带钢表面缺陷检测

带钢表面缺陷检测
带钢表面缺陷检测

带钢表面缺陷检测

姓名:朱士娟学号:1110121137

摘要

表面质量的好坏是带钢的一项重要指标,随着科学技术的不断发展,后续加工工业对带钢的表面质量要求越来越高。如何检测出带钢表面缺陷并加以控制,引起带钢生产企业的高度关注。随着计算机视觉技术的发展和计算机性能的不断提高,由带钢图像在线检测其表面质量已成为国内外学者研究的热点课题。在本课题中,首先提出了带钢表面监测系统的总体设计方案,从硬件和软件上保汪系统的实时性和精确度。其次设计一种获得噪声图像的方法,分析图像的噪声特性。并在此基础上针对传统中值滤波算法复杂、处理时间长等缺点,提出一种改进的迭代的中值滤波方法,这种方法在有效滤掉噪声的同时尽可能地保存了图像的细节,并比传统的中值滤波方法大大地减少了处理时间。在对图像进行滤波处理后,本文分别提出了BP神经网络法,区域灰度羞绝对值闽值法和基于背景差分的小区域闽值法三种方法,对带钢表面缺陷进行检测。本文选取300幅带钢图片进行实验,结果表明这三种方法的漏检率和错判率均在5%以下,且速度至少能达到10毫秒/每帧,满足实时检测系统低漏检率、低错判率和快速检测的要求。其中BP网络检测方法适应性好,可以通过样本学习适应相应的环境变化,并且不但能检测出已知样本的缺陷,而且对未知缺陷样本的检测效果也很好。区域灰度差绝对值检测方法算法简单,运算速度最快,能实现5毫秒/每帧的检测速度。基于背景差分的小区域闽值法除了算法简单,速度快以外,它还能有效地检测出微小的、对比度低的缺陷,并且背景图像的不断更新能使系统适应带钢表面质量的不断变化,使系统能满足不同生产环境的检测需要。通过本论文的研究和探索,使带钢表面监测系统的实用化更前迸一步,为进一步的带钢表面质量在线控制识别奠定了基础。

关键词带钢,图像处理,滤波,缺陷检测

1检测原理

设轧制带钢速度为ν,在钢板的上下表面各安置一套检测装置(图1),在平行于钢板表面且垂直于速度方向处放置一个高强度线光源,光源经过聚焦光学系统照亮钢板表面。根据表面主要缺陷特点可将缺陷分为亮域缺陷(捕捉和

识别反光缺陷,如锈蚀、重皮等)和暗域缺陷(捕捉和识别发散光缺陷,如划痕、裂纹及其它表面破损状态),因此分别在亮域和暗域放置线阵CCD进行捕捉。将线阵CCD横向置于钢板上方进行钢板横向扫描,采用光学镜头将钢板某行表面成像在线阵CCD上,完成一维扫描,钢板运行完成另一维扫描,从而构成二维图象。在此不采用面阵CCD的原因为①对于速度较高的板材,无法实现实时在线处理。②面阵CCD的分辨率和视场限制了宽度方向的检测分辨力。

2装置的总体结构

带钢表面缺陷在线智能检测装置由两大部分组成。第一部分是光源-摄像系统,检测产品尺寸、产品质量和所有决定产品质量和生产过程质量的表面缺陷;第二部分是智能系统,确定带钢的质量类别,按照用户规定的验收标准组织发货,并确定为使生产计划调度和过程控制最佳化,应该采取哪些措施,这样就能降低管理成本,提高产品质量,减少因用户异议和索赔所造成的损失。

