基于单片机的音量控制电路设计

基于单片机的音量控制电路设计
基于单片机的音量控制电路设计

摘要

题目名称基于单片机的音量控制电路设计

任务与要求

1.熟悉STC系列单片机的工作原理;

2.掌握数字电位器的使用方法,重点学习数控音频信号工作机理;

3.熟练掌握C51程序设计技巧与编程方法;

4.设计基于单片机的音频控制电路系统(原理与PCB图);

5.设计相关操作软件;

6.撰写毕业论文。

题目名称基于单片机的音量控制电路设计

一、毕业设计(论文)进度

起止时间工作内容

2017.1.15—2017.1.30熟悉STC单片机的工作原理,掌握中断、串

口等使用方法;

2017.2.1—2017.2.28掌握数字电位器工作原理,熟悉数模信号控

制电路;

2017.3.1—2017.3.15 熟练掌握C51程序编程方法;

2017.3.16—2017.3.25熟悉PROTEL99SE软件工具,设计相关测

试电路(原理图及PCB图);

2017.3.26—2017.4.23 设计基于单片机的音量控制系统(包括相关

硬件、相关软件及调试部分等内容);

ABSTRACT

2017.4.24—2017.5.20 撰写毕业论文并准备答辩。

二、主要参考书目(资料)

[1] 杨振江,单片机原理与实践指导,中国电力出版社,2008年8月

[2]杨振江,流行集成电路程序设计与实例,西安电子科技大学出版社,2009年2月

[3]杨振江刘男杨璐,单片机应用与实践指导,西安电子科技大学出版社,2010年3月

[4]张毅刚,单片机原理及接口技术(C51编程),人民邮电出版社,2011年8月

[5]张毅刚,新编MCS-51单片机应用设计(第3版),哈尔滨工业大学出版社,2008年4月

[6]谢维成杨加国,单片机原理与应用及C51程序设计,清华大学出版社,2009年7月

三、主要仪器设备及材料

PC机、单片机及相关设计系统。

四、教师的指导安排情况(场地安排、指导方式等)

每周指导一次以上。

五、对计划的说明

摘要

摘要

随着电子技术的飞速发展,现代电子产品几乎渗透了社会的各个领域,音频功放在日常生活中更是随处可见,除了传统的旋钮式音量调节外,数字调节音量也越来越常见。同时在一些特殊的应用中,数字调节音量有着无可比拟的优势。

本文设计使用了SPI(Serial Peripheral Interface--串行外设接口)型数字电位器MCP41XXX系列,辅以STC89C52单片机进行控制,增益的调整和控制是通过数字电位器中不同阻值的电位器以及软件的进一步修正来达到的,较好的实现了数控音频信号,可应用于要求放大器增益可程序控制等场合。

本系统还设计出了较为直观明了的人机交互界面,LCD显示器不仅仅用于显示当前的音量值,同时还显示了当前的功率,除了加减音量按键之外,还人性化地增加了一个复位按键,以满足在某些特殊的情况时的需求。

关键词:单片机数字电位器可控增益放大器

ABSTRACT

ABSTRACT

With the rapid development of electronic technology, modern electronic products through almost all aspects of social audio power amplifier in daily life is everywhere, in addition to the traditional knobs type sound volume outside, digital adjust volume also more and more common. While in some special applications, the digital adjust volume has incomparable advantage.

This paper design uses SPI(Serial Peripheral Interface) type digital potentiometer MCP41XXX series, and with the STC89C52 single-chip microcomputer control, the adjustment and control is the gain by digital potentiometer resistance in the different potentiometer and software to achieve further modified, better realize the numerical control audio signals, can be applied to request amplifier can process control and so on.

The system also designed a more intuitive and man-machine interface, LCD display not just for show the current volume value, and at the same time also shows that the current power, in addition to adding and subtracting volume buttons, but also human to gain a reset button to meet in some special situations demand.

Keywords: MCU Digital Potentiometer gain control Amplifier

目录i

目录

第一章绪论-------------------------------------------------------- 1

1.1课题背景 (1)

1.2国内外现状 (1)

1.3课题设计目的 (2)

1.4本文研究内容 (2)

第二章总体方案设计------------------------------------------------- 3

2.1单片机的比较和选择 (3)

2.2增益控制方案的比较和选择 (3)

2.3数字电位器的比较和选择 (4)

第三章系统总体设计------------------------------------------------- 5

3.1系统设计的任务要求 (5)

3.2系统设计原理 (6)

第四章系统硬件电路设计--------------------------------------------- 7

4.1单片机部分 (7)

4.1.1 STC89C52的主要特性 (7)

4.1.2 STC89C52的功能描述 (8)

4.2按键控制电路 (10)

4.3显示电路 (12)

4.4数字电位器 (13)

4.4.1 数字电位器的原理和结构 (13)

4.4.2 数字电位器的音量控制电路 (16)

4.5系统硬件电路 (18)

第五章系统软件设计------------------------------------------------ 19

5.1系统总流程图 (19)

5.2模块设计 (20)

5.2.1 单片机子程序 (20)

ii 目录

5.2.2 按键控制程序 (20)

5.2.3 显示程序 (22)

5.2.4 数字电位器控制程序 (23)

第六章系统调试---------------------------------------------------- 25 6.1软件调试 (25)

6.2系统调试 (25)

6.3PCB设计图 (26)

结束语-------------------------------------------------------------- 27致谢-------------------------------------------------------------- 29参考文献------------------------------------------------------------ 31附录-------------------------------------------------------------- 33

第一章绪论 1

第一章绪论

1.1课题背景

人耳对声强的主观感受遵循韦伯定律,在音量较小时人耳对声波振幅的改变感受灵敏,声音达到一定响度后,人耳的听觉特性开始变得迟钝。而指数型电位器的阻值变化规律为先慢后快,如果将这种衰减特性用在音量调节中,则恰好可以抵消人耳对音量感知的对数特性,保证主观听感的平滑。

与传统的机械式音量电位器相比,数字电位器(DCP)的阻值调节由内部CMOS

开关控制,因而使用寿命长、可靠性高且不会产生机械噪声。如果将廉价的通用型线性数字电位器直接用于音量调节,在小音量状态下稍微调节电位器即会使输出声压陡然增加,无法保证大动态范围内音量的准确定位,因此目前将数字式电位器运用在成熟功放产品中的实例还不多。实际上,如果将低分辨率线性数字电位器与通用嵌入式系统结合起来,就能够得到运用于音量控制领域的低成本高分辨率指数式电位器。

随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机具有集成度高,通用性好,功能强,特别是体积小、重量轻、耗能低、可靠性高、抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。传统的电位器控制音量高低精度差,单片机的出现使得数据处理音量和控制精度问题能够得到很好的解决。

1.2 国内外现状

随着电子技术突飞猛进的发展,电子音量控制的应用虽然已经十分广泛,但从国内来讲,我国的电子音量控制产品还是以中、低端产品为主,并且片式元件品种少,生产规模不大,远远满足不了整机的需要。现在我国所使用的片式元件,进口或外资企业在国内生产的占大部分,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的电子音量控制产品主要以功

