基于ANSYS的钢筋混凝土梁的裂纹损伤分析

基于ANSYS的钢筋混凝土梁的裂纹损伤分析
基于ANSYS的钢筋混凝土梁的裂纹损伤分析

题目:基于ANSYS的钢筋混凝土梁的裂纹损伤分析

学院: 理学院

专业: 工程力学

学号: 200907152008

学生姓名: 张帅磊

指导教师: 李明

日期: 二〇一三年六月

摘要

钢筋混凝土结构在设计荷载作用下,在其受拉区出现裂缝是难以避免的,过大的裂缝不仅影响结构的安全性还影响结构的耐久性,必须通过配筋来限制裂缝开展宽度。ANSYS中的SOLID65是专门为分析混凝土结构定义的单元,可以显示结构的应力应变,还可以显示裂缝的分布情况,为钢筋混凝土梁的设计提供了理论依据。

本文主要使用有限元分析软件ANSYS对钢筋混凝土梁进行分析,通过选择适当的单元,简化建模过程,获得在位移荷载作用下,梁的变形数据,和裂纹分布同时。为钢筋混凝土梁在工程实际应用中提供适当的数据参考,以便更快捷地进行施工材料的选取,缩短工期。

关键字:钢筋混凝土梁;有限元分析;ANSYS;裂缝

Abstract

Under design load, the reinforced concrete structures in the cracks in tensile area is difficult to avoid excessive cracks not only affects the safety of the structure also affect the durability of the structure, must through the reinforcement to limit the crack width in the ANSYS SOLID65 is defined specifically for analysis of reinforced concrete structure unit, can display the structure of the stress and strain, can also represent the distribution of cracks, provides a theoretical basis for the design of the reinforced concrete beam。

In this paper, we use finite element analysis software ansys analysis of reinforced concrete beams, by selecting the appropriate cell, simplify the modeling process, obtained under displacement load and deformation of the beam, and crack distribution for reinforced concrete beam at the same time to provide the appropriate data in the practical engineering application, in order to more quickly for the selection of construction materials, shorten the construction period

Keywords:reinforced concrete beam;finite element analysis;ansys; crack

目录

1 绪论 (1)

1.1 钢筋混凝土梁有限元分析的意义 (1)

1.2 有限元方法简介 (1)

1.3 钢筋混凝土有限元分析现状 (3)

1.4 ANSYS在钢筋混凝土梁中的运用 (4)

1.5 本文研究内容 (5)

2 材料本构关系模型和混凝土的开裂条件 (6)

2.1 钢筋的本构关系 (6)

2.2 混凝土的本构关系 (6)

2.3 混凝土的破坏准则。 (6)

3 钢筋混凝土梁非线性分析的几种单元 (8)

3.1 钢筋混凝土结构有限元模型的选择 (8)

3.1.1 分离式模型 (8)

3.1.2 组合式模型 (8)

3.1.3 整体式模型 (8)

3.2 混凝土单元-SOLID65 (8)

3.3 钢筋单元-LINK8 (9)

4 分离式钢筋混凝土梁算例 (10)

4.1 问题介绍 (10)

4.2 建立分析模型 (10)

4.3 施加约束条件和施加载荷 (12)

4.4 分析及后处理 (13)

4.4.1 设置载荷步结束时间和子载荷步 (13)

4.4.2 绘制结构变形图 (14)

4.4.3 裂缝开展情况 (14)

5 总结和展望 (16)

5.1 总结 (16)

5.2 展望 (16)

参考文献 (17)

致谢 (18)

1 绪论

1.1 钢筋混凝土梁有限元分析的意义

钢筋混凝土结构问世已有100 多年,由于它的经济性,耐久性,整体性,可模性以及耐火性使它在世界各国的土木工程中得到了广泛的应用。钢筋混凝结构是由钢筋和混凝土这两种性质迥异的材料组合而成的[1],混凝土性质复杂,应力应变关系是非线性的,在复杂应力条件下的本构关系仍不十分清楚,普遍适用的强度理论也未建立,钢筋与混凝土之间的粘结关系性质也很复杂。同时混凝土杭拉强度很低,在通常情况下钢筋混凝土结构总是带裂缝工作的,由于以上因素使得对钢筋混凝结构的有限元分析变得十分困难。利用大型有限元分析软件ANSYS 模拟钢筋混凝土梁自开始受荷直到破坏的全过程,分析裂缝的形成和发展机理,确定结构的开裂荷载、破坏荷载等结构的重要特性,为设计提供可靠依据[2]。

1.2 有限元方法简介

有限元法最初起源于结构分析,由结构力学的位移法发展而来,其核心思想就是分片逼近。

1956年美国航空工程师Turner和Clough为分析飞机结构,将结构力学的矩阵位移法原理推广到弹性力学的平面问题,获得巨大成功,分析结果与实验数据非常吻合。之后Clough又用这种方法处理了一些复杂的平面弹性力学问题并于1960年首次提出“有限单元法”这个名词。

早期的有限元法是建立在虚位移原理或最小势能原理基础上的,这对于人们理解有限元法的物理概念是很有帮助的。后来一些学者又提出一些新的变分原理和广义变分原理,并相继出现一些适应性更强、计算精度更高的新型单元模型如:应力混合单元、杂交单元、杂交混合单元和广义协调单元等等。数学家们则发展了微分方程的近似解法,包括有限差分方法,变分原理和加权余量法。在1963年前后,经过J.F.Besseling,R.J.Melosh,R.E.Jones,R.H.Gallaher,T.H.H.Pian(卞学磺)等许多人的工作,认识到有限元法就是变分原理中Ritz近似法的一种变形,发展了用各种不同变分原理导出的有限元计算公式。1965年O.C.Zienkiewicz和Y.K.Cheung(张佑启)发现只要能写成变分形式的所有场问题,都可以用与固体力学有限元法的相同步骤求解。1969年B.A.Szabo和G.C.Lee指出可以用加权余量法特别是Galerkin法,导出标准的有限元过程来求解非结构问题。

近50年来有限元方法已经有了巨大的发展,其应用领域已从单一的结构分析扩展到温度场分析、电磁场分析、流体流速场分析及声场分析等许多领域。有限元分析利用数学近似的方法对真实物理系统进行模拟。它是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的

(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段[8]。

有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣[9]。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同[3]。

有限元求解问题的基本步骤通常为:

第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。

第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。离散化应据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。同时应根据计算分析的精度,合理确定单元的尺寸和阶次。

第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。

为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解[10]。

第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。

第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。

简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

结构有限元分析的目的一般是:

(1)克服传统设计方法的不足。以往的设计大都是基于经验的,基于经验的设计在以往的产品开发中取得了巨大的成功,但也存在一些不足,一般只能解决行不行的问题,很难解决优不优的问题,并且经验的积累需要时间,有时也不可靠。

(2)优化设计。采用合理的,科学的方法对结构的性能进行分析,并在传统方法的基础上进行优化。

1.3 钢筋混凝土有限元分析现状

最早用有限元方法分析钢筋混凝土梁的学者是Ngo和Scordelis。他们于1967年在ACI杂志上发表了一篇有关这一内容的论文。在他们的研究中,主要还是基于线弹性理论,但是他们根据试验观察结果,将钢筋和混凝土划分为三角形单元,按平面应力问题和线弹性理论分析钢筋和混凝土的应力,针对钢筋混凝土结构的特点,在钢筋和混凝土之间附加了一种沿钢筋径向和切向都有一定刚度的粘结弹簧,从而可以分析粘结应力的变化情况:为了反映混凝土的开裂特性,提出了离散裂缝(discrete cracks)模式,即在梁中预先设置裂缝,裂缝的两边用不同的节点,裂缝间也附加了特殊的无几何尺寸的连接弹簧,以模拟混凝土裂缝间的骨料咬合力和钢筋的销栓作用。这一研究获得了很大的成功,引起了巨大的反响。自此以后,许多学者在这一领域研究,发表了大量研究成果。

1968年Nilsson发展了Ngo等人的工作,将钢筋与混凝土的非线性粘结关系和混凝土本身的非线性应力应变关系引入有限元分析,当钢筋开裂后就重新划分网格,把裂缝置于单元边界上。Franklin于1970年首先引入“弥散裂缝”的方法,将钢筋分布在混凝土单元中,假定钢筋与混凝土之间有效连接并可以自动跟踪裂缝的发展。这一方法为有限元分析实际钢筋混凝土结构提供了有力工具,获得了广泛应用。有些研究中还用拉伸强化(tension stiffening)的概念以考虑裂缝之间混凝土对受拉的贡献。由于弥散裂缝模式计算相对简单并具有较好的精度,这一模式已被应用于平面应力、平面应变、板弯曲、壳体、轴对称和三维实体问题之中。1969年已有学者用分层法来建立钢筋混凝土梁的弯曲单元,稍后Lin和Scordelis将分层法用于板壳单元等弯曲构件,假定每一个混凝土微元处于双向受力状态,裂缝沿板厚逐层的发展,这些单元已被用于核反应堆安全壳、存储容器和海洋石油平台等大型混凝土结构的非线性分析中。这一阶段的研究和应用都取得了很大的进展,但总的来说,不管是理论研究还是工程应用,都比较粗糙,处于探索阶段。