3 光源

光源照明的设计目的是在钢板表面得到一条宽度适当、照度足够的均匀光带,考虑到钢板的宽度、材质和缺陷表面特性的差异,用于检测带钢表面缺陷的光源和光控系统应能满足下列要求:可以调节光的照度以提高图像质量;结构紧凑,以便安装在有限的空间内,不仅能按照生产线速度,而且能根据产品表面的光洁度来调节光的照度。实验室试验表明,当带钢线速度达到900m/min以上时,常规高强度萤光管最高输出功率下的最好分辨率为4mm。为了提高分辨率,必须提高光源等级,以便缩短曝光时间。试验还表明,在额定线速度为900m.min时,为使分辨率达到2mm,需要将光线输出强度增加2.6倍以上。

3.1 光源的设计

根据实际情况,选用一种高频荧光灯作为光源,这种荧光灯有一条窄缝不

涂荧光粉,由荧光管发射出的光线从窄缝中射出时不必穿过另一层荧光粉,从而

使窄缝区的照明效果更好。为了进一步提高从窄缝中射出的光线强度,需要加一个集光器件,减少荧光管射出的光线散布面积,实现高强度宽视场的均匀照明。

4.2 光源控制器

光源控制器是用来控制光源照度的。在实际生产中,带钢线速度经常发生变化,光源所发出的能量也必须做出相应的变化,使摄像系统所获得的图像质量(包括明暗程度、反差和分辨率)保持不变。对光源控制器的要求是能够适应加速度为±10m/s2的速度变化。控制系统的设计是线性的,所以当图像处理器要求有一个特定的照度时,就可以在下一次摄像机扫描过程中准确地达到该照度。

固体摄像器件CCD检测法cc D(c h 呷eCoupldeDeivce)s,即电荷祸合器件,是一种新型的固体成像器件,是近代光电成像领域里非常重要的一种新

技术产品。它是在大规模硅集成电路工艺基础上研制而成的模拟集成电路芯片,集光电变换、光积分、扫描三种功能于一体。其基本部分由MOS光敏元阵列和

读出移位寄存器组成。固体摄像器件CCD检测原理是用特殊光源(包括荧光管、卤素灯、卤素金属燕汽灯、发光二极管、红外线和紫外线等)以一定方向照射到带钢表面上,CCD摄像机在带钢上扫描成像,扫描所得的图像信号输入计算机,通过图像预处理、图像边缘检测、图像二值化等图像处理方法,提取图像中的

特征参数,然后再进行图像识别,判断出是否存在缺陷。189 0年美国内朋

印公司研制的cCD检测系统,采用柱型透镜进行x、y方向的放大倍数分离,以扩大视场;照明用40kHZ 的高频荧光灯以减小光源周期性变化的影响;摄像器件

用当时最新的2048像元线阵ccD,并申请了专利13.l,lo1938 年在美国能

源部的资助下,Honeywell公司完成了连铸板坯表面在线检测装置的研究。该

装置采用线阵CCD器件,通过增加CCD芯片的有效像元数和提高其帧转移速率,并采用先进的数字图像处理部件,使该装置能可靠地检出微细的表面缺陷。该

项研究工作对于带钢表面质量检测系统的指导意义在于确立了线阵CCD图像传

感系统、专用图像阵列处理机的体系结构、基于树分类器和句法模式识别理

论的缺陷分类器设计思想及自动检测过程的离线数字仿真等技术路线的主流地位。1968 年在美国钢铁协会(AlsD的资助下,ewstinghoues公司和EastmanKdoak公司提出了各自的系统解决方案,其中westingho嫂系统采用线阵ccD摄像机和高强度的线光源监视运动带钢表面,在最高带速和最大带宽下可提供17minx2.3Inm 的横、纵向缺陷分辨率。与此同时,意大利centrosvil叩poMaterial公司在欧洲煤钢联营伍csc)的资助下,研制出用于不锈钢表面检测的实验样机,该系统的特点是:可同时进行带钢上下表面的自动检测,通过设置边部检测摄像机可以进行带钢自动宽度测量和孔洞检测,但是其可识别的缺陷相对较少,并且不具备对周期性缺陷的检出能力[网.意大利slpAR公司开发成功的CCD带钢表面缺陷检测系统,当采用一个2596个像素的线阵CCD摄像机时,它的最大扫描速度为7716次角,对1300min宽的带钢,移动速度最高为4耐5时,分辨率约为0.SInln xo.5nun ;当采用一个1728像素的线性CCD摄像机扫描速度为1100次角,对移动速度为10n口5、170011111宽的带钢,其检测分辨率约