2 基于单片机的音量控制电路设计

放控制及常规的调谐为主,它们只能适应一般的系统音频控制,而用于较高控制场合的智能化、自适应控制,国内技术还不十分成熟,形成商品化并广泛应用的控制产品较少。

随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,相继建立了一些国家级、企业级的研发中心,开展创新性研究,使我国电子音量控制行业得到了迅速的发展。已发展成为具有相当规模、专业门类齐全、品种基本配套的行业体系。通过技术改造,引进先进技术,实现了多品种、自动化大生产,产品质量得到了普遍提高,整机配套能力、新品开发能力普遍增强,已为发展规模经济奠定了良好的基础。

1.3课题设计目的

1:巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力。

2:培养针对课题需要,选择和查阅有关手册、图表及文献资料的自学能力,提高组成系统、编程、调试的动手能力。

3:通过对课题设计方案的分析、选择、比较、熟悉单片机用系统开发、研制的过程,软硬件设计的方法、内容及步骤。

1.4本文研究内容

本文将介绍一种由数字电位器构成的音量调节电路的设计方法。并且这种设计中带有数字显示,能清晰明了的知道音量的大小。本设计中主要应用COMS管集成芯片进行设计,应用到的主要芯片有STC89C52,它主要是控制数字电位器进而控制音量的大小,SPI接口型MCP41XXX是控制电路的主要芯片,是控制电路中的数字电位器。MCP606它主要是运算放大器,单位增益稳定,失调电压低。

第二章总体方案设计 3

第二章总体方案设计

2.1单片机的比较和选择

当今单片机厂商琳琅满目,产品性能各异。常用的单片机有很多种:Intel8051系列、Motorola的M68HC系列、Atmel的AT89系列、台湾华邦的W78系列、荷兰Philips的PCF80C51系列、Microchip公司的PIC系列、Atmel的AT90S系列、韩国三星公司的KS57C系列4位单片机、台湾义隆的EM-78系列等。

在本文研究中,选择了STC公司的STC89C52单片机。STC89C52是深圳宏晶公司生产的低电压,高性能CMOS 8位单片机,与标准MCS-51指令系统及8052产品引脚兼容,片内置通8位中央处理器(CPU)和FLASH存储单元,功能强大STC89C52单片机适用于许多较为复杂控制应用场合。

2.2增益控制方案的比较和选择

方案1:采用A/D/A+DSP构成的数字信号处理系统来实现,该方案的系统组成复杂、成本较高。

方案2:采用可编程放大器,由于采用专用芯片,增益控制受限于芯片所提供的能力,灵活性差,其成本也较高。

方案3:放大器的增益与电阻有关,改变相应电阻的阻值就可改变放大器的增益,由于采用数字电位器改变电阻来控制放大器增益的方案具有概念清晰、电路组成简单、实现容易、成本低廉,可较好地满足实际要求。对于不同的电压增益可选用不同阻值的电位器,并通过改变该电位器滑动端计数寄存器的数值来改变滑动端相对于固定端的电阻值,从而实现增益的调整。

综合以上方案,选择方案3,使用数字电位器控制增益。

4 基于单片机的音量控制电路设计

2.3数字电位器的比较和选择

在这里,按照数字电位器的常用接口类型来选择。

方案1: I2C总线属于二线串行接口,基于I2C总线的数字电位器内部E2PROM 可在掉电前储存滑动端的位置,具有机械电位器的工作特性。数据传输只用两根线,传输速率高。由于I2C总线型数字电位器输出方式是漏极开路或集电极开路的形式,所以组成I2C串行数据总线的串行数据线SDA和串行时钟线SCL必须经过上拉电阻接到正电源上。SDA和SCL都为双向I/O口线。

典型产品有Xicor公司生产的X9221和X9241数字电位器。

方案2: SPI(Serial Peripheral Interface--串行外设接口)是一种同步串行外围总线接口。它可使单片机与各种外围设备以串行方式进行通信,在对速度要求低,功耗低,需要保存的参数少的系统中可广泛应用。使用SPI接口的数字电位器不仅简化了设计,还提高了数字电位器的可靠性。SPI接口型数字电位器采用三线SPI接口方式与主机进行串行通信。它含有一个标准三线串行控制接口。

典型的产品有美国Microchip公司的MCP41XXX/MCP42XXX系列电位器,是用SCK代表串行时钟端,SI代表串行数据输入端,cs代表片选端。

综合以上方案,选择方案2,采用SPI型数字电位器MCP41010来调节音量。

第三章系统总体设计 5

第三章系统总体设计

3.1系统设计的任务要求

设计一个音量可程控、有输出音量显示的基于单片机的音量控制电路。后级功率放大部分可用运算放大器元件,供电电源为+5V,输入信号电压幅度为(10~1000)mV rms,负载为8欧姆电阻。

技术指标如下:

a.失真度≤3%时,输出功率P0≥7.5W;

b.频率响应为(20~22000)Hz;

c.在信号源的幅度和频率固定为某一值时,可以设置输出功率,并实时测量、显示输出功率,显示的输出功率(Ps)与设定功率(Pg)的相对误差(Ps-Pg)/Pg≤3%。

基本功能:

(1)设计一个基于单片机的音量控制电路:要求有两个外部操作按键,即音量自动增加按键K1(或用“+”表示)和音量自动减小按键K2(或用“—”表示)。

(2)接通电源时,音响设备的音量处于一个适中的位置。

扩展功能:

通过按键的处理是音量能自动的增减,能在显示器上显示音量的大小。

6基于单片机的音量控制电路设计

3.2系统设计原理

基于单片机的音量控制电路,采用MCP41XXX系列数字电位器,用STC89S52单片机进行控制,音量和音调的调节是通过选择数字电位器中不同阻值的电位器以及软件的进一步修正来达到的,较好地实现了可控增益放大器。其最大特色就在于,实现了用数字的方法控制模拟电路,即音量和音调的控制,系统设计原理见图3.1所示。

图3.1 系统设计原理

利用数字电位器能较容易实现对放大器增益的控制,且具有电路简单、控制方便、成本低廉等优点。通过采取措施也可实现对放大器增益较高精度的控制,增益的调整是通过选择数字电位器中不同阻值的电位器以及软件的进一步修正来达到的,可控增益放大器可应用于采集系统中的信号调理或要求放大器增益能程控的场合。系统原理电路图见附录A。

第四章系统硬件电路设计7

第四章系统硬件电路设计

基于单片机的音量控制电路的硬件设计,首先采用分块设计的方法。将整个系统分为:按键控制电路模块、显示电路模块、数字电位器的音量控制电路模块,单片机与数字电位器的接口电路模块。

4.1单片机部分

4.1.1 STC89C52的主要特性

STC89C52是一种带8K字节闪烁可编程可擦除只读存储器(FPEROM-Flash Program and Erasable Read Only Memory)的低电压,高性能COMOS 8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容[1]。STC89C52单片机的主要功能见表4.1所示。

