ,2x ; (2)一元二次方程20ax bx c ++=(a ≠0)有两个相等的实数根1x =2x ?判别式0?=?对应的二次函数2y ax bx c =++(a ≠0)的图象与x 轴有唯一的交点为(1x ,0)?对应的二次函数2y ax bx c =++(a ≠0)有两个相同零点1x =2x ; (3)一元二次方程20ax bx c ++=(a ≠0)没有实数根?判别式0? ∴一元二次方程22370x x +-=有两个不相等的实数根. 证法2 设2()237f x x x =+-, ∵函数的图象是一条开口向上的抛物线,且2(0)2030770f =?+?-=-<∴函数()f x 的图象与x 轴有两个不同的交点,即一元二次方程22370x x +-=有两个不相等的实数根. 点评:例1还可用配方法将方程化为2365()416x +=再证明.也可仿照证法2,由抛物线开口向上及(1)23720f =+-=-<来推证. 例2:右图是一个二次函数()y f x =的图象. (1)写出这个二次函数的零点; (2)写出这个二次函数的解析式; (3)试比较(4)(1)f f --,(0)(2)f f 与0的大小关系. 【解】(1)由图象可知此函数的零点是:13x =-,21x =. 听课随笔 二次函数与 一元二次方程 函数的零点 二次函数的零点与对应 一元二次方程根的关系 函数的零点与 对应方程的关系 二次函数 的零点

相关文档
最新文档