1.OlUnxl.Omm,该系统用计算机将采集的数据与一个有预置程序的缺陷数据库进行比较,从而判断出缺陷的种类和性质。缺陷图像可以进行缩放、平移、

滚动、增强反差、增添色彩,还具有通信和打印等功能,几19 1年在荷兰Hogovens钢铁公司热轧生产线投入试运行ectronl。System侄Es)系统能在热连轧的恶劣环境和高带速下,实时地提供高清晰度的带钢上下两表面无遗漏的缺陷图像,其在最大带宽和最高带速下具有1.02nu”xZ.03Inm 的横纵向检测分辨率。EES系统具有突出的实用性能,采用双总线结构,即VME总线和高速数据总线。其中,VME总线支持指令、控制和低速数据,高速数据总线提供高速数据的传输。ES系统中最有成效的研究工作在于对环境的有效适应能力:通过在摄像机前端安装滤光片,可有效滤除热态带钢表面辐射出的红外光对检测光学系统的千扰;对CCD摄像机进行了循环水冷却,并对照明光源采取了通风散热措施:为彻底消除带钢辐射热对检测系统前端装置的直接影响,在距离F7精轧机架出口侧12m处单独设置一个密闭的现场仪表总站,并将CCD摄像机和照明光源安装于总站内部;在该仪表站下方设置了多个空气喷嘴来清除带钢表面的蒸汽、水滴、油污及灰尘等杂质,以便更加有效地进行光学检测。美国C o9 】ex公司先后研制成功了15一00自动检测系统和ILe田旧自学习分类器软件系统。通过此两套系统的无缝连接,整体系统可以提供80GOPS的运算性能,并有效的改善了传统自

学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征

自动选择等方面的不足之处19夕0!。

15一 20 0系统于194年8月在美国LTV钢铁公司的镀锌生产线上投入实际运行,其功能全面完善,属于目前最先进的带钢表面自动检测系统,在一定程度上代

自动检测系统今后的发展趋势。15一00系统框图如图1.5所示,在带钢上下表面分别设置工作于明域和暗域的各两台CCD摄像机,以增加缺陷检出的数量;在摄

像机习D变换单元中有自动增益校正(AGC)功能,并在摄像机数字接口部件中配

置了自适应的规格化器,可动态补偿照明光源的不均匀和衰变的特性及带钢表

面反射光的不规则;综合运用了多只阀值化器,这些算法分别适用于各自特定的缺陷类型,并可编程为固定的和自适应的运行模式,其综合效果可将缺陷检测

阀值严格控制在带钢正常表面像素值偏差的1.0倍至1.6倍;提出了一个实用的自动分类系统iLearn ,

该系统运行于一个专用处理器上,可以保证在全轧制速度下实时地完成分

类任务。

l) 抽检率低,不能真实可靠地反映带钢表面的质量状况,很难检测到尤其是对于轧制过程中产生的大量非周期缺陷极有可能造成漏检。

(2) 缺乏检测的一致性、科学性.主要依赖检测人员的主观判断,由于不同质检人员经验水平不同,对同一缺陷会得出不同的判断,导致缺陷种类、级别不准,从而降低了检测的可信度。