表4.1 STC89C52的主要功能

主要功能特性

8基于单片机的音量控制电路设计

4.1.2 STC89C52的功能描述

1.STC89C52的管脚

STC89C52单片机的管脚见图4.2所示。

图4.2 STC89C52单片机的管脚

①电源

(1)VCC——芯片电源,接+5V。

(2)GND——接地端。

②时钟

XTAL1、XTAL2——晶体振荡电路反相输入端和输出端。使用内部振荡电路时外接石英晶体。

③控制线

(1)ALE/PROG——地址锁存允许/片内EPROM编程脉冲。

(2)PSEN——片外ROM读选通信号。

(3) RST/Vpd——复位/备用电源。

(4) EA/Vpp ——片外ROM选用端/片内EPROM编程电源。

④ I/O引脚

STC89C52共有4个8位并行I/O端口,共32个引脚。

第四章系统硬件电路设计9

(1)P0口——8位双向I/O口。

在不并行扩展外存储器与扩展I/O口时,P0口可用作双向I/O口。

在并行扩展外存储器与扩展I/O口时,P0口可用于分时传送低8位地址(地址总线)和8位数据信号(数据总线)。

(2) P1口——8位准双向I/O口(“准双向”是指该口内部有固定的上拉电阻)。

(3) P2口——8位准双向I/O口。

在不并行扩展外存储器与扩展I/O口时,P2口可用作双向I/O口。在并行扩展外存储器与扩展I/O口时,P2口可用于传送高8位地址(属地址总线) 。

(4) P3口——8位准双向I/O口。

可作一般I/O口用,同时P3口每一引脚还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线),P3口的第二功能见表4.3所示。

表4.3 STC89C52单片机P3口的第二功能

2

时钟可以由内部方式产生或外部方式产生。内部方式的时钟电路(图4.4),XTAL1和XTAL2引脚上外接定时元件,内部振荡器就产生自激振荡。定时元件通常采用石英晶体和电容组成的并联谐振回路[5]。

外部方式的时钟电路(图4.4),XTAL1接地,XTAL2接外部振荡器。对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。

10基于单片机的音量控制电路设计

图4.4(a) 内部时钟方式电路 4.4(b) 外部方式时钟电路

3.复位电路

(1)复位操作[4]

计算机在启动运行时都需要复位,复位是使中央处理器CPU和内部其他部件处于一个确定的初始状态,从这个状态开始工作。

只要RST保持高电平,STC89C52单片机将循环复位。复位期间,ALE、PSEN

输出高电平。RST从高电平变为低电平后,PC指针变为0000H,使单片机从程序存储器地址为0000H的单元开始执行程序。复位后,内部各寄存器的初始内容见图4.6所示。当单片机执行程序出错或进入死循环后,也可按复位按钮重新启动。

(2)复位信号及其产生

RST引脚是复位信号的输入端。复位信号是高电平有效,其有效时间应持续24个振荡周期(即二个机器周期)以上。

上电自动复位是通过外部复位电路的电容充电来实现的,STC89C52单片机有一个复位引脚RST,高电平有效。在时钟电路工作以后,当外部电路使得RST端出现两个机器周期(24个时钟周期)以上的高电平,系统内部复位。复位有两种方式:上电复位和按钮复位,如图4.5所示。

(a)上电复位电路 (b)按钮复位电路

图4.5 STC89C52复位电路

4.2 按键控制电路

按键控制电路有单片机(STC89C52)和3个分别控制音增益大小的按钮构成,按键控制接单片机P1.4~P1.6。再按键被按下之前,单片机各个引脚处于高电平,

第四章系统硬件电路设计11 当有按键按下时,相对应的引脚变为低电平,当检测到有引脚变为低电平时,执行相应的操作,按键控制电路见图4.6所示。

图4.6 按键控制电路

按键检测中,采用定时中断的方法。即当计数值到一定大时,开始读取P3口,并将计数器清零,根据读到的键盘值,执行相应的操作。另外有一种情况,按键抖动问题:当操作者手动按键时,由于按键会产生数次抖动,而在较短的时间内,检测程序会检测到多次按下操作,而执行多次相应程序,这与实际情况并不相符。

因为对于操作者来说,只是按了一次按键,而检测程序执行了多次。因此在软件设计中加入消除按键抖动程序。具体实现方法如下:按键被按下时,设置一个时间片(如20ms),在这段时间内进行按键状态判断,如果在时间片结束时,按键状态没有发生变化,仍然为低电平,则表明按键确实被按下,之后再执行相应的操作,这样就可以消除按键抖动对按键检测的造成的影响。

12基于单片机的音量控制电路设计

4.3显示电路

LCD显示电路由单片机(STC89C52)、液晶LCD、阻级三级放大管构成。其中液晶的数据端接至单片机P0.0~P0.7口,液晶选择线接单片机P2.0~P2.2,显示数据由P0口输出至显示器,显示相应的内容。液晶显示内容由单片机从数字电位器获得,显示电路见图4.7所示。

图4.7 显示电路

显示时,单片机通过按键程序读取按键值,并判断是那个控制键被按下,再执行相应操作。同时单片机将发送数据到数字电位器,数字电位器再根据传送的数据执行抽头的上调或下调动作,达到音量调节的目的。单片机可读取数字电位器当前的抽头值,将其编码后送至P0口,显示器获得数据后,显示出相应的值,完成一次显示任务。显示器设计为动态显示,平均每隔20ms更新一次,从而实现了音量、音调的实时显示功能[3]。

第四章系统硬件电路设计13

4.4数字电位器

机械式电位器通常用来调整系统参考电压、增益误差和偏置电压误差。数字电位器可以用来完成相同的任务,而且还能提供额外的数字调整控制功能。

4.4.1数字电位器的原理和结构

1. MCP41XXX系列数字电位器的特点

MCP41XXX系列器件是具有256个抽头的数字电位器(XDCP)。该系列电阻有10K Ω、50KΩ和100KΩ几种,内部包含电阻阵列、滑动开关、控制单元和16位存储器。滑动端的位置由SPI总线控制[2]。

每次上电或重新复位“数据字节”的数据被初始化为80H(即电位器的滑动端处在中心位置)。

MCP41XXX系列器件采用CMOS工艺,功耗极低,被广泛地应用于仪器仪表和精密电压或电流控制系统中。

2. MCP41XXX系列数字电位器的引脚描述

MCP41XXX系列数字电位器的引脚见图4.8所示。

图4.8 MCP41XXX系列数字电位器的引脚

MCP41XXX引脚表述:

1) PA0:数字电位器的一个固定端;

2) PB0:数字电位器的一个固定端;

3) PW0:数字电位器的抽头滑动端;

14基于单片机的音量控制电路设计

4) cs:数字电位器SPI接口的片选引脚;

5)SCK:串行数据输入的同步时钟。在数据准备好的情况下,SCK的下降沿同步输入数据;

6) SI:串行数据输入信号。在SCK的配合下,SI向器件输入数据;

7) Vss:电源地引脚;

8) Vdd:电源正引脚。

3.MCP41XXX系列数字电位器的结构

MCP41XXX系列数字电位器由一个包含255个电阻单元的电阻阵列和一个滑动端开关网络组成。滑动端的位置由cs、SI和SCK 3线输入信号控制,见图4.9。

(a)内部结构 (b)等效电路

图4.9 MCP41XX的内部结构、等效电路

4.MCP41XXX系列数字电位器的操作

MCP4lXXX系列数字电位器的操作是通过一个命令字节完成的。该命令字节格式见图4.10所示。一个字节命令实际上只对C1、C0位(功能选择)和Pl、P0位(电位器选择)进行设置即可。对于MCP41XXX系列器件来说,只有一个电位器P0,而MCP42XXX系列器件才有P1与PO两个电位器。