1977.1985年,在这个阶段中,研究工作主要可分为两个方面。一方面是继续在单元模式的选取、混凝土的本构关系和破坏理论、裂缝的模拟和拉伸强度、骨料咬合和销栓作用以及粘结方面进行深入的研究。另一方面是系统性的总结和交流工作,美国土木工程师协会组织了一个20人的委员会,花了五年的时间,总结和分析了钢筋混凝土结构有限元结构分析领域的大量研究资料和信息,在1982年5月发表了长达545页的综述报告,内容涉及本构关系和破坏理论、钢筋模拟及粘结的表示、混凝土开裂、剪力传递、

时间效应、动力分析、数值算例和应用;还在附录中发表了钢筋混凝土结构非线性的有限元程序。在这一时期,欧洲和亚洲的一些学者也在钢筋混凝土结构的有限元分析方面进行了大量的研究工作,1987年7月在联邦德国召开了“钢筋混凝土空间结构非线性性能”的国际会议;1981年,国际桥梁与结构工程协会在荷兰召开了“高等混凝土力学”的国际会议;1984年,在前南斯拉夫召开了:“混凝土结构的计算机辅助分析与设计”国际会议。同时,日本学者的研究工作在起步较晚的情况下很快的发展到了应用阶段,并且在与试验的结合方面取得了很大的进展。

1985年到现在,处在混凝土的本构关系的表达和试验研究方面继续进行更深入的研究之外,钢筋混凝土结构非线性有限元分析进一步向实用方向发展,努力把现有的分析方法和工程设计结合起来。同时,研究的领域也进一步扩展到动力、冲击荷载下的非线性分析,分析模型和材料参数成为预测钢筋混凝土结构在动力和冲击荷载下性能的研究热点;高强混凝土和受约束混凝土结构的非线性有限元分析也受到了重视;材料非线性、几何非线性以及时间因素的综合考虑也融入了钢筋混凝土结构非线性有限元分析。在混凝土结构中,与时间因素有关的效应包括荷载、预应力、环境因素以及随时间推移而变化的徐变、收缩、老化、热效应和预应力筋的松弛等。在这一时期中,我国在钢筋混凝土结构非线性有限元分析的大部分领域开展了研究工作,取得了很大的进展。我国虽然没有专门召开过钢筋混凝土非线性有限元分析方面的会议,但这方面的研究工作在计算力学、结构工程、地震工程等全国性的学术会议中有所反映,也出版了钢筋混凝土结构非线性有限元分析方面的专著,反映了我国在这一方面的研究成。

目前可以说钢筋混凝土的有限元分析己经到了相当实用的阶段。欧洲混凝土委员会1990年的混凝土模式规范己经将混凝土有限元方法纳入其有关条文。我国水工钢筋混凝土结构也在附录中写入了有关有限元分析的条文。其主要用途如下:

a)用于重大结构,如核电站的安全壳、海上采油平台、大型水利工程结构的静力分析,尤其是动力分析,具有极其重要的意义。既可以检验设计,又可以优化设计;既具有经济价值,又具有研究价值。

b)用于结构或构件的全过程分析,对结构或构件的性能及其实际的极限荷载有更深入、正确的了解,能揭示出结构的薄弱环节,能对其可靠性做出正确的评价。

1.4 ANSYS在钢筋混凝土梁中的运用

ANSYS是一个融结构、热、流体、电、磁、声学于一体的大型通用有限元软件,作为目前最流行的有限元软件之一,它具备功能强大、兼容性好、使用方便、计算速度快等优点,成为工程师们开发设计的首选,广泛应用于一般工业及科学研究领域,而在机械结构系统中,主要在于分析机械结构系统收到附在后产生的反应,如位移、应力、变形等,根据该反应判断是否符合设计要求。

在国外,Antonio F. Barbosa教授运用ANSYS对的钢筋混凝土简支梁作了三维非线性分析。他在混凝土建模中采用线弹性和理想弹塑性模型,破坏准则则分别选用了

V on.mises和Drucker.Prager模型,在钢筋单元的处理上分别采用分离式和弥散式两种模型,成功模拟了混凝土梁在均布荷载作用下的荷载一挠度曲线。美国佛罗里达交通部结构研究中心在针对纤维布加固混凝土柱试验的研究报告中,将试验结果与ANSYS分析的有限元结果进行比较,也获得了满意的结果。在国内,ANSYS也已广泛应用于钢筋混凝土结构的分析,清华大学的江见鲸教授等利用ANSYS成功模拟分析了多种复杂应力条件下的混凝土结构[4]。

1.5 本文研究内容

1.介绍钢筋混凝土粱在ANSYS中精确建模的理论基础。

2.运用ANSYS软件建立钢筋混凝土梁的精确模型,并对其进行分析。

3.在确定了有限元模型的基础上,详细介绍了ANSYS中专门用于模拟混凝土或钢筋混凝土结构的SOLID65单元以及钢筋单元LINK8。

4.在分析实例中,对钢筋混凝土粱加载到破坏整个过程作了有效模拟,得到了构件裂缝随荷载的开展情况,初步探讨了构件在荷载作用下的强度、变形特征。

2 材料本构关系模型和混凝土的开裂条件

应用有限单元法分析钢筋混凝土结构时,所得到的结果的可靠性,在很大的程度上取决于材料模式的真实性。因此,为了获得符合实际的有限元分析结果,必须通过试验精心的确定材料的本构关系[5]。

2.1 钢筋的本构关系

在有限元分析中,钢筋应力—应变曲线一般可以分成三段:弹性段,屈服平台和强化段。2.1所示,弹性段是以钢筋弹性模量为斜率的直线;屈服平台式斜率为零的水平线;强化段可以用曲线或者直线。

图2.1

2.2 混凝土的本构关系

1.混凝土在单向受压时一般的应力一应变关系见图

2.2a

图2.2 混凝土在单向受力时的应力应变关系

2混凝土在单向受拉时一般的应力一应变关系见图2.2b

2.3 混凝土的破坏准则。

混凝土在复杂应力状态下的强度要考虑不同应力分量之间的相互影响,一般也可用

混凝土的应力状态气的函数来表示,即:

f(σij,k1,k2,…,k n)=0 (2一3)

式中:k1,, k2,..., k n,为反映材料性质的参数,由材料强度试验结果确定,包含有n个参数的破坏准则称为n参数破坏准则,为了能更好地描述混凝土强度性能,William.Warnke 五参数强度准则代表的破坏面与混凝土材料的实际破坏面最为接近[6]。

3 钢筋混凝土梁非线性分析的几种单元

3.1 钢筋混凝土结构有限元模型的选择

用有限元方法来分析钢筋混凝土结构与一般固体力学中的有限元分析在基本原理与方法上是一样的,但如何进行结构离散化,又有其特殊性。因为钢筋混凝土结构由钢筋与混凝土两种不同的材料所组成,在建立钢筋混凝土结构有限元模型必须考虑材料的不均匀性和其他因素等的影响。

一般钢筋混凝土结构的有限元模型主要有三种方式:分离式、组合式、整体式,下面我们分别介绍三种钢筋混凝土有限元模型。

3.1.1 分离式模型

在分离式模型中,分别选用不同的单元来模拟钢筋和混凝土。由于钢筋是一种细长材料,其横向抗剪强度可以忽略不计,我们可以将钢筋单元作为线单元来模拟。受到外力作用后,构件中的钢筋与混凝土之间在相互约束的同时会产生相对滑移,可以在钢筋与混凝土之间添加粘结单元以模拟钢筋与混凝土之间的粘结与滑移。如果认为钢筋与混凝土之间粘结紧密,不会出现滑移,可视为刚性粘结,不需添加粘结单元。

分离式模型可以揭示钢筋与混凝土之间相互作用的微观机理,这是整体式模型无法做到的。在需要对结构构件内微观机理分析研究时,分离式模型的优点显得尤为突出。

3.1.2 组合式模型

当钢筋和混凝土之间粘结较好,可认为两者之间无滑移时,可以采用组合式模型。此时认为钢筋埋置于混凝土单元中,钢筋与混凝土之间完全粘结,两者位移应变完全协调一致,钢筋成为这种单元的一个组成部分。

3.1.3 整体式模型

在整体式有限元模型中,将钢筋弥散于整个单元当中,并视单元为连续均匀材料。与分离式相比较,整体式有限元模型的单元刚度矩阵综合了钢筋和混凝土单元的刚度矩阵,这一点与组合是相同。但与组合式不同的是它不是分别求出钢筋和混凝土对单元刚度的贡献然后组合,而是一次求得综合的刚度矩阵,把弹性矩阵改为由钢筋和混凝土两部分组成。整体式模型的缺点显而易见,它无法揭示钢筋与混凝土之间相互作用的微观机理。