(3) 检测环境恶劣枯燥,对人的身心危害很大,检测人员的劳动强度大,极

易疲乏,容易造成误判和漏检。

(4) 果在前期工序中不能检测出某些严重的表面缺陷,势必将其引入后续工序,这可能导致整批带卷的重加工甚至报废。

(5) 提高产品售后服务水平。由于产品质量检查全凭人眼,没有产品全部长度的缺陷状况资料,因此产品质量等级不精确,售后服务困难。因此,表面质量检测己经成为带钢生产企业提高产品质量和产量的瓶颈。实现对带钢表面缺陷进行非人工的连续准确的检测、缺陷分类和记录,并加以实时控制,对于提高生产效率和产品质量,从而提高企业竞争力将起到非常积极的作用。具体来说,实现带钢表面缺陷准确自动的检测具有如下意义:

(1 改进轧制过程,提高生产质量.从检测信息中提取和挖掘出对生产和销售有用的信息,对评估产品质量有着极强的说服力。利用缺陷信息还可以分析缺陷产生原因,及时有效地排除异常情况,改进轧制和生产过程,从而真正制造出合格的产品。

(2 减少贸易争执,维护企业信誉。国内钢铁企业的带钢产品因表面质量问题而被索赔,进而导致商务纠纷的事件近年来时有发生,给企业造成了很大的经济损失,也使企业形象受到严重伤害。因此,实现带钢表面缺陷自动检测,提高产品表面质量,为用户提供优质的带钢产品,不仅仅是减少赔偿、减少浪费的问题,而是维护企业形象和信誉的重大问题。目前,由于受带钢生产线的实际情况、经费和技术力量所限,国内带钢表面缺陷检测的研究起步晚,并且进展缓慢。国外一些大型钢铁企业和研究院所投入大量的人力和资金,在带钢表面缺陷检测技术研究和检测装置开发方面已经取得了较大的进展。带钢表面缺陷检测设备的生产实际应用已使某些企业带钢产品的质量得到了极大提高,经营利润大大增加。如韩国浦项制铁公司的冷轧钢板表面缺陷检测系统,可以在轧制速度为5111八的情况下,检测最小尺寸为0.srnl”x0.51llll的钢板孔洞、鳞皮、表面分层等表面缺陷,极大的提高了其带钢产品的质量。而国内采用带钢表面缺陷检测装置的厂家极少。

参考文献

1、吴平川,路同浚,王炎等.带钢表面自动检测系统研究现状与展望.钢铁,2000,

2、陈妍.冷轧带钢表面缺陷智能检测技术的发展.鞍钢技术,1998,

3、胡亮,段发阶,丁克勤等,带钢表面缺陷计算机视觉在线检测系统的设计.无损检测,2003,

4、吴平川,路同浚,王炎等.机械视觉与钢板表面缺陷的无损检测.无损检测,2000,

冷轧常见缺陷

冷轧缺陷 冷轧常见缺陷 冷轧带钢得质量指标中,带钢得尺寸偏差、板形以及表面粗糙度等要求就是很主要得项目,消除产品在这些方面得缺陷就是冷轧生产中质量提高得关键之 一。 一、表面缺陷 大多就是由于热轧带钢坯质量不高,酸洗不良或冷轧轧辊表面有缺陷,冷轧时得工作环境不佳以及操作上得不注意等原因造成得。鉴于表面缺陷所导致得废品比重很大,特别就是要求高得产品,表面缺陷必需严加控制。常见得表面缺陷有: (1)结疤带钢表面呈“舌状”或“鳞状”得金属薄片,外形近似一个闭合得曲线。结疤一般有两种,一就是嵌在表面上不易脱落,另一就是粘合到表面上易脱落。 产生原因就是:由于轧制过程中带钢内部靠近表面层分布得细气泡及夹杂层在轧制中破裂变成结疤,钢锭由于浇注条件不同而产生得结疤;重皮也就是轧制带钢表面产生结疤得主要原因,此外在剧烈磨损了得轧辊或有缺陷(如砂眼)得轧辊上热轧,均能使带钢出现结疤;如果所轧带钢得表面上形成局部凸点等,则在轧制时由于受辗压而产生结疤状得细小凸瘤。 (2)气泡带钢表面上分布有无规则且大小不同得圆形凸包。沿凸包切断后,在大多数情况下均成分层状露出。 产生原因:钢锭凝固时气体析出形成气泡,或酸洗时带钢内部孔隙进入氢原子形成气泡。(3)分层带钢截面上有局部得,明显得金属结构分离层。 产生原因:钢质不良,带钢中存在非金属夹杂,主要就是三氧化二铅与二氧化矽,另外,坯料有缩孔残余或严重得疏松等也能形成分层,从而使酸洗得带钢在有分层得地方形成突起与气泡出露。