最新单片机硬件系统设计原则

单片机硬件系统设计 原则

●单片机硬件系统设计原则 ●一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单 元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 ●系统的扩展和配置应遵循以下原则: ● 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基 础。 ● 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行 二次开发。 ● 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑的原则 是:软件能实现的功能尽可能由软件实现,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 ● 4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统 中所有芯片都应尽可能选择低功耗产品。 ● 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷 电路板布线、通道隔离等。 ● 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增 设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 ● 7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大, 也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。 ●单片机系统硬件抗干扰常用方法实践 ●影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结 构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 ●形成干扰的基本要素有三个: ●(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地 方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 ●(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线 的传导和空间的辐射。 ●(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号放大器 等。 ● 1 干扰的分类 ● 1.1 干扰的分类 ●干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分 类。按产生的原因分: ●可分为放电噪声音、高频振荡噪声、浪涌噪声。 ●按传导方式分:可分为共模噪声和串模噪声。 ●按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 ● 1.2 干扰的耦合方式

基于单片机的音量控制电路设计

摘要 题目名称基于单片机的音量控制电路设计 任务与要求 1.熟悉STC系列单片机的工作原理; 2.掌握数字电位器的使用方法,重点学习数控音频信号工作机理; 3.熟练掌握C51程序设计技巧与编程方法; 4.设计基于单片机的音频控制电路系统(原理与PCB图); 5.设计相关操作软件; 6.撰写毕业论文。 题目名称基于单片机的音量控制电路设计 一、毕业设计(论文)进度 起止时间工作内容 2017.1.15—2017.1.30熟悉STC单片机的工作原理,掌握中断、串 口等使用方法; 2017.2.1—2017.2.28掌握数字电位器工作原理,熟悉数模信号控 制电路; 2017.3.1—2017.3.15 熟练掌握C51程序编程方法; 2017.3.16—2017.3.25熟悉PROTEL99SE软件工具,设计相关测 试电路(原理图及PCB图); 2017.3.26—2017.4.23 设计基于单片机的音量控制系统(包括相关 硬件、相关软件及调试部分等内容);

ABSTRACT 2017.4.24—2017.5.20 撰写毕业论文并准备答辩。 二、主要参考书目(资料) [1] 杨振江,单片机原理与实践指导,中国电力出版社,2008年8月 [2]杨振江,流行集成电路程序设计与实例,西安电子科技大学出版社,2009年2月 [3]杨振江刘男杨璐,单片机应用与实践指导,西安电子科技大学出版社,2010年3月 [4]张毅刚,单片机原理及接口技术(C51编程),人民邮电出版社,2011年8月 [5]张毅刚,新编MCS-51单片机应用设计(第3版),哈尔滨工业大学出版社,2008年4月 [6]谢维成杨加国,单片机原理与应用及C51程序设计,清华大学出版社,2009年7月 三、主要仪器设备及材料 PC机、单片机及相关设计系统。 四、教师的指导安排情况(场地安排、指导方式等) 每周指导一次以上。 五、对计划的说明

触摸式音量调节器电路

触摸式音量调节器电路 触摸式音量调节器电路 如图为触摸式音量调节器电路。该电路中VT4是一个VMOS管,RP是功放机的原音量电位器,M+和M-是音量调高和调低触摸片。触摸M-时,人体手指的皮肤电阻使VT2加上偏置而导通,V+通过VT2的e-c结和R2对C2充电,VT4的G极电位升高,其D-S极间阻抗减小,对功放输入的音频信号分流增加,音量减小。触摸M+时,皮肤电阻使VT3导通,C2通过R3和VT3的c-e结放电,VT4的G极电位降低,D-S极间电阻增大,对音频信号分流减小,音量增大。 停止触摸时,VT2、VT3皆截止,由于VMOS管的G极输入阻抗极高,所以C2上电压可以很长时间保持不变,也即VT4的D—s极间电阻可以长时间保持不变或微变,音量便在调定状态不变。由于c2可以平滑地充放电,且VMOS管具有较宽的线性放大区,所以触摸M+或M-时,音量呵以和缓平稳地升降。 VT1和R1、C1组成升机复位电路。刚开机时,R1、C1在VT1的b极产生一个负脉冲,VT1瞬间导通,迅速给C2充满电,VT4呈饱和导通状态,进入功放的音频信号被全部短路,功放无输入、输出从而避免了开机时对功放管和扬声器的冲击。 电路中,VT1~VT3的β值以大于150为好,VT4可以用BS107、3D03等小功率VMOS场效应管,C2应选用漏电流小的电容。V+取用功放机中的低压直流电源。M+和M-可用两个直径1cm左右的薄铜片,一分为二,相距1~2mm用万能胶粘贴于机正面合适位置,注意连线隐蔽。 R2、R3的阻值决定了C2的充、放电速度,也即决定了触摸时音量大小的变化速度,可适当调整之,使音量可从容地调高或调低。稳压管DW是为保护VT4而设,如果V+不超过12V,则DW可不用。 触摸式音量自动调节器电路图 CD4017:十进制计数器/脉冲分配器CD4017 是5 位Johns ON计数器,具有10 个译码输出端,CP、CR、INH 输入端。时钟输入端的斯密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制。INH 为低电平时,计数器在时钟上升沿计数;反之,计数功能无效。CR 为高电平时,计数器清零。Johnson 计数器,提供了快速操作、2 输入译码选通和无毛刺译码输出。防锁选通,保证了正确的计数顺序。译码输出一般为低电平,只有在对应时钟周期内保持高电平。在每10 个时钟输入周期CO 信号完成一次进位,并用作多级计数链的下级脉动时钟。CD4017 提供了16 引线多层陶瓷双列直插(D)、熔封陶瓷双列直插(J)、塑料双列直插(P)和陶瓷片状载体(C)4 种封装形式

51单片机AD89电路设计程序+原理图

AD0809在51单片机中的应用 我们在做一个单片机系统时,常常会遇到这样那样的数据采集,在这些被采集的数据中,大部分可以通过我们的I/O口扩展接口电路直接得到,由于51单片机大部分不带AD转换器,所以模拟量的采集就必须靠A/D或V/F实现。下现我们就来了解一下AD0809与51单片机的接口及其程序设计。 1、AD0809的逻辑结构 ADC0809是8位逐次逼近型A/D转换器。它由一个8路模拟开关、一个地址锁存译码器、一个A/D转换器和一个三态输出锁存器组成(见图1)。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

2、AD0809的工作原理 IN0-IN7:8条模拟量输入通道 ADC0809对输入模拟量要求:信号单极性,电压围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道

的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。 C B A 选择的通道 0 0 0 IN0 0 0 1 IN1 0 1 0 IN2 0 1 1 IN3 1 0 0 IN4 1 0 1 IN5 1 1 0 IN6 1 1 1 IN7 数字量输出及控制线:11条 ST为转换启动信号。当ST上跳沿时,所有部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(+),VREF(-)为参考电压输入。