3.2 混凝土单元-SOLID65

Solid65单元用于含钢筋或不含钢筋的三维实体模型。该实体模型可具有拉裂与压碎的性能。在混凝土的应用方面,如用单元的实体性能来模拟混凝土,而用加筋性能来模拟钢筋的作用[7]。该单元具有八个节点,每个节点有三个自由度,即x,y,z三个方向的线位移;还可对三个方向的含筋情况进行定义。具有模拟混凝土材料的开裂、压碎、塑性变形和蠕变的能力。

1 Solid65单元强化模型(开裂压碎前)

在单向应力状态下,如钢筋的应力应变曲线有弹性阶段、屈服阶段,强化阶段和破坏阶段等,若在强化阶段卸载并再次加载时其屈服应力会提高。而在复杂应力状态时,就需要强化准则定义材料进入塑性变形后的后屈服面的变化(包括大小、中心和形状),即在随后的加载或卸载时,材料何时再进入屈服阶段。

Solid65单元可以用弹性或者弹塑性的本构模型来描述混凝土受压的应力应变关系。可用V on mises或者D.P模型。当采用V on mises屈服准则时,可以选择多线性随动强化MKIN及多线性等向强化模型MISO。使用D.P屈服准则时,则只能是理想弹塑性模型。

屈服准则规定材料开始塑性变形应力状态,它是应力状态的单值度量,以便和单轴状态比较。AYSYS主要是使用V on mises屈服准则。

2, Solid65单元破坏和失效准则(检查混凝土开裂压碎)

混凝土的破坏准则从单参数到五参数数十个模型,或借用古典理论,或基于试验结果,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大。在ANSYS中混凝土采用的是Willam.Wanke:五参数破坏准则[8]。

3.3 钢筋单元-LINK8

钢筋混凝土结构中的钢筋可用Link8单元来模拟,这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X, Y, Z方向的平动。单元不承受弯矩,只承受单轴拉压作用。单元具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。

3.1 LINK8空间杆单元

4 分离式钢筋混凝土梁算例

4.1 问题介绍

如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ

12,箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图4.1。

图4.1

对于梁中所采用的所有钢筋,弹性模量为52.110MPa ?,抗拉强度设计值210MPa ,密度337.810/kg m ?,泊松比为0.3。

根据国标GB50010,混凝土的弹性模量为42.5510MPa ?,混凝土的轴心抗压强度设计值为9.6MPa ,轴心抗拉强度设计值为1.10MPa 。相当于峰值压应力(抗拉强度设计值)的应变以及极限压应变分别为0.002和0.0033。

分析梁的跨中截面发生5.0cm 竖向位移时,梁内的应力分布以及总体变形情况[9]。

4.2 建立分析模型

1.选取单元类型

建立分离式有限元模型,混凝土采用Solid65单元,钢筋采用Link8单元,不考虑钢筋和混凝土之间的粘结滑移。创建分离式模型时,将几何实体以钢筋位置切分,划分网格时将实体的边界定义为钢筋既可。加载点以均布荷载近似代替钢垫板,支座处则采用线约束。

2.设置实常数

在ANSYS 中,有很多类型的单元,例如梁单元、杆单元,在图形上是以含有两个节点的线段来表示的,截面的形状无法以图形显示。因此我们需要通过一些常数来定义梁、杆的横截面积、惯性矩等等,这些常数成为实常数。

3.定义材料属性

(1)选择单位制

在分析建模时,不需要输入数据的单位。数据的单位是根据数据之间的大小确定的。只要保证输入的数据都使用同一单位制,得到的结果也就是用这个单位制表示。因此我

们在选取一个新的材料或定义材料的特性参数时,必须首先确定这些参数所使用的单位制。如果单位制不同,材料特性参数的数值变化将会很大,有的甚至相差几个数量级。参数的数值如果与结构的外形尺寸也相差很多,在数值求解过程中会造成分析结果变坏。ANSYS提供了五种单位制供用户选择,其中SI为国际单位制,也是程序缺省的单位制。同时还可以使用用户自己定义的单位制[9]。

(2)选取材料模型

对于线性分析来说,我们一般只需定义材料的弹性模量、泊松比即可。对于非线性弹塑性分析除了定义以上参数之外,我们还必须选择材料进入塑性后的强化模型。强化模型确定之后,流动准则也就随之确定了。分析过程中用到的材料可以从程序提供的材料库中选取,也可以自行定义。混凝土是脆性材料,它的变形特性不同于金属材料,而与材料体内微裂缝的扩展有关。但从宏观上来看,仍然可以假定混凝土的应力.应变特性由第一阶段的弹性变形,以及第二、三阶段相应的非线性加工强化部分组成。在非线性阶段,总的应变分为弹性部分和塑性部分[10]。由于混凝土材料体内微裂缝的扩展引起的“塑形应变”被定义为一个不可恢复的变形。

由此可得到钢筋的应力应变关系如图4.2所以

图4.2应力应变曲线图

3.有限元建模

1.单元尺寸以0.05左右为宜,对体积划分网格后可得到混凝土的模型,如图4.3

2.建立纵筋单元和架立钢筋单元如图4.4

图 4.4

4.3 施加约束条件和施加载荷

位移约束:在这一步骤当中,首先要对有限元模型添加位移条件,即施加位移荷载(Displacement)。我们将柱端底面的自由度完全约束,图4.5给出了柱底面位移约束和荷

载的示意图[11]。

图 4.5

4.4 分析及后处理

4.4.1 设置载荷步结束时间和子载荷步

设置载荷步结束时间和子载荷步,设置收敛准则,程序将连续进行平衡迭代直到满足收敛准则(或者直到达到允许的最大平衡迭代数)。我们可以用缺省的收敛准则,也可以自己定义收敛准则[12]。在确定收敛准则时,ANSYS程序提供了一系列的选择,收敛检查可以建立在力,力矩、位移、转动或这些项目的任意组合上并且每一个项目都允许有不同的收敛容限值。

通常以力为基础的收敛准则提供了收敛的绝对量度,而以位移为基础的收敛准则仅提供了表观收敛的相对量度。因此一般总是使用以力为基础(或以力矩为基础的)收敛准则。当然我们可以根据需要增加以位移为基础(或以转动为基础的)收敛准则来检查计算结果,但是通常不单独使用它们。设置平衡迭代次数为50,求解。在此过程中会看到计

算收敛曲线。如图4.6

图 4.6

4.4.2 绘制结构变形图

首先设置位移缩放系数为一百,绘制结构变形图。如图4.7

图 4.7

图4.2.6给出了钢混凝土粱加载后的变形图。我们可以看出,加载处附近的混凝土向外

鼓曲,混凝土粱沿加载方向产生了一定的纵向位移(混凝土柱在试验荷载下只可能产生

微小位移,ANSYS为了将变形显示得更为直观,对产生的位移进行了放大处理)[13]。

4.4.3 裂缝开展情况

ANSYS在裂缝的处理形式上采用弥散裂缝模型,即认为有限元单元中的主拉应力超过混凝土极限抗拉强度的区域将会出现许多平行的微小裂缝而代替实际加载过程中产生的单独裂缝[14]。ANSYS将记录从开裂直至构件破坏每一个载荷步的裂缝开展形态,

并用一系列圆圈来表示这些微小裂缝,圆圈的法线方向与主拉应力的方向一致。

图 4.8

如图4.8所示,可以看出梁底部跨中的粗线条表示裂缝出现的位置及开展深度,可以

看出,跨中截面和梁底部裂缝较多,这与钢筋混凝土梁的试验结果是吻合的[15]。

5 总结和展望

5.1 总结

通过对论文结果的分析讨论,可以得到以下结论:

1.合理建立有限元模型并恰当选取参数后,可以对钢筋混凝土结构作准确的模拟,从而达到降低劳动投入,减轻试验工作量,提高效率的目的。

2.钢筋混凝土有限元分析法能够给出结构内力和变形发展的全过程;能够描述裂缝的形成和发展,以及结构的破坏过程及其形态;能够对结构的极限承载能力和可靠度做出评估;能揭示出结构的薄弱部位和环节,以利于优化结构设计。

3.在钢筋混凝土粱的实例中有限元计算的极限荷载和极限应变均低于试验值,在有限元分析中由于混凝土严重变形而过早退出计算,其计算偏差略大。原因除了混凝土材料自身的离散性以外,可能是山于有限元分析中弹模是由经验公式得出(试验未测量混凝土的弹性模量),导致定义的混凝土本构关系与实际情况有一定差异。

4.成熟的有限元软件能够较真实的模拟试件的实际受力状况,同时可以弥补试件数量不足的局限性,有利于进行全面地研究

5.2 展望

通过对论文的总结分析,我们还可以从以下几个方面深入研究:

1.精确有效的材料模型

混凝土作为一种非均质材料,影响其力学特性的因素很多,在试验中表现的力学性能有很大的变异性。如果要考虑非线性因素,需要引入许多参数,而这些参数之间又互相影响。一个精确有效的材料模型包含的参数不应过多,这也是定义混凝土材料模型的难点。ANSYS中仅提供了V on.mises和DP两种应用于混凝土材料的弹塑性本构模型,利用ANSYS良好的开放性,借助ANSYS提供的二次开发功能定义满足实际要求的材料本构模型,将能得到更精准分析结果。