(4)裂纹带钢表面完整性比较严重得破裂,它就是以纵向、横向或一定角度得形式出现得裂缝。 产生原因:轧制前带钢不均匀加热或过热,轧制时带钢不均匀延伸,或带钢表面有缺陷清除不彻底,以及带钢上有非金属夹杂及皮下气泡,另外,冷轧时不正确地调整轧辊与不正确得设计辊型,同样会产生裂纹,再有,用落槽得轧辊轧制带钢,张力太大,化学成分不合适等也可能会出现裂纹。 (4)表面夹杂带钢表面上具有轧制方向上伸长得红棕色,淡黄色,灰白色得点状,条状与块状得非金属夹杂物。 产生原因:热轧时坯料在加热过程中,炉渣或耐火材料碎块粒附在坯料上,以及冶炼时造渣不好或盛钢桶不净所致。 (1)麻点带钢表面缺陷中较常见得一种缺陷,其表面存在细小凹坑群与局部得粗糙面。一般其形状不规则,面积也小,但数量多。 产生原因:热轧时压入了氧化铁皮,酸洗未净,又经冷轧造成,或冷轧时粘在轧辊上得氧化铁皮压入带钢表面。轧辊磨损严重同样可造成带钢得麻面。冷轧时,带钢表面不干净及粘有杂质或杂质压入带钢表面后脱落,也会造成带钢得麻点。除此以外,带钢得严重锈蚀及酸洗过度都可成形麻点。 (2)凹坑带钢表面存在得凹面,一般数量少,面积大。 产生原因;轧制时辊面上缺陷或异物(硬杂质)与氧化铁皮被轧入带钢表面脱落后成凹坑。凹坑一般只有在带钢一面,另一面则显凸起。 (3)金属碎末轧入带钢表面粘附着金属碎末,无规则,有大有小,有块状、也有条状,压入深度亦有深浅之别。 产生原因:轧辊表面不干净或金属碎末(如铁屑、钢丝等)落于带钢表面轧入,金属碎末轧入一般也只存在表面,有时可用小刀清除掉,甚至将带钢轻轻弯曲就可掉落。 (4)辊印带钢表面呈凸起或凹陷得印痕,但没有明显得凸凹感觉,印痕部位较亮。