基于PSD系列芯片的单片机电路设计

基于PS D系列芯片的单片机电路设计 王小梅 (安徽电力中心调度所,合肥230061) 摘要 简要介绍了如何使用PSD芯片来构成单片机系统的硬件电路。 关键词 PSD系列芯片 单片机 电路设计 中图分类号 T P13 C ircu it D esign i ng of Si ngle-Ch ip Processors Ba sed on PS D Fam ily Ch ips W ang X iaom ei (A nhu i E lectron ic P o w er Cen tra l,H ef ei230061) Abstract T h is paper in truduces how to design the circu its of single2ch i p p rocesso rs w ith PSD ch i p s. Keywords PSD fam ily ch i p s Single2ch i p p rocesso rs C ircu it design ing   1 传统的单片机系统的硬件构成对于传统的工业控制单片机系统的硬件构成来说,尽管典型的微控制器(如:8031,8098, 90C32,Z8,M68010,TM S320CXX等)内部已集成了计数器、小量的RAM和ROM以及有限的I O能力,但大多数的微控制器仍需外加EPROM、RAM、I O端口和存储器空间译码逻辑,有时还需外加锁存器对来自多路复用地址 数据总线的地址和数据进行分离。电路的设计者不得不根据各自的需要来选用芯片构成自己所要设计的电路,一旦电路设计完成,如果要进行修改则比较麻烦,如果采用以PSD系列芯片作为单片机的外围芯片就可以使上述问题得到很好的解决。 2 采用PSD芯片的单片机系统的硬件构成 W S I公司生产的一种高性能的现场可编程的微控制器外围集成电路(PSD)系列,将E PROM、RAM、PLD、地址锁存器和I O口集成在单一的芯片上。随着PSD系列芯片的出现和发展,设计者不必再费尽心思地考虑需要哪些离散器件来构成系统所需的存储器、译码电路、端口和地址锁存器了。这种芯片内功能的高度集中,使得小型系统的组件可降低到只有两个芯片:一片微控制器和一片PSD芯片。这种硬件设计的二片方案,既可简化电路设计,节省印制板空间,缩短产品开发周期,又可增加系统可靠性,降低产品功耗。当然,对于较大的系统,可配置多个PSD芯片,而不需要外加逻辑线路。将两个或多个PSD芯片通过水平级联(以增加总线宽度)或垂直级联(以增加子系统深度),来增加该系统的存储器空间、I O 端口和片选信号,用以达到系统所需的要求。 3 PSD系列芯片的内部结构和功能简介 PSD系列芯片(主要有PSD3、PSD4、PSD5、PSD6、PSD8、PSD100等)系列,目前  半导体技术1999年8月第24卷第4期

数字电路课设(数字式音量控制器)

数字电路课设(数字式音量控制器) 课程名称:数字式音量控制器学院:电气工程与自动化学院专业班级:08级4班 指导教师:姜海燕 学号:010800423 姓名:王旭州 日期:2011年1月16日 1 目录 一、设计任务 书 ..................................................................... . (3) 二、总体设计方案的选择与论 证 .......................................................... 3 1.总体设计方 案 ..................................................................... ................................... 3 2.系统方案选择与论 证 ..................................................................... ....................... 3 2.1档数选择电路设计方案的选 择 ..................................................................... ..... 3 2.2音量大小电路设计方案的选 择 ..................................................................... ..... 5 2.3译码显示电路设 计 .....................................................................

音响音量调节器

研究与实践9 音响音量调节器 一、研究目的 1.加强掌握音响音量调节电路的原理和分析方法。 2.学习掌握由集成运算放大器构成的音响音量调节器的电路知识。 3.掌握集成音量调节电路非线性失真的调节方法和分析方法,加深理解其在工程实践中的应用。 4.掌握查阅和使用电子器件、集成芯片等说明书的方法。 5.学习掌握混合前置放大电路的基本知识。 6.掌握和理解阻抗匹配的知识和意义。 7.在学习掌握本研究性实验提示内容的基础上,设计满足任务要求的电路,并实现电路的仿真、制作和调试。 二、预备知识 1.了解集成运算放大器的使用方法。 2.掌握电路阻抗匹配的分析和应用。 3.了解放大电路非线性失真的概念。 4.掌握放大电路电压增益调节的相关基础知识。 三、研究背景 收音机、录音机、电唱机、CD、DVD、mp3和电视机等各种与视觉和听觉有关的产品不断深入到每个人的生活中,成为距离个人生活最近的电器产品。与听觉有关的产品,其目的是为听音爱好者提供满足要求的声音效果,为了实现这个目的,需要对音频信号进行处理和功率放大等。因此,能满足人们要求的听音设备至少要包含以下几个基本部分:输入放大器、音量调节器、音调调节器和功率放大器。 音响音量调节器的主要作用是调节音响设备输入信号放大器的增益,从而调节音响设备的输出音量,满足听音爱好者个性化听音的需要。不同层次的音响设备,由于对听音效果的不同需求,其音量调节的功能要求也不同。当然,随着科技的发展和人们需求的不断提高,现代音响设备具有更加完备丰富的功能,音响音量调节器也不断向数字化、功能化和人性化方向发展。

本研究实验以音响设备的基本原理为依据,主要研究音量调节器的工作原理,并对混响的工作原理作简单的介绍,以便获得音响设备有关知识的基本认识。 四、实验仪器及元器件 双踪示波器 1台 双路可调直流稳压电源 1台 多波形信号发生器 1台 万用表 1只 集成运算放大器芯片(LM741) 1片 电阻 若干 电容器 若干 滑线变阻器 若干 开关 若干 导线 若干 五、研究提示(略) 六、研究内容或设计目标 设计一个音响音量调节器 任务要求: (1) 设计一个音响音量调节器的电路图。 (2) 仔细阅读LM741集成芯片说明书,选择合适的电路元件和电路元件参数。 (3) 对电路设计进行Multisim软件仿真。 (4) 整体电路制作与调试实现。 (5) 根据选择的元件参数,通过理论计算确定电路电压增益的取值。 (6) 以多波形信号发生器为信号源,在保持信号源输出电压恒定的情况下,通过示波器观测在不同的电压增益情况下,输入信号电压为何取值范围时,音响音量调节器没有非线性失真,并分析其原因。 (7) 实验测试并计算音响音量调节器的输入电阻和输出电阻。 (8) 改变输出电阻值(在原电路中的负载两端分别并联2Ω、10Ω、100Ω和1kΩ电阻),重新完成(6)中的实验测试,分析输出电阻变化时,音响音量调节器非线性失真变化情况,理解阻抗匹配的概念和意义。 七、注意事项