2.添加粘结单元

在有限元分析实例中,均采用了组合式模型,即认为钢筋与混凝土之间粘结较好,认为两者之间无相对滑移。如果在钢筋与混凝土之间添加粘结单元,就能模拟钢筋与混凝土之间的粘结和滑移,从而揭示钢筋与混凝土之间相互作用的微观机理。

midas FEA建筑例题集 钢筋混凝土梁裂缝分析——侯晓武

Step 00 目录 钢筋混凝土梁裂缝分析?混凝土裂缝模型介绍 ?模型概要 - 单位: kN, m - 各向同性非线性材料 - 钢筋单元 - 实体单元 ?荷载和边界条件 - 自重 - 恒载 - 约束 - 分析工况 ?输出结果 -变形 - 钢筋应力

?裂缝模型 (1)分离式裂缝模型: 当应力值达到开裂应力时,混凝土开裂,单元将在节点两侧分离,裂缝成为单元与单元之 间的边界。 分析过程需要不断调整单元的网格划分; 可以模拟裂缝的开展及计算裂缝的宽度。 多用于分析只有一条或几条关键裂缝的素混凝土或少筋混凝土结构。 132 钢筋混凝土梁裂缝分析

?裂缝模型 (2)弥散式裂缝模型: 当应力值达到开裂应力时,则垂直于拉应力的方向生成若干条裂缝。通过修改材料本构模型来考虑裂缝的影响; 无需修改单元网格,易于有限元程序实现,应用广泛。 对正常配筋构件,该裂缝模型结果更接近工程实际。

?裂缝模型 (3)断裂力学模型: 研究带裂缝构件在各种条件下裂缝的扩展、失稳和断裂规律; 主要集中于单个裂缝的应力应变场分布问题; 对于裂缝间相互影响问题,研究还不成熟。 ?裂缝数值分析方法 (1)分解应变模型 总应变=材料应变+裂缝应变; 材料应变:弹性应变,塑性应变,徐变,热应变; (2)总应变模型 不分离各种应变,含裂缝的受拉受压分析中使用同一个本构关系; 易于定义非线性特性,易于理解和应用。 钢筋混凝土梁裂缝分析 133

?总应变模型 (1)固定裂缝模型 混凝土开裂后,裂缝方向保持不变 (2)转动裂缝模型 裂缝方向始终保持与主拉应变方向垂直,因而随主拉应变方向变化

基于ANSYS的三维贯穿裂纹的断裂参数计算

基于ANSYS的三维贯穿裂纹的断裂参数计算 据一些工业化国家统计,因材料和结构的破坏所造成的损失占国民经济生产总值的8%-12%多。破坏事故所造成的人员伤亡的损失更不可估量。我国作为一个发展中国家,在这方面的情况比西方发达国家更严重。因此无论是为了减少破坏事故的损失还是研发满足现代工业所需要的新材料,都要求对材料的破断过程有科学的、全面的、定量化的认识。 三维裂纹作为工程中常见的裂纹形式,早在六十年代初就有不少研究者开始研究,到现在已有大量的文献资料论及这一问题,出现了一些有特点的分析方法。工程上常见的表面裂纹的断裂分析,由于其实质是三维问题,也几乎同时开始被人们所关注。三维裂纹问题的危害极大,断裂造成了大量的灾难性事故发生,这使得断裂力学在机械工程、海洋工程、核工程,特别是今天的航空航天工程中受到更广泛的重视和深入研究。 因此对含三维裂纹结构断裂特性尤其对三维裂纹体的应力强度因子的研究有重要的现实意义。本文使用ANSYS成功的计算了三维贯穿裂纹的应力强度因子,为计算三维裂纹提供了一种便捷方式。 1.模型的建立 图1 三维贯穿裂纹模型

本文三维裂纹模型长度为L,高度为H,宽度为W,裂纹半长为a,裂纹位于模型的中心部位。几何参数见表1。模型的为线弹性材料,其弹性模量为2.1E11Pa,泊松比为0.3。模型的边界条件为:底端固定,顶端承受拉应力σ为2E6Pa。 表1 模型的几何参数 本文采用二维奇异单元PLANE183建立二维的裂纹模型,然后通过拉伸并使用三维奇异单元SOLID186来建立三维贯穿裂纹模型。图2-图5给出了二维裂纹模型和三维裂纹模型。 在13.0中对应力强度因子的计算增加了一种计算方法即互动积分法(Interaction Integrals ),这种方法与计算J积分的主域积分法类似。在二维问题进行面积分,在三维问题中进行体积分来获得应力强度因子。这种方法与传统的位移扩展法相比精度高,需要的单元数少。 图2 二维裂纹模型图3 二维裂纹模型 裂纹尖端网格

混凝土习题集—8—钢筋混凝土构件的变形和裂缝宽度验算

第八章混凝土构件变形和裂缝宽度验算 一、填空题: 1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的、性。 2、规范规定,根据使用要求,把构件在作用下产生的裂缝和变形控制在 。 3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的超过混凝土的抗拉强度,就将在该截面上产生方向的裂缝。 4、平均裂缝间距就是指的平均值。 5、平均裂缝间距的大小主要取决于。 6、影响平均裂缝间距的因素有、、、。 7、钢筋混凝土受弯构件的截面抗弯刚度是一个,它随着和而变化。 8、钢筋应变不均匀系数的物理意义是。 9、变形验算时一般取同号弯矩区段内截面抗弯刚度作为该区段的抗弯刚度。 10、规范用来考虑荷载长期效应对刚度的影响。 二、判断题: 1、混凝土结构构件只要满足了承载力极限状态的要求即可。() 2、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。() 3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。() 4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。() 6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。() 7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。() 8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规范允许的范围之内。() 9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、规范控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。() 11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。() L主要取决于荷载的大小。() 12、平均裂缝间距 cr 是所有纵向受拉钢筋对构件截面的配筋率。() 13、有效配筋率 te 14、平均裂缝宽度是平均裂缝间距之间沿钢筋水平位置处钢筋和混凝土总伸长之差。

钢筋混凝土裂缝的产生原因及解决措施

钢筋混凝土裂缝的产生原因及解决措施 钢筋混凝土结构是工程主体质量的有效保证,在施工过程中即使采取可一些措施,但是混凝土裂缝的产生一直不能杜绝,有的裂缝可能很细,甚至可能用肉眼是看不见的,这样的裂缝的存在一般对工程没有什么危害;但是,有些裂缝是的形成会对建筑造成一些影响,甚至是导致坍塌事故的发生,所以对于钢筋混凝土裂缝的预防治理措施是非常必要的。 一、钢筋混凝裂缝类型 1、温度裂缝 顾名思义,温度裂缝是由温度而导致出现的裂缝。混凝土中的水泥会在其硬化的期间放出大量的热,导致其内部的温度一直在上升,所以会对表面产生应力,在后期降温的过程中,混凝土的内部又会有应力的产生。在混凝土的抗裂能力抵不过这些应力的共同作用,就会有裂缝产生。由此可以看出,要对温度应力的变化有所掌握,这样才能更好的控制由于温度导致裂缝的产生。 温度裂缝没有固定的走向,当混凝土大面积产生裂缝时候,其走向是各个方向的。受温度变化的影响,裂缝的宽度都是大小不同的,一般是夏天比较窄,冬天比较宽。由于高温膨胀导致的裂缝是呈两头细中间粗,而由于低温冷缩导致的裂缝的粗细变化不是特别明显,这两种裂缝会造成腐蚀钢筋,降低混凝土的抗冻融能力、抗渗能力等的恶劣影响。 2、沉陷裂缝 产生沉陷裂缝主要是因为结构地基的土质不均匀、过度松软、进行回填时回填土不实;或者是在模板刚度不足的情况下,模板支撑的间距过大或者是支撑的底部有松动就会导致裂缝的出现,尤其是在冬天,东土上的模板会因为解冻后造成不均匀的沉降,从而导致混凝土产生裂缝。这种裂缝都是比较深,且具有贯穿性,而其裂缝的走向与沉陷的情况相关,而温度的变化不会对裂缝的宽度造成很大的影响。 3、化学反应引起的裂缝 化学反应引起的裂缝主要是指碱骨料反应引起的裂缝与钢筋腐蚀所引起的裂缝。搅拌混凝土产生的碱性离子会与和一些活性的骨料发生化学反应,并且会吸收周围环境中的水蒸气,从而体积膨大,致使混凝土出现裂缝。 二、裂缝产生的主要原因 1、材料 混凝土产生裂缝的常见原因之一就是材料的问题,比如说水泥、石头、砂浆等的质量不过关,或者是比例比重上不合理。把握好混凝土材料质量的这一关,并进行合理的配备,才能从根本上保证钢筋混凝土的质量。 2、施工 在施工方面可以导致混凝土产生裂缝的原因有很多,笔者只对主要的原因进行分析。混凝土作为一种人造的混合型材料,其均匀性与密室的程度是混凝土好坏的重要标志,

