大学基础物理学第2版习题答案(供参考)

大学基础物理学第2版习题答案(供参考)
大学基础物理学第2版习题答案(供参考)

大学物理课后习题答案

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学基础物理学答案(习岗)第4章

第四章 静电场 本章提要 1. 库仑定律 两个静止的点电荷之间的作用力满足库仑定律,库仑定律的数学表达式为 1212 002204q q q q k r r πε==F r r 其中 922910(N m /C )k =?? 122-1 -2 018.8510(C N m ) 4k επ -= =?? ? 2. 电场强度 ? 电场强度表示单位正电荷在静电场中所受的电场力。其定义式为 q = F E 其中,0q 为静止电荷。 ? 在点电荷q 的电场中,电场强度为 02 04q r πε= E r 3. 电场强度的计算 ? 点电荷系的电场 N 2101 4i i i i q r πε== ∑r 0E ? 电荷连续分布的带电体系的电场 2 01d 4q q r πε=?r E 0 其中的积分遍及q 电荷分布的空间。 4. 高斯定理

? 电通量 电场强度通量简称电通量。在电场强度为E 的某点附近取一个面元,规定S ?=?S n ,θ为E 与n 之间的夹角,通过S ?的电通量定义为 e cos E S θ?ψ=?=?E S 通过电场中某闭合曲面S 的电通量为 d e s ψ=??E S ? 高斯定理 在真空中,通过电场中任意封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε。即 i 0 1 d s q = ∑?? E S 内 ε 使用高斯定理可以方便地计算具有对称性的电场分布。 5. 电势 ? 电势能 电荷q 0在电场中某点a 所具有的电势能等于将q 0从该点移到无穷远处时电场力所作的功。即 0 d a a a W A q ∞ ∞==?E l ? 电势 电势是描述电场能的属性的物理量。电场中某点a 的电势定义为 0 d a a a U W q ∞ ==?E l ? 电势的计算 (1) 已知电场强度的分布,可通过电势的定义做场强的积分来计算电 势。 (2)若不知道电场强度的分布,可通过下述的求和或积分来计算电势: 点电荷系产生的电场中的电势为 N 104i a i i q U r πε==∑ 电荷连续分布的带电体系电场中的电势为 0d 4a q q U r πε=? 6. 静电场的环路定理 静电场的电场强度沿任意闭合路径的线积分为零,即 d l E l ?=?0 7. 静电场对导体的作用

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

2017年秋季西南大学《大学物理基础》答案

单项选择题 1、 波长λ=5000?的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测的屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距f为 1.2m 2. 1m 3.0.5m 4.0.2m 2、 根据惠更斯—菲涅耳原理,若已知光在某时刻的阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的 1.振动振幅之和 2.光强之和 3.振动振幅之和的平方 4.振动的相干叠加 3、

在玻璃(折射率n3 =1.60)表面镀一层MgF2 (折射率n2=1.38)薄膜作为增透膜,为了使波长为5000?的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最少厚度应是() 1.1250? 2.1810? 3.2500? 4.906? 4、 在双缝干涉实验中,入涉光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处() 1.仍为明条纹 2.变为暗条纹 3.既非明纹也非暗纹 4.无法确定是明纹,还是暗纹 5、 以下不是几何光学的基本实验定律的是() 1.光在均匀介质中的直线传播定律 2.光通过两种介质分界面的反射定律和折射定律 3.发射的光的强弱满足基尔霍夫定律

4.光的独立传播定律 6、 对于温度,有以下几种说法 ①温度的高低反映了物质内部分子运动剧烈程度的不同 ②气体的温度是分子平均平动动能的量度 ③气体的温度是大量气体分子热运动的集体表现,具有统计意义 ④从微观上看,气体的温度表示每个气体分子的冷热程度 上述说法正确的是 1.①、②、④ 2.①、②、③ 3.②、③、④ 4.①、③、④ 7、 有两个容器,一个盛氢气,另一个盛氧气。如果这两种气体分子的方 均根速率相等,则表明()Array 1.氧气的温度比氢气高 2.氢气的温度比氧气高 3.两种气体的温度相同 4.两种气体的压强相同 8、

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案 主编:习岗高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

大学物理学 第三版 课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +==

分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 3 4(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-10图所示. 题1-10图 (1)在最高点, 又∵ 1 2 11 ρv a n =