单片机电路图详解

单片机:交通灯课程设计(一)(2007-04-21 13:28:54) 目录 摘要--------------------------------------------------------- 1 1.概述 -------------------------------------------------------- 2 2.硬件设计----------------------------------------------------- 3 2.1单片机及其外围--------------------------------------------3 2.1.1单片机的选择-----------------------------------------3 2.1.2单片机的特点及其应用范围----------------------------- 3 2.1.3存储器的扩展----------------------------------------- 4 2.1.4内存的扩展------------------------------------------- 6 2.1.5MCS-52的I/O接口扩展--------------------------------- 8 2.2电路部分--------------------------------------------------11 2.2.1元器件选用-------------------------------------------11 2.2.2电路完成功能-----------------------------------------13 3.软件设计------------------------------------------------------15 3.1软件概述-------------------------------------------------15 3.2汇编语言指令说明-----------------------------------------16 3.3定时/计数器的原理----------------------------------------16 3.3.1定时/计数器的概述-----------------------------------16 3.3.2 8255A片选及各端口地址-------------------------------18 3.3.3信号控制码------------------------------------------18 3.3.4工作方式寄存器--------------------------------------19 3.3.5定时/计数器初值及定时器T0的工作方式----------------20

基于单片机C8051F410的精确信号模拟电路设计

基于单片机C8051F410的精确信号模拟电路设计 引言 在对某型发射装置进行检测时.需要提供三组以11.50伏为基准的精确直流电压信号。为配合测试流程,这三组信号需要在不同的时段取18个不同的直流电压值,幅度分布在9.33-12.13伏范围之内。原有的测试仪采用22个精密电阻组成的分压器,配合波段开关选择来产生这18种不同的精确直流电压信号。这种设计方法价格昂贵,并且不能实现自动化检测,需要通过手工拨动波段开关来实现测试步骤的转换。为了实现对发射装置的自动测试。采用微机技术设计了新型的检测仪。新的检查仪以CPU模块为核心,通过程序控制D/A转换器来产生这三组精确直流电压信号,简化了设计,降低了成本,实现了测试步骤的自动切换。但是在检测仪的使用过程中发现经常出现重测合格 (RTOK)现象,即检测仪测定某件装备不合格,但是更换仪器或重新开机后再对该装备进行测试时结果良好.这种状况严重影响装备单位的使用和维护。后经分析.认为主要是检测仪中产生这三组精确信号的模拟电路存在工作点漂移问题,精度不高。电压输出不稳定,从而导致测试状态不正确。为了解决这个问题,本文基于C8051F410单片机。采用PWM调制技术和负反馈测量技术设计了~种新的精确信号模拟电路,有效抑制了工作点漂移问题提高了模拟电路输出精度.解决了装备维护使用工作中存在的实际问题。 1 电路结构及原理 电路设计采用了闭环控制结构,如图l所示。电路以C8051F410单片机为核心.通过程序设定需要输出电压的初始参数,控制单片机内部的可编程计数器阵列(PCA)产生适当占空比的PWM波形,经二级信号放大电路和推挽式输出电路放大后得到精确直流电压信号。为了抑制-亡作点漂移并保证足够的输出精度,将输出信号经分压后引回至C8051F410单片机,利用单片机内部的数/模转换器测量该电压,并与初始设定参数相比较.通过程序调节PWM波形的占空比.从而得到具有高可靠性和较高精度的直流电压输出信号。 图1电路结构框图 本电路的基本思想就是利用单片机具有的PWM端口,在不改变PWM方渡周期的前提下.通过软件的方法调整单片机的PWM控制寄存器来调整PWM的占空比,从而得到所需要的电压信号。本电路所要求的单片机必须具有ADC端口和PWM端口这

单片机红绿灯电路设计

四川现代职业学院《单片机原理及应用》课程设计红绿灯实训报告 题目:红绿灯项目设计报告 系别:电子信息技术系 专业:电子信息工程技术 组员:贺淼、纪鹏、邵文稳 指导老师:陶薇薇 2014年7月12日

摘要 交通在人们的日常生活中占有重要的地位,随着人们社会活动的日益频繁,这点更是体现的淋漓尽致。交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。本系统采用STC89C52点单片机以及数码管为中心器件来设计交通灯控制器,实现了南北方向为主要干道,要求南北方向每次通行时间为30秒,东西方向每次通行时间为25秒。启动开关后,南北方向红灯亮25秒钟,而东西方向绿灯先亮20秒钟,然后闪烁3秒钟,转为黄灯亮2秒钟。接着,东西方向红灯亮30秒钟,而南北方向绿灯先亮25秒,然后闪烁3秒钟,转为黄灯亮2秒钟,如此周而复始。 软件上采用C语言编程,主要编写了主程序,中断程序延时程序等。经过整机调试,实现了对十字路口交通灯的模拟。

目录 (一)硬件部分--------------------------- 3 1.1 STC89C52芯片简介-----------------------3 1.2 主要功能特性---------------------------4 1.3 STC89C52芯片封装与引脚功能-------------5 1.4 基于STC89C52交通灯控制系统的硬件电路分析及设计-------------------------------------------10 (二)软件部分----------------------------14 2.1 交通灯的软件设计流程图-----------------14 2.2 控制器的软件设计-----------------------15 (三)电路原理图与PCB图的绘制-------------16 3.1 电路原理图的绘制(见附录二)----------16 3.2 PCB图的绘制(见附录三)---------------16 3.3 印刷电路板的注意事项------------------16 (四)调试及仿真---------------------------------------19 4.1 调试----------------------------------19 4.2 仿真结果------------------------------20 (五)实验总结及心得体会---------------------------21 5.1 实验总结-----------------------------------------------21 5.2 实验总结-----------------------------------------------22 附录程序清单---------------------------22

高低音调节电路

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。高保真扩音机大都装有音调控制器。然而,从保证信号传送质量来考虑,音调控制倒不是必须的。 一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。 所谓提升或衰减高、低音,都是相对于中音而言的。先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。 音调控制电路大致可分为两大类:衰减式和负反馈式。衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。所以噪声和失真大一些。负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。 1.衰减式音调控制电路。 典型电路如图: 衰减式音调控制典型电路 高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。W1旋到A点时高音提升,旋到B点时高音衰减。W2旋到C点时低音提升,旋到D点时低音衰减。组成音调电路的元件值必须满足下列关系:(1)R1≥R2; (2)W1和W2的阻值远大于R1、R2; (3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。

高品质音调电路的制作

高品质音调电路的制作 ——RC电路的应用案例 功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术——制作一款高品质的音调板来替换原机音调部分。 下面就向同学们介绍几款品质极佳的音调电路供爱好者选择。其中以LM4610N、LM1036N 最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代精品,建议首选LM4610N。 图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。(欲获更高的水准NE5532N可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。 图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效

音量控制器配置方案

音量控制器配置方案 1.音量控制器:控制该区域的广播放音时的声压,一般通过电阻或变压器分压式来实现;一般音量控制器有三种。 一、背景音乐音量控制器,它是二线制的,不需要消防广播的地方使用; 二、带消防广播强切的音量控制器(而这种带强切的音量控制器按它的强切方式分三线制与四线制);何为强切,当区域使用都将此音量控制器的音量调节到很少,甚至在关闭,当有紧急通知或消防时,控制机房通过发出一个紧急控制信号送到音量控制器上,强迫音量控制器进入广播,不受音量控制器的状态影响,进入广播状态。 三、选台音量控制器,顾名思义该音量控制器在可以控制音量的同时也可以选择不同的音乐,它也分消防与不需要消防强切二种,而这种选台音量控制器只能使用四线制方式进行强切。 1)、二线制音量控制器:不需要消防广播的区域则可以使用二线制音量控制器。机房到音量控制器是二芯广播线,音量控制器到喇叭也是二芯广播线,连接示意图如下: 2)、三线制强切音量控制器:需要消防广播的区域则可以使用三线制音量控制器。机房到音量控制器是三芯广播线(一根是公共线COM,一根是背景广播信号线N,一根是紧急广播信号线R),音量控制器到喇叭也是二芯广播线,中讯的PA系列功放与PA-B系列