混凝土地面产生裂缝的原因分析及处理措施

混凝土地面产生裂缝的原因分析及处理措施 钢筋混凝土结构破坏倒塌的工程质量事故,绝大多数是从裂缝的扩展开始的;其实,只要 仔细观察不难发现,普通的钢筋混凝土结构一般都是带裂缝受力工作的,假如借助仪器, 甚至还可以发现裂缝是时刻发生变化的,随着裂缝的发展变化,结构构件的耐久性和适用 性会不同程度的降低,严重的甚至会导致结构构件的破坏;所以研究裂缝的形态、分析裂 缝产生的原因和裂缝对结构功能的影响并加以控制是十分重要的。 一、混凝土裂缝种类: 外荷载引起的裂缝:外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分 析就可以得出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十 字或米字集中于跨中;转角阳台或挑檐板裂缝位于板面起始于墙板交界以角点为中心成米 字形向外延伸。受力裂缝,其裂缝与荷载有关,预示结构承载力可能不足或存在严重问题。 温度收缩裂缝:温度收缩裂缝是一种建筑最常见的裂缝,主要是由于结构的温度变形及材 料的收缩变形受阻及应力超标所致。现浇板收缩裂缝主要集中在房屋的中部和房屋四周阳 角处,裂缝成枣核状止于梁边。房屋四周阳角处的房间在离开阳角1米左右,即在楼板的 分离式配筋的负弯矩筋以及角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝。其 原因主要是砼的收缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等 多种因素作综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方 向剪力墙或刚度相对较大的楼面梁约束,限制了楼面板砼的自由变形,因此在温差和砼收 缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的未端结束处)首先 开裂,产生45度左右的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在 有水的情况下会发生渗漏,影响正常使用。 地基不均匀沉降产生的裂缝:由于地基沉降不均匀使上部结构产生附加应力,导致楼板裂缝。不均匀沉降产生的裂缝多属贯穿性裂缝,其走向与沉降情况有关。 使用商品混凝土引起的收缩裂缝:商品混凝土由于采用泵送,混凝土的流动性要好,因此 一般商品混凝土的坍落度都较大,水灰比较大,如保证水灰比则要增加水泥用量,这样就 使混凝土在硬化阶段出现收缩裂缝。裂缝的产生大多在砼浇筑初期,即浇捣后4~6小时 左右,裂缝形状不规则且长短不一,互不连贯,产生裂缝部分大多为水泥浮浆层和砂浆层。有于砼坍落度偏大,表面经过振捣形成一层水泥含量较多,收缩性较大的水泥浮浆层及砂 浆层一方面由于砼初凝时表面游离水分蒸发过快产生急剧的体积收缩,而此时砼早期强度 较低(面层为砂浆层强度更低),不能抵抗这种变形应力而导致砼表面开裂,另一方面由于 面层浮浆或砂浆的收缩值比基层砼大许多,而造成变形值不同导致面层开裂。 预埋管线引起的楼板裂缝:预埋线管处沿管线方向出现表面裂缝;局部出现呈发散状或龟 裂状的不规则裂缝。预埋线管,特别是多根线管的集散处是截面砼受到较多削弱,从而引

ansys的断裂参数的计算

ANSYS的断裂参数的计算 1 引言 断裂事故在重型机械中是比较常见的。一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。 2 断裂参量数值模拟的理论基础 对于线弹性材料裂纹尖端的应力场和应变场可以表述为: (1) 其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。 图1 裂纹尖端的极坐标系

(2) 应力强度因子和能量释放率的关系: G=K/E" (3) 其中:G为能量释放率。 平面应变:E"=E/(1-v2) 平面应力:E=E" 3 求解断裂力学问题 断裂分析包括应力分析和计算断裂力学的参数。应力分析是标准的ANSYS线弹性或非线性弹性问题分析。因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。如图2所示,图中给出了二维和三维裂纹的术语和表示方法。 图2 二维和三维裂纹的结构示意图 3.1 裂纹尖端区域的建模 裂纹尖端的应力和变形场通常具有很高的梯度值。场值得精确度取决于材料,几何和其他因素。为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征: ·裂纹面一定要是一致的。

钢筋混凝土梁产生裂缝的原因及处理

现浇混凝土梁裂缝的分析及预防 【摘要】本文分析了钢筋混凝土梁的裂缝产生原因和部位,并提出了相应的预防措施。【关键词】钢筋混凝土梁裂缝热胀冷缩 1前言 钢筋混凝土梁在外荷载的直接应力和次应力的作用下,引起结构变形而裂缝。构件在使用过程中受年温差的长期作用,当温差的胀缩应力大于构件极限抗拉强度时就会裂缝。构件裂缝的因素是多方面的,包括结构设计、地基沉降差异、施工质量、材料质量、环境影响等,无论何种原因产生的裂缝,都会给建筑物肢体结构带来影响。 2裂缝形成原因 钢筋混凝土梁出现裂缝的原因很复杂。主要有:材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等。通常可归纳为以下几种: (1)收缩裂缝。混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。 (2)水泥水化硬化时的裂缝。水泥在水化及硬化的过程中,散发大量热量,使混凝土内外部产生温差.超过一定值时.因混凝土的收缩不一致而产生裂缝。 (3)温变裂缝。现浇钢筋混凝土梁随着温度变化会产生热胀冷缩变形。即温度变形。 AL=L(t1-t2)﹠△AL——钢筋混凝土梁的变形值 L――梁的长度 ((t1—t2))——温度变化值 d——材料的线嘭胀系数、混凝土为10a×10-b由于混凝土截面高度较大或较特殊环境下施工.如较寒冷地区施工。梁的上下表面温度不一致,梁会产生温度弯矩。如温度弯矩与荷载弯矩迭加超过梁所能承担的能力。梁便会产生裂缝。预防产生温度裂缝的措施主要有:①设置温度裂缝。②运用水化热小和收缩小的水泥。③浇筑后.表面应及时覆盖并洒水养护.复季应延长养护时间,寒冷季节混凝土表面采取保温措施。 (4)设计欠周全。如钢筋混凝土梁的截面不够,梁的跨度过大,高度偏小,或者由于计算错误,受力钢筋截面偏小、配筋位置不当、节点不合理等。都会导致混凝土梁出现结构裂缝。 (5)施工质量造成的裂缝。

基于ANSYS的裂纹应力强度因子的计算

基于ANSYS的裂纹应力强度因子的计算 摘要:本文分析了应力强度因子的重要性和计算应力强度因子的一般方法,以及在ANSYS中求解应力强度因子的裂纹尖端奇异性处理和具体步骤。在二维和三维典型模型的实例应用中,对ANSYS计算结果和解析结果进行了对比分析。 关键词:裂纹应力强度因子ANSYS Abstract:This paper analyzes the importance of the stress intensity factor and the general method of calculation. And use ANSYS to calculate the stress intensity factors of the crack tip singularity and its specific steps.In 2D and 3D models for example, the calculation results and the analytical results were compared and analyzed. Key Words:Crack; Stress intensity factor; ANSYS 随着现代高强材料和大型结构的广泛应用,一些按传统强度理论和常规方法设计、制造的产品,发生了不少重大断裂事故。从大量断裂事故分析中发现,断裂皆与结构中存在缺陷或裂纹有关。裂纹的存在会降低结构系统的安全性,甚至导致整个系统的失效。在断裂力学的工程应用中,应力强度因子是判断含裂纹结构的断裂和计算裂纹扩展速率的重要参数。目前,确定应力强度因子的方法较多,典型的有解析法、位移外推法,等效J积分法等。在实际工程中,解析法不能适用于受复杂载荷并包含不规则裂纹的构件,而有限元法能够建立通过建

钢筋混凝土结构常见裂缝问题及处理方法

钢筋混凝土结构常见裂缝问题及处理方法 钢筋混凝土结构常见裂缝问题及处理方法 【摘要】本文从探讨钢筋混结构防治裂缝的重要意义出发,详细阐述了钢筋混凝土结构防治裂缝的重要性和重要地位。接着笔者又深入分析了该种裂缝的成因问题并就处置措施进行了详细的论述和分析。最后,针对裂缝预防策略,笔者做了观点性和理论性的分析论述。 【关键词】钢筋混凝土结构、裂缝、原因、解决措施、预防策略 一、钢筋混凝土结构防裂缝的重要意义 我们国家快速增长的经济,给建筑业也带来快速的发展。混凝土的取材非常广泛,价格也比较低,并且具有较高的抗压强度,可以浇筑成多种开关,具有较好的耐火性,不容易被风化,养护起来也不需要太多的费用,是现在世界建筑结构中经常使用的一种建筑材料。而商品混凝土的问世,因具有施工更加便捷,具有较为稳定的性能,质量也非常可靠,劳动强度不高,但生产效率非常主,并且能够减少噪音,对环境有一定的保护作用等优点,所以,在现在工程的建设中得到广泛的使用。固体材料中产生的一种不连续的现象就是裂缝,在混凝土的结构中,裂缝也是一种非常常见的现象,并且也严重影响了结构的质量。首先,对结构的承载力与使用的安全性带来很大的影响,对受弯构件的楼板而言,虽然在受弯区可能有较小范围的裂缝,但对结构承载力带来的影响是不得不关注的,特别是有些使用人在进行装修的过程中,给地面增加很多设计的人,对荷载没有进行全面的考虑。其次,对结构的防水性带来的影响,特别是防水没有做好的部位表现是非常明显的。最后,对结构的耐久性与使用寿命造成的影响,对混凝土结构体产生破坏作用包括化学侵蚀与碳化,冻融循环与碱集料反应等,并且这种破坏的作用有快有慢,不但受混凝土自身材料性质的影响,其中还有一个重要因素就是裂缝。空气中的二氧化碳与二氧化硫气体以及雨水都会随着