大学基础物理学答案(习岗)第6章

第六章 稳恒磁场 本章提要 1. 磁感应强度 描述磁场力的属性的物理量是磁感应强度,常用B 来表示。其定义式为 qv F B max = 在SI 制中,B 的单位为特斯拉(T )。B 另一个单位为高斯(G),两者的换算关系为 1T=104G 2. 毕奥—萨伐尔定律 (1) 毕奥—萨伐尔定律 ? 毕奥—萨伐尔定律的微分形式 电流元I d l 在真空中任一点P 所产生的磁感应强度d B 的大小与电流元的大小成正比,与电流元I d l 和r 的夹角的正弦成正比,与电流元到P 点的距离的平方 成反比。d B 的方向垂直于I d l 和r 所组成的平面,指向与矢积I d l ×0r 的方向相同,即 00 2d d 4I r l r B m p ′= 其中, 7-20410N A m p -=醋,称真空磁导率。 ? 毕奥—萨伐尔定律的积分形式 00 2 d d 4l l I r μπ?==?? l r B B (2)几种典型的磁场分布 ? 无限长直电流的磁场分布 02I B r m p = ? 载流长直螺线管内的磁场分布 0B nI m = ? 运动电荷的磁场分布 00 2 4q r v r B m p ′= 3. 磁高斯定理

? 磁通量 穿过磁场中某一面积S 的磁通量定义为 d B S m s Φ= 蝌 ? 磁高斯定理 通过空间中任意封闭曲面的磁通量必为零,即 d 0S B S =蝌 g ò 4. 安培环路定理 在真空中的稳恒磁场内,磁感应强度B 的环流等于穿过积分回路的所有传导电流强度代数和的0μ倍,即 0in d L I B r m ??ò ? 5. 安培力与洛仑兹力 (1)安培力 载流导线在磁场中受到的宏观力称安培力。安培力服从安培定律。 ? 安培定律的微分形式 放在磁场中任一点处的电流元d I l 所受到的磁场作用力d F 的大小与电流元d I l 的大小和该点的磁感应强度B 的大小成正比,还与电流元d I l 的方向和B 的方向之间的夹角θ的正弦成正比,d F 的方向为d I ?l B 所确定的方向。即 d d I =?F l B ? 安培定律的积分形式 对于任意载流导线,若将其视为由无数个电流元组成的,则其在磁场中所受的作用力为 d F l B l I =?? (2)洛仑兹力 一个定向运动的电荷在磁场中所受的力即洛仑兹力,其满足的基本规律为 q =?f υB 洛仑兹力的几个重要应用: ? 质谱仪 ? 霍耳效应 6. 磁介质 (1) 磁介质及分类 能在磁场作用下发生变化,并且能够反过来影响磁场的介质称磁介质。一般用磁介质中的磁感应强度B 的大小与真空中的磁感应强度0B 的大小之比来描述磁介质被磁化后对原来外磁场的影响,即

大学物理学第三版下册课后答案

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无 关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计, 求每个小球所带的 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人说,因为f =qE ,S q E 0ε= ,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为 θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θE =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量 3 0π2cos r p E r εθ = 垂直于r 方向,即θ方向场强分量 3 00π4sin r p E εθ =

大学基础物理学课后答案 主编习岗 高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

大学物理学课后答案(湖南大学出版社)

12.12 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少? [解答]两平面产生的电场强度大小分别为 E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0, 两平面在它们之间产生的场强方向相反,因此,总场强大小为 E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面. 两平面间的电势差为 U = Ed = σd /2ε0, 当点电荷q 从A 面移到B 面时,电场力做的功为 W = qU = qσd /2ε0. 13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一 点电荷q , 球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心 都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电 势叠加,大小为 000 111444o q q Q q U r a b πεπεπε-+=++ 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度. [解答](1)如前所述,两电容器并联的电容为 C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d .设两半的所带自由电荷分别为Q 1和Q 2,则 Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以 U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得 0111221 1/C U C Q Q C C C C = = ++, 真空中一半电容器的自由电荷面密度为 001 12122/2(1/)(1)r C U U Q S C C S d εσε= == ++. 同理,介质中一半电容器的自由电荷面密度为 14.1通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B = ? [解答]电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定 律:002 d d 4I r μπ? =l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为 012d d 4I l B a μπ=, 由于 d l = a d φ, 积分得 11d L B B =?3/2 00 d 4I a πμ?π=?038I a μ= . OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为 图13.3

相关文档
最新文档