功放可以直接三线输出,而中讯智能分区矩阵器PAS-316也是三线输出的,连接示意图如下:(注,三线制强切音量控制器比四线制的音量控制器稳定性要好。且布线也少) 3)、四线制强切音量控制器:需要消防广播的区域则可以使用四线制音量控制器。机房到音量控制器是二芯广播线(一根是公共线COM,一根是背景广播信号线)和二芯控制信号线(紧急控制信号24V),音量控制器到喇叭也是二芯广播线,中讯的PA系列功放可以直接四线输出,连接示意图如下:

级进式音量控制器

级进式音量控制器的设计与制作

音响器材绝少不了音量控制器! 音量控制器通常是一个可变电阻,用电阻分压电路将输入讯号衰减下来,达到控制音量的目的。 传统的音量控制器通常是用碳膜或金属皮膜电阻制作成片状,以具有弹性的接触片在片状电阻上滑动所构成。如果是二声道或四声道的音响,便须要使用双联或四联的联动型可变电阻才行。 然而自古以来,联动型可变电阻常有联动的各个可变电阻分压比例误差很大,这种联动误差会造成各声道的音量大小不一致的问题! 为了解决各声道的音量大小不一致的问题,以前的立体声音响除了音量控制旋钮之外,还会加上一个声道平衡控制旋钮来解决这个问题。 传统的音量控制可变电阻所以会发生分压比例误差很大,主要是制作技术的精密度上的问题。由于人耳对于音量的大小相对于讯号电压的大小,大致上是呈对数曲线的对应关系,所以音量控制可变电阻必须使用对数型(A型)可变电阻,而不是线性(B型)可变电阻。在制作上,两片电阻片的阻值变化不容易控制到完全一致,而且滑动的接触片的位置是否精确也是个问题! 另外,传统的可变电阻还有接触片在电阻片上滑动,造成电阻片磨损的问题!所以传统的可变电阻用久了,就算还可以使用,特性上也会变差。 级进式音量控制器 基于传统可变电阻的种种问题,使用开关来取代可变电阻,做为音量控制器是一个很不错的解决方案。毕竟开关接点的阻抗远远小于音量控制的分压电路的阻抗,就算用久了接点会有些磨损,也只是接点阻抗稍有变化而以,并不至于影响分压电路的比例。而且用精密的固定电阻做成分压电路,每一级的分压比例都可以很精确,完全解决传统可变电阻联动误差的问题。因此就有了级进式音量控制器的产生。 通常级进音量控制器是以 23段旋转式波段开关所构成。

音调电路

音调控制电路 音调控制电路 音调控制电路的作用主要是为了满足听音者自己的听音爱好,通过对声音某部分频率信号进行提升或者衰减,使整个的声场更加符合听音者对听觉的要求。一般音响系统中通常设有低音调节和高音调节两个旋钮,用来对音频信号中的低频成分和高频成分进行提升或衰减。比较高档的音响设备中多采用多频段频率均衡方式,以达到更细致地校正频响的效果。 高低音调节的音调电路,根据其在整机电路中的位置,可分为衰减式、负反馈式以及衰减负反馈混合式音调控制电路三种。这种电路一般使用高音、低音两个调节电位器;但在少数普及型机中,也有用一个电位器兼作高低音音调控制电路的。 图4所示为负反馈式高低音调节的音调控制 电路。该电路调试方便、信噪比高,目前大多数的普及型功放都采用这种电路。图中C1、C2的容量大于C3,对于低音信号C1与C2可视为开路,而对于高音信号C3可视为短路。低音调节时,当W1滑臂到左端时,C1被短路,C2对低音信号容抗很大,可视为开路;低音信号经过R1、R3直接送入运放,输入量最大;而低音输出则经过R2、W1、R3负反馈送入运放,负反馈量最小,因而低音提升最大;当W1滑臂到右端时,则刚好与上述情形相反,因而低音衰减最大。不论W1的滑臂怎样滑动,因为C1、C2对高音信号可视为是短路的,所以此时对高音信号无任何影响。高音调节时,当W2滑臂到左端时,因C3对高音信号可视为短路,高音信号经过R4、C3直接送入运放,输入量最大;而高音输出则经过R5、W2、C3负反馈送入运放,负反馈量最小,因而高音提升最大;当W2滑臂到右端时,则刚好相反,因而高音衰减最大。不论W2的滑臂怎样滑动,因为C3对中低音信号可视为是开路的,所以此时对中低音信号无任何影响。普及型功放一般都使用这种音调处理电路。使用时必须注意的是,为避免前级电路对音调调节的影响,接入的前级电路的输出阻抗必需尽可能地小,应与本级电路输入阻抗互相匹配。 图5所示为衰减式高低音调节的音调控制电路。电容C1、C2的容量大于电容C3、C4;对于高音信号C1与C2可视为短路,而对于低音信号则可视为开路;C3与C4对于高音信号可视为短路,而对于中低音信号则可视为开路,具体原理分析读者可自行参考图4的情况分析。

可编程中控系统-音量控制器TOP-VOL使用说明书V2015-067

TOP-VOL音量控制器说明书 功能特点: 1、采用最新32位内嵌式处理器; 2、采用美国高保真发烧级PGA2311数字音量调节芯片; 3、采用24bti/192KHz的顶级ADC芯片AK5392,动态范围及信噪比达到CD 音质; 4、4片24bit DSP并行处理,动态范围116dB,信噪比112dB; 5、具有8声道(四路左右声道立体声)输入; 6、每路输出信号带有EQ音质调节处理; 7、具有八声道同步或异步调音功能,支持7.1声道调音模式; 8、内置10个音场储存模式,方便快速调用; 9、能进行范围宽达0-83dB的调节; 10、内置shelf均衡器用以优化系统频率响应; 11、后级采用美国发烧级运放OPA2134组成非平衡、平衡转化及缓冲放大; 12、断电状态保存功能; 13、支持话筒音量调节; 14、音量淡出处理功能(音量是慢慢达到上次音量大小状态); 15、适用TOPTRON(拓创)和其他等中控系统使用; 16、适用于高档会议室、多功能厅、作战指挥中心、礼堂、超市背景音乐系 统等; 17、多重独立控制方式,手动按钮、遥控器、电脑软件、RS-232串口、网口; 18、高品质、大批量生产,有较高的兼容性和稳定性,有较高的性价比; 19、整机通过15KV抗静电测试 20、采用标准19英寸1U机箱,能直接上机柜; 按键操作: 按键Channel:4路通道切换,当选择到第1-4路时在显示屏右上角分别显示‘A’‘B’C’‘D’字符,当按5次时所有通道全选中,显示字符‘4’。 按键VOL+:选中的通道音量加,每次按下增加2dB。 按键VOL-:选中的通道音量减,每次按下减少2dB。 按键Mute:静音开关,当按下时,表示选中的通道静音。 串口指令: 串口:波特率9600,8个数据位,无校验位,1个停止位 1.加减音量通道音量值:FF 0A [X1] [X2] 0D [X1]:取值范围00~04。01~04为音量通道(Channel)1~4,00为所有音量通道[X2]: 00为静音 01为音量+ 02为音量- (每执行一次增加或减少1dB) 2.设置音量通道音量值:FF 0B [X1] [X2] 0D [X1]:取值范围00~04。01~04为音量通道(Channel)1~4,00为所有音量通道[X2]:取值范围00~53(16进制表示,相当于10进制的0~83) 3.保存和调用场景模式:FF 0C [X1] [X2] 0D [X1]:取值范围01~02。01为保存场景,02为调用场景 [X2]: 00~09为场景号,其中00为当前场景。