钢筋混凝土裂缝原因

钢筋混凝土结构破坏倒塌的工程质量事故,绝大多数是从裂缝的扩展开始的;其实,只要仔细观察不难发现,普通的钢筋混凝土结构又一般都是带裂缝受力工作的,假如借助仪器,甚至还可以发现裂缝是时刻发生变化的,随着裂缝的发展变化,结构构件的耐久性和适用性会不同程度的降低,严重的甚至会导致结构构件的破坏;所以研究裂缝的形态、分析裂缝产生的原因和裂缝对结构功能的影响并加以控制是一个十分重要的。 一、混凝土裂缝种类: 外荷载引起的裂缝:外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分析就可以读出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十字或米字集中于跨中;转角阳台或挑檐板裂缝位于板面起始于墙板交界以角点为中心成米字形向外延伸。受力裂缝,其裂缝与荷载有关,预示结构承载力可能不足或存在严重问题。 温度收缩裂缝:温度收缩裂缝是一种建筑最常见的裂缝,主要是由于结构的温度变形及材料的收缩变形受阻及应力超标所致。现浇板收缩裂缝主要集中在房屋的中部和房屋四周阳角处,裂缝成枣核状止于梁边。房屋四周阳角处的房间在离开阳角1米左右,即在楼板的分离式配筋的负弯矩筋以及

角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝。其原因主要是砼的收缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等多种因素作综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方向剪力墙或刚度相对较大的楼面梁约束,限制了楼面板砼的自由变形,因此在温差和砼收缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的未端结束处)首先开裂,产生45度左右的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在有水的情况下会发生渗漏,影响正常使用。 地基不均匀沉降产生的裂缝:由于地基沉降不均匀使上部结构产生附加应力,导致楼板裂缝。不均匀沉降产生的裂缝多属贯穿性裂缝,其走向与沉降情况有关。 使用商品混凝土引起的收缩裂缝:商品混凝土由于采用泵送,混凝土的流动性要好,因此一般商品混凝土的坍落度都较大,水灰比较大,如保证水灰比则要增加水泥用量,这样就使混凝土在硬化阶段出现收缩裂缝。裂缝的产生大多在砼浇筑初期,即浇捣后4~6小时左右,裂缝形状不规则且长短不一,互不连贯,产生裂缝部分大多为水泥浮浆层和砂浆层。有于砼坍落度偏大,表面经过振捣形成一层水泥含量较

现浇钢筋混凝土梁产生裂缝的原因与防治措施

现浇钢筋混凝土梁产生裂缝的原因与防治措施 现浇钢筋混凝土梁产生裂缝的原因与防治措施 摘要:从土建施工的角度分析现浇混凝土梁裂缝的成因,并提出解决方案和预控的方法。 关键词:土建施工技术;现浇混凝土梁;裂缝; 中图分类号:TU375文献标识码:A 文章编号: “百年大计,质量第一”是对建筑工程重要性、安全性的最好诠释。现浇钢筋混凝土梁的质量控制对于建筑的整体性、结构安全性有着很大影响。在实际施工中对其质量进行严格、有效的控制,避免有害裂缝的产生是保证结构安全性、适用性、耐久性的重要手段和关键控制点。这里主要从施工角度来剖析裂缝的成因,探讨施工中具体的质量控制措施。 一、裂缝的成因: 钢筋混凝土梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种: 1、材料或温度因素: 1)混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。2)水泥水化硬化时的裂缝。水泥在水化及硬化过程中,散发大量热量,使砼内外部产生温差,超过一定值时,因砼的收缩不一致而产生裂缝.3)温变裂缝。水泥在硬化期间,砼表面与内部温差较大,导致砼表面急剧的温度变化而产生较大的降温收缩,受到内部砼的约束,而出现裂缝。 2、施工质量因素引起的裂缝: 1)由于砼标号偏低、受力钢筋截面偏小、截面尺寸不符合设计等而导致砼梁出现裂缝。2)由于施工不当、模板支撑下沉,或过早拆除底模和支撑等形成的裂缝。3)施工控制不严,在梁上超载堆荷,而导致出现裂缝。4) 混凝土水灰比、坍落度过大,或使用过量粉砂。混凝土强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动

钢筋混凝土构件的变形和裂缝宽度验算

8钢筋混凝土构件的变形和裂缝宽度验算 一、选择题 1.进行变形和裂缝宽度验算时() A.荷载用设计值,材料强度用标准值 B.荷载和标准值,材料强度设计值 C.荷载和材料强度均用设计值 D.荷载和材料强度用标准值 2.钢筋混凝土受弯构件的刚度随受荷时间的延续而() A.增大 B.不变 C.减小 D.与具体情况有关 3.提高受弯构件的刚度(减小挠度)最有效的措施是() A.提高混凝土强度等级 B.增加受拉钢筋截面面积 C.加大截面的有效高度 D.加大截面宽度 4.为防止钢筋混凝土构件裂缝开展宽度过大,可() A.使用高强度钢筋 B.使用大直径钢筋 C.增大钢筋用量 D.减少钢筋用量 5.一般情况下,钢筋混凝土受弯构件是() A.不带裂缝工作的 B.带裂缝工作的 C.带裂缝工作的,但裂缝宽度应受到限制 D.带裂缝工作的,裂缝宽度不受到限制 6.为减小混凝土构件的裂缝宽度,当配筋率为一定时,宜采用() A.大直径钢筋 B.变形钢筋 C.光面钢筋 D.小直径变形钢筋 7.当其它条件相同的情况下,钢筋的保护层厚度与平均裂缝宽度的关系是( ) A.保护层愈厚,裂缝宽度愈大 B.保护层愈厚,裂缝宽度愈小 C.保护层厚度与裂缝宽度无关 D.保护层厚度与裂缝宽度关系不确定 8.计算钢筋混凝土构件的挠度时需将裂缝截面钢筋应变值乘以不均匀系数 ,这是因为()。 A.钢筋强度尚未充分发挥 B.混凝土不是弹性材料 C.两裂缝见混凝土还承受一定拉力 D.钢筋应力与应力不成正比 9.下列表达()为错误。

A.验算的裂缝宽度是指钢筋水平处构件侧表面的裂缝宽度 B.受拉钢筋混凝土应变不均匀系数ψ愈大,表明混凝土参加工作程度愈小 C.钢筋混凝土梁采用高等级混凝土时,承受力提高有限,对裂缝宽度和刚度的影响也很有限 D.钢筋混凝土等截面受弯构件,其截面刚度不随荷载变化,但沿构件长度变化 二、判断题 1.一般来说,裂缝间距越小,其裂缝开展宽度越大。 2.在正常使用情况下,钢筋混凝土梁的受拉钢筋应力越大,裂缝开展宽度也越大。 3.在其它条件不变的情况下,采用直径较小的钢筋可使构件的裂缝开展宽度减小。 4.裂缝间纵向受拉钢筋的应变不均匀系数ψ接近与1时,说明受拉混凝土将完全脱离工作。 5.在钢筋混凝土结构中,提高构件抗裂度的有效办法是增加受拉钢筋用量。 6.无论是受拉构件还是受弯构件,在裂缝出现前后,裂缝处的钢筋应力会发生突变。 7.钢筋混凝土梁抗裂弯矩的大小主要与受拉钢筋配筋率的大小有关。 8.当梁的受压区配有受压钢筋时,可以减小梁在长期荷载作用下的挠度。 9.超过正常使用极限状态所产生的后果较之超过承载力极限状态的后果要严重的多。 三、填空题 1.钢筋混凝土受弯构件的裂缝宽度和挠度是以的应力状态为计算依据的。 2.受弯构件的挠度,在长期荷载作用下将会时间而。着主要是由于影响造成的。 3.裂缝间受拉钢筋应变不均匀系数ψ越大,受弯构件的抗弯刚度越,而混凝土参与受拉工作的程度越。 4.钢筋混凝土梁截面抗弯刚度随弯矩增大而。 5.弹性匀质材料的M-φ关系,当梁的材料和截面尺寸确定后,截面弯抗刚度EI 是,钢筋混凝土梁,开裂后梁的M-φ关系是,其刚度不是,而是随弯矩而变化的值。M小B ,M大B 。 6.减小裂缝宽度最有效的措施是。 7.变形和裂缝宽度控制属于极限状态。应在构件的得到保证的前提下,再验算构件的变形或裂缝宽度。验算时荷载采用,材料强度采用。 8.平均裂缝宽度位置取。 四、问答题

混凝土初凝时发生大面积裂缝的原因及分析

混凝土初凝时发生大面积裂缝的原因及分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后0.5小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、 模板沉陷、移动时也会出现此类裂缝。 2、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不 能抵抗这种变形应力而导致开裂。 3、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表

面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内 部混凝土的约束,也往往导致裂缝。 4、原材料质量引起的裂缝 混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。混凝土所采用材料的质量不合格,可能导致结构 出现裂缝。 ①砂石含泥量超过规定,不仅降低混凝土的强度和抗渗性,还会使混凝土干燥时产生不规则的网状裂缝。砂石的级配差,或砂颗粒过细,用这种材料拌制的混凝土常造成侧面裂缝。碱骨料反应。骨料中含有泥性硅化物质与碱性物质相遇,水、硅反应会生成膨胀的胶质,吸水后造成局部膨胀和拉应力,则构件产 生爆裂状裂缝,在潮湿的地方较为多见。 ②拌和用水及外加剂拌和用水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或 含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。 二、混凝土裂缝常见预防措施 1、塑型沉降裂缝预防措施此类裂缝预防的措施如下: ①在满足泵送和施工的前提下尽可能减小混凝土塌落度; ②保证混凝土均质性,搅拌运输卸料前先高速运转20—30秒,然后反转卸料;

ansys裂纹分析

Tutorial 3: 2D Crack problem In this third problem you will analyze a simple 2-dimensional geometry where plane solid elements will be used. Here the interest is to calculate the stress intensity factors. We will now guide you through a simple analysis of how to do this below. The geometry to be analyzed is a thin cracked plate shown in Figure 11. The material is steel with Young’s modulus 200 GPa and Poisson’s ratio 0.3. It is recommended that you use SI-units for all quantities in order to obtain a result in SI-units. Saving your model is optional but recommended. Figure 11: A plate with an edge crack. Start ANSYS. Your model can be saved in a database by specifying your working directory (the folder where you want your ANSYS files to be saved) and a job name (every problem must have a job name). ANSYS Utility menu: File → Change directory … ANSYS Utility menu: File → Change jobname …

对混凝土楼板裂缝的成因及预防措施

对混凝土楼板裂缝的成因及预防措施 本文对混凝土楼板出现裂缝原因进行分析,并对此提出了相对应的技术预防措施和处理方法,可供参考。 标签混凝土楼板;裂缝;预防措施;处理方法 1 前言 现浇钢筋混凝土楼板的裂缝,是目前较难克服的质量通病之一,楼板裂缝轻者影响美观,重者破坏房屋结构的安全性,降低房屋的抗震能力和房屋的正常使用,特别是一些住宅楼板的裂缝发生后,往往会引起投诉纠纷等。有效控制工程现浇钢筋混凝土现浇板裂缝,是一项较为复杂的系统工程,影响因素涉及建设、设计、勘察、施工、监理、质量监督、工程检测、建筑材料、气候环境、后期使用维护与管理等多方面,需要工程建设各责任主体及相关各方共同努力。现结合多年来施工实践中的经验和教训,着重介绍在建筑工程施工过程中现浇钢筋混凝土楼板裂缝的控制技术措施。 2 楼板裂缝原因分析 2.1 温度应力 现浇钢筋混凝土楼板裂缝主要是由混凝土温度变形和收缩变形引起的。当环境的温度和湿度变化时,混凝土相应的会产生温度变形和收缩变形,由于现浇板的体积与表面积的比值(体表比)较小,混凝土的收缩变形较大,使板内出现拉应力。海南省东方市的气候特点属于典型的炎热和干燥气候,夏季白天升温快,气候炎热,夜间降温快,日差较大。混凝土是一种抗拉能力很低的脆性材料,当板内的拉应力超过混凝土的抗拉强度并且楼板变形大于配筋后混凝土的极限拉伸的时候,楼板内就会产生裂缝。 2.2 混凝土的水泥用量、塌落度、水灰比不当 现浇混凝土中的水泥用量越大,产生的水化热就越高,总的发热量就越大。现浇混凝土的温度随水泥用量的增加而提高,水化热引起混凝土内部温度的升高,形成内外较大的温差,而温差引起的应力会使混凝土产生裂缝。混凝土硬化过程是水、沙子、石子与水泥化合的结果,水灰比大,混凝土硬化时的收缩增大,从而产生裂缝。商砼的坍落度大,浇筑时易产生粗骨料少和砂浆多的现象,此时,砼脱水干缩时,就会产生表面裂缝。如果使用含泥量大的砂配制,这样会造成混凝土收缩大,强度低,易因塑性收缩而产生裂缝。 2.3 粗细骨料 夏季露天堆放的砂石料受高温和太阳辐射的影响表层温度达60℃以上,用

钢筋混凝土现浇板裂缝原因的分析

钢筋混凝土现浇板裂缝原因的分析

钢筋混凝土现浇板裂缝原因的分析 一般情况下,楼屋面裂缝表现为:表面龟裂,纵向、横向裂缝以及斜向裂缝。究其原因,主要有施工、设计及混凝土原材料等三方面的原因,以下将逐一具体分析。 一)混凝土原材料质量方面 1、水泥凝结或膨胀不正常,如水泥安定性不稳定,水泥中含有生石灰或氧化镁,这些成分在和水化合后产生体积膨胀,产生裂缝。 2、如果骨料中含泥量过多,则随着混凝土的干燥,会产生不规则的网状裂缝。 3、碱----骨料反应:蛋白质、安山岩、玄武岩、辉绿岩、千枚岩等碱性骨料有可能与碱性很强的水泥起化学反应,生成有膨胀能力的碱--硅凝胶而引起混凝土膨胀破坏,产生裂缝。 4、水灰比、塌落度过大,或使用过量粉砂混凝上强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。因此,水、水泥、外渗混合材料外加剂溶液的计量偏差,将直接影响混凝土的强度。而采用含泥量大的粉砂配制的混凝土收缩大,抗拉强度低,容易因塑性收缩而产生裂缝,泵送砼为了满足泵送条件:坍落度大,流动性好,易产生局部粗骨料少、砂浆多的现象,此时,砼脱水干缩时,就会产生表面裂缝。 二)施工质量方面 1、混凝土施工过分振捣,模板、垫层过于干燥混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝上之间洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。 2、混凝土浇捣后过分抹干压光会使混凝土的细骨料过多地浮到表 面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧

现浇混凝土梁裂缝的分析及预防详细版

文件编号:GD/FS-6853 (安全管理范本系列) 现浇混凝土梁裂缝的分析 及预防详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

现浇混凝土梁裂缝的分析及预防详 细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1、前言 钢筋混凝土梁在外荷载的直接应力和次应力的作用下,引起结构变形而裂缝。构件在使用过程中受年温差的长期作用,当温差的胀缩应力大于构件极限抗拉强度时就会裂缝。构件裂缝的因素是多方面的,包括结构设计、地基沉降差异、施工质量、材料质量、环境影响等,无论何种原因产生的裂缝,都会给建筑物肢体结构带来影响。 2、裂缝形成原因

钢筋混凝土梁出现裂缝的原因很复杂。主要有:材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等。通常可归纳为以下几种:(1)收缩裂缝。混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。 (2)水泥水化硬化时的裂缝。水泥在水化及硬化的过程中,散发大量热量,使混凝土内外部产生温差。超过一定值时。因混凝土的收缩不一致而产生裂缝。 (3)温变裂缝。现浇钢筋混凝土梁随着温度变化会产生热胀冷缩变形。即温度变形。

ANSYS LS-DYNA中裂纹模拟的几种办法

Ls-dyna中裂纹模拟的几种办法 1、*CONSTRAINED_TIED_NODES_FAILURE 首先必须把单元间共节点的节点离散,可以采用ls-prepost或femp实现。然后在通过matlab 或者其他语言编写小程序,对位于同一个位置的节点建立节点集,添加*CONSTRAINED_TIED_NODES_FAILURE关键字。采用此方法来实现裂纹模拟的缺点是前处理太麻烦。应用实例可参考白金泽《lsdyna3d基础理论与实例分析》。 2、mat_add_eroson 关于这个关键字本版内有很多讨论,可以搜索一下。需要注意的是,在lsdyna 971R4之前的版本中,这个材料模型所带的失效模式均只适用于单点积分的二维和三维实体单元。但是在R4之后的版本中,这个关键字有了很大的改进: 1、去除了单点积分的限制,同时还支持3维壳单元和厚壳单元中的type1和type2。 2、可以定义初始损伤值,增加了几种损伤模型,具体可以参考lsdyna 971R5版的关键字。 3、带有失效的材料模型 有些材料模型本身就带有失效的,可以定义单元的失效来模拟裂纹的拓展。如*MAT_PLASTIC_KINEMA TIC等。如果某些材料模型不带失效模式,可以采用方法2,或者通过自定义材料本构来实现裂纹的模拟。 4、带有失效模型的接触或者用弹簧单元来模拟裂纹 这个方法个人觉得有些牵强,但是在有些文献中也见过。在定义裂纹前必须已知可能出现裂纹的区域,通过带有失效模式的面对面的绑定接触CONTACT_TIED_SURFACE_TO_SURFACE_FAILURE或者用弹簧单元来模拟裂纹面。" j. y: ~6 S3 S5 z$ E3 U! ] 5、采用特殊的材料模型 某些材料模型如*MAT_120(*MAT_GURSON),*MAT_120_JC(*MAT_GURSON_JC),*MAT_120_RCDC(*MAT_GURSON_RCDC),还有一些damage模型,如*MAT_96(*MAT_BRITTLE_DAMAGE)等,用损伤值来代替裂纹,通过观察损伤云图来判断裂纹的扩展。 6、EFG 和XFEM Cohesive 这两种方法是目前lsdyna重点发展的用来模拟裂纹扩展的方法。其中EFG方法适用于4节点积分的实体单元,XFEM只适用于2维平面应变单元和壳单元。这两种方法具体使用参考LS 971 R4 EFG User’sManual和XFEM User’s Manual。