89C51单片机44键盘应用实例程序设计(含硬件仿真电路图)

89c51单片机4*4键盘应用实例硬件仿真电路图如下: 程序如下(编译成功): #include"reg51.h" #include"LCD1602.h" #include"hardware.h" char code tab[4][4]={ {'1','4','7','#'}, {'2','5','8','0'}, {'3','6','9','*'}, {'A','B','C','D'}}; //0到F的16个键植 void delay(unsigned char a) { unsigned char i; while(a--)

for(i=100;i>0;i--) ; } char kbscan() //键盘扫描 { unsigned char hang,lie,key; if(P3!=0x0f) delay(5); if(P3!=0x0f) { switch(P3&0x0f) { case 0x0e:lie=0;break; case 0x0d:lie=1;break; case 0x0b:lie=2;break; case 7:lie=3;break; } P3=0xf0; P3=0xf0; switch(P3&0xf0) { case 0xe0:hang=0;break; case 0xd0:hang=1;break; case 0xb0:hang=2;break; case 0x70:hang=3;break; } P3=0x0f; while(P3!=0x0f); key=tab[hang][lie]; } else key=0; return (key); } void main() { unsigned char temp; LCD_initial(); LCD_prints("piaoling"); P3=0x0f; P0=0xff; while(1)

数字音量调节器

数字音量调节器 使用说明书 User Manual Ver 中文 在使用本产品之前,请务必先仔细阅读本使用说明书 请务必妥善保管好本书,以便日后能随时查阅 请在充分理解内容的基础上,正确使用

目录 综合介绍 ?功能特性1 ?特性参数2 ?工业标准3 产品说明 ?结构与连接4 ?注意事项7 通讯协议 ?协议结构8 ?控制指令9 目 录

综合介绍:功能特性 1.LCD面板状态显示; 2.音量可调; 3.高低音调可调; 4.静音功能; 5.等响度选择功能; 6.立体声/单声道切换功能; 7.RS232串口控制; 8.结合快思聪,AMX等高端中控使用,可节省控制端口的成本; 9.使用低压电源,安全可靠; 1 综合介绍:特性参数

综合介绍: 工业标准 数字音量调节器,就其整体设计,包括线路板,电子元件等,并经过耐久性,高温环境,震荡, 2 使用控制界面(User Controls ) 2 x 输入通道状态LED 指示灯 2 x LCD 面板指令指示灯 1 x 参数设置旋钮开关 1 x 参数设置按键开关 使用环境(Operating Environment ) 温度范围 -5℃ 至 +40℃ 湿度范围 0 至 90% RH 尺寸(Dimensions ) 高 x 宽 x 深 H 45mm x W 183mm x D 160mm 重量(Weight ) 净重 load compatibility 输入电源 (Control Supply ) 12V 直流电源 控制输入通道数(Input Control Number ) 1 路 RS232 控制输出通道数(Output Control Terminals ) 1 x 直通RS232通道 音频通道 4 x 非平行音频接口输入 4 x 非平行音频接口缓冲输出

ATmega128 单片机硬件电路设计

ATmega128 单片机硬件电路设计 在本系统中,本小节主要讲ATmega128 单片机的内部资源、工作原理和硬件电路设计等。2.5.1 ATmega128 芯片介绍ATmega128 为基于AVR RISC 结构的8 位低功耗CMOS 微处理器。片内ISP Flash 可以通过SPI 接口、通用编程器,或引导程序多次编程。引导程序可以使用任何接口来下载应用程序到应用Flash 存储器。通过将8 位RISC CPU 与系统内可编程的Flash 集成在一个芯片内,ATmega128 为许多嵌入式控制应用提供了灵活而低成本的方案。ATmega128 单片机的功能特点如下:(1)高性能、低功耗的AVR 8 位微处理器(2)先进的RISC 结构①133 条指令大多数可以在一个时钟周期内完成② 32x8 个通用工作寄存器+外设控制寄存器③全静态工作④工作于16 MHz 时性能高达16 MIPS ⑤只需两个时钟周期的硬件乘法器(3)非易失性的程序和数据存储器① 128K 字节的系统内可编程Flash ②寿命: 10,000 次写/ 擦除周期③具有独立锁定位、可选择的启动代码区(4)通过片内的启动程序实现系统内编程① 4K 字节的EEPROM ② 4K 字节的内部SRAM ③多达64K 字节的优化的外部存储器空间④可以对锁定位进行编程以实现软件加密⑤可以通 过SPI 实现系统内编程(5)JTAG 接口(与IEEE 1149.1 标准兼容)①遵循JTAG 标准的边界扫描功能②支持扩

展的片内调试③通过JTAG 接口实现对Flash,EEPROM,熔丝位和锁定位的编程(6)外设特点①两个具有独立的预分频器和比较器功能的8 位定时器/ 计数器②两个具 有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器③具有独立预分频器的实时时钟计数器④两路8 位PWM ⑤ 6 路分辨率可编程(2 到16 位)的PWM ⑥输出比较调制器⑦ 8 路10 位ADC ⑧面向字节的两线接口⑨两个可编程的串行USART ⑩可工作于主机/ 从机模式的SPI 串行接口(7)特殊的处理器特点①上电复位以及可编程的掉电检测②片内经过标定的RC 振荡器③片内/ 片外中断源④ 6 种睡眠模式: 空闲模式、ADC 噪声抑制模式、省电模式、掉电模式、Standby 模式以及扩展的Standby 模式⑤可以通过软件进行选择的时钟频率⑥通过熔丝 位可以选择ATmega103 兼容模式⑦全局上拉禁止功能ATmega128 芯片有64 个引脚,其中60 个引脚具有I/O 口功能,资源比较丰富,下面对ATmega128 的各个引脚做简单介绍:VCC:数字电路的电源。GND:接地。端口(PA7..PA0)、(PB7..PB0)、(PC7..PC0)、(PD7..PD0)、(PE7..PE0)、(PF7..PF0)、(PG4..PA0):为8 位双向I/O 口,并具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,则端口被外部电路拉低时将

相关文档
最新文档