钢筋混凝土裂缝检测及治理方法

钢筋混凝土裂缝检测及治理方法 摘要:混凝土裂缝的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力。因此加强对混凝土裂缝的检测工作具有重大意义。本文结合实例对钢筋混凝土裂缝的成因进行了分析,并根据实际采取适当的修补处理方法,从而保证混凝土建筑和构件安全、稳定工作。 关键词:钢筋混凝土;裂缝;成因;检测;治理方法 建筑行业是我国国民经济的重要支柱,是经济发展的主导力量之一,随着现在我国建筑行业的不断发展,建筑的质量问题就成了我们普遍关注的问题。在建筑施工技术中,钢筋混凝土裂缝的预防与控制是一个难题,同时它又十分广泛地存在建筑施工当中。通过定期维护和检测过程中加强对混凝土桥梁、房屋结构裂缝的检测、评估和及时治理,能够避免裂缝对桥梁、房屋结构产生大规模的破坏。本文结合工程实际,以钢筋混凝土为例,分析了混凝土裂缝形成理论,介绍了裂缝检测方法,并针对各种裂缝的特点提出相应的治理方法。 1、混凝土裂缝成因分析

混凝土的裂缝是建筑工程中较为普遍存在的问题,混凝上结构裂缝总体可分结构性和非结构性两大类:结构性裂缝是由荷载引起的,其裂缝与荷载相对应,是由承载力不足引起的,也是结构开始破坏或强度不足的征兆,其详细分类见图1。 非结构性裂缝主要是由于沉降、温度、收缩等非结构性原因引起的裂缝,其特征是构件变形时受到约束和限制而产生的内应力大于混凝土的允许拉应力,导致混凝土被拉裂。非结构性裂缝对结构的承载能力影响不大,但对结构的耐久性、抗渗及使用等损害大。 非结构性裂缝又可以分为收缩裂缝、温度裂缝、沉降裂缝、化学裂缝以及施工不当造成的裂缝等几种类型。 2、混凝土裂缝检测的实例研究 混凝土裂缝的出现削弱了建筑物的整体性及承载能力,降低混凝土结构耐久性。在一般的工业和民用建筑中,宽度小于0.05mm的裂缝对结构的使用无危险性,因此主要是对0.05mm以上的裂缝进行检测分析、评定和处理。裂缝检测内容主要包括裂缝的位置、形态、分布特征、宽度、长度、深度、走向数量、裂缝发生及开展的时间过程、是否稳定、裂缝内是否有渗出物、裂缝周围混凝土表观质量情况等等。 检测楼板为某在建住宅小区内一出现较多裂缝的钢筋 混凝土楼板,楼板尺寸为4.2m ×3 .6m ,板厚为10cm,布

高层住宅现浇钢筋混凝土楼板裂缝成因分析与处理

高层住宅现浇钢筋混凝土楼板裂缝成因分析与处理 李勇奇摘要:本文结合笔者多年建筑施工实践,介绍了高层住宅现浇钢筋混凝土楼板裂缝的类型,并结合实例,从多方面着重对常见的斜角裂缝形成原因进行了分析,并对裂缝防治措施及修复处理进行了详细阐述。 1引言 现浇楼板具有整体性好、抗震性能强、防渗漏性能好等特点,其应用也越来越广泛。但由于设计、施工及材料本身等方面引起的现浇板开裂问题时有发生,裂缝是不可避免的,但通过良好的设计与施工则可以减少裂缝的发生。其中斜角裂缝在住宅工程裂缝问题中占了较大比重,因此,合理对现浇板斜角裂缝进行分析与防治成为众多建筑技术人员不断研究探讨的重要课题,现结合笔者多年施工技术管理实践对此进行分析探讨。 2楼板斜角裂缝的主要特征 近年来,很多新建住宅不同程度出现现浇楼板斜角裂缝,这也引起了业主投诉等诸多问题。有很多建筑平面为矩形,完工后一年左右,装修时发现楼板出现了斜角裂缝,经过混凝土强度及楼板承载力检测,结果都符合要求。可以看出,裂缝并非贯穿性结构裂缝,一般来说,高层住宅最常见、最普遍和数量最多的是这类分布在房屋四周阳角处或平面形状突变的凹口房屋阳角处的裂缝。 具体位置大多在离开阳角左右,即在楼板的分离式配筋的负弯矩筋以及角部放射筋末端或外侧发生45度左右的楼地面斜面裂缝,且上下贯穿,裂缝宽度一般均小于1mm,分布在各层楼盖的两端处(边单元)、卧室墙角部地面,裂缝一般中间较宽,两端较细。从工程现浇楼板裂缝发生的部位分析,钢筋混凝土楼板斜角裂缝的主要特征如下: 1)这种裂缝具有相当大的普遍性,并不局限于某个特定的地区,在南方城市如南宁、广州,北方城市如大连等也均有发生。 2)裂缝主要出现在新建住宅完工后的几个月到一年的时间内; 3)出现此种裂缝的楼板大多为商品混凝土现浇楼板,且裂缝中部宽,两头窄; 4)裂缝均发生在房屋四周阳角处或平面形状突变的凹口房屋阳角处,离开阳角1m左右,均为斜向切角裂缝,与纵横墙夹角约45度; 5)裂缝多为一条,少数为两条平行斜向裂缝,且裂缝宽度均较小,一般小于1mm。 3现浇楼板裂缝形成原因分析: 引起建筑物楼板裂缝的原因很多,大致可以分为两类:一是由荷载引起的裂缝;二是由其它原因引起的裂缝,如设计不够合理、施工养护不善、温度变化、混凝土收缩徐变、基础不均匀沉降等。 相关资料表明:荷载引起的裂缝仅占20﹪左右,而其它原因引起的裂缝约占80﹪左右;荷载引起的裂缝可以通过设计验算裂缝宽度,使之符合《混凝土结构设计规范》(GB50010-2002)所规定的限值,许可裂缝宽度最大为0.3mm。而实际楼板斜角裂缝宽度往往在0.5~1.0mm之间,在满足设计要求的前提下,很明显并非荷载裂缝,而属于其它原因造成,主要原因分析如下: 3.1材料方面的原因 钢筋混凝土楼板一般受到其收缩和温差双重作用,这种作用极易引起开裂,并且愈靠近屋面处的楼层裂缝往往愈大。房屋的四周阳角由于受到纵、横两个方向剪力墙或刚度相对较大的楼面梁约束,限制了楼板钢筋混凝土的自由变形,因此,在温差和砼收缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的末端结束处)首先开裂,产生45度左右的斜角裂缝,这也是形成这种裂缝的主要原因。 1)根据砌体和钢筋混凝土结构设计规范知,普通烧结粘土砖砌体的干缩率为0.1mm/m,而钢筋混凝土的干缩率为0.2mm/m,比砖砌体大1倍。砖砌体温度线膨胀系数为0.5×10-5/℃,钢筋混凝土的温度线膨胀系数为1.0×10-5/℃,又比砖砌体大1倍。这表明如果砖外墙的收缩量为1mm,则现浇楼板同期的收缩为2mm,此差值即为现浇楼板开裂的根源。 2)收缩的叠加效应:在房屋竣工后空置期间,可认为内温度与大气温度相等,如果比施工期间温度升高,则热胀具有抵偿干缩的作用,表现为不缩也不胀。到冬季,气温较施工期间有所降低,此时产生的冷缩与干缩同时作用,收缩加剧,成为收缩的叠加效应,即为现浇板板角产生斜裂缝的内在原因. 3.2施工方面的原因 建筑工程施工及其养护是防治裂缝产生的重要环节,此环节稍有不慎也会造成楼板裂缝,从严重影响后期使用及商品住宅的销售。建筑工程施工质量必须满足《建筑工程施工质量验收统一标准》(GB50300-2001)及其相应专业工

相关文档
最新文档