带钢表面缺陷检测

带钢表面缺陷检测 姓名:朱士娟学号:1110121137 摘要 表面质量的好坏是带钢的一项重要指标,随着科学技术的不断发展,后续加工工业对带钢的表面质量要求越来越高。如何检测出带钢表面缺陷并加以控制,引起带钢生产企业的高度关注。随着计算机视觉技术的发展和计算机性能的不断提高,由带钢图像在线检测其表面质量已成为国内外学者研究的热点课题。在本课题中,首先提出了带钢表面监测系统的总体设计方案,从硬件和软件上保汪系统的实时性和精确度。其次设计一种获得噪声图像的方法,分析图像的噪声特性。并在此基础上针对传统中值滤波算法复杂、处理时间长等缺点,提出一种改进的迭代的中值滤波方法,这种方法在有效滤掉噪声的同时尽可能地保存了图像的细节,并比传统的中值滤波方法大大地减少了处理时间。在对图像进行滤波处理后,本文分别提出了BP神经网络法,区域灰度羞绝对值闽值法和基于背景差分的小区域闽值法三种方法,对带钢表面缺陷进行检测。本文选取300幅带钢图片进行实验,结果表明这三种方法的漏检率和错判率均在5%以下,且速度至少能达到10毫秒/每帧,满足实时检测系统低漏检率、低错判率和快速检测的要求。其中BP网络检测方法适应性好,可以通过样本学习适应相应的环境变化,并且不但能检测出已知样本的缺陷,而且对未知缺陷样本的检测效果也很好。区域灰度差绝对值检测方法算法简单,运算速度最快,能实现5毫秒/每帧的检测速度。基于背景差分的小区域闽值法除了算法简单,速度快以外,它还能有效地检测出微小的、对比度低的缺陷,并且背景图像的不断更新能使系统适应带钢表面质量的不断变化,使系统能满足不同生产环境的检测需要。通过本论文的研究和探索,使带钢表面监测系统的实用化更前迸一步,为进一步的带钢表面质量在线控制识别奠定了基础。 关键词带钢,图像处理,滤波,缺陷检测 1检测原理 设轧制带钢速度为ν,在钢板的上下表面各安置一套检测装置(图1),在平行于钢板表面且垂直于速度方向处放置一个高强度线光源,光源经过聚焦光学系统照亮钢板表面。根据表面主要缺陷特点可将缺陷分为亮域缺陷(捕捉和

热轧带钢缺陷图谱(内容清晰)

热轧带钢外观缺陷 Visual Defects in Hot Rolled Strip 2.1 不规则表面夹杂(夹层)(Irregular Shells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.2 带状表面夹杂(夹层)(Seams)

【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.3 气泡(Blisters)

【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 2.4 结疤(重皮)(Scabs)

【定义与特征】 以不规则的舌状、鱼鳞状、条状或M状的金属薄片分布于带钢表面。一种与带钢基体相连;另一种与带钢基体不相连,但粘合到表面上,易于脱落,脱落后形成较光滑的凹坑。 【产生原因】 由于板坯表面有结疤、毛刺,轧后残留在带钢表面。或板坯经火焰清理后留有残渣,在轧制中压入表面。 【预防与纠正】 加强板坯切口熔渣的清理,合理调整中间坯的切头、切尾量,避免毛刺残留。 【鉴别与判定】 肉眼检查,钢板和钢带不得有结疤。 2.5 分层(Split layer)

表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较方法 项目 磁粉检测(MT) 漏磁检测(MLF) 渗透检测(PT) 涡流检测(ET) 方法原理 磁力作用 磁力作用 毛细渗透作用 电磁感应作用 能检出的缺陷 表面和近表面缺陷 表面和近表面缺陷 表面开口缺陷 表面及表层缺陷 缺陷部位的显示形式 漏磁场吸附磁粉形成磁痕 漏磁场大小分布 渗透液的渗出

检测线圈输出电压和相位发生变化 显示信息的器材 磁粉 计算机显示屏 渗透液、显像剂 记录仪、示波器或电压表 适用的材料 铁磁性材料 铁磁性材料 非多孔性材料 导电材料 主要检测对象 铸钢件、锻钢件、压延件、管材、棒材、型材、焊接件、机加工件在役使用的上述工件检测铸钢件、锻钢件、压延件、管材、棒材、型材、焊接件、机加工件在役使用的上述工件检测任何非多孔性材料、工件及在役使用过的上述工件检测 管材、线材和工件检测;材料状态检验和分选;镀层、涂层厚度测量 主要检测缺陷 裂纹、发纹、白点、折叠、夹渣物、冷隔 裂纹、发纹、白点、折叠、夹渣物、冷隔 裂纹、白点、疏松、针孔、夹渣物

裂纹、材质变化、厚度变化缺陷显示 直观 直观 直观 不直观 缺陷性质判断 能大致确定 能大致确定 能基本确定 难以判断 灵敏度 高 高 高 较低 检测速度 较快 快 慢

很快 污染 较轻 无污染 较重 无污染 相对优点 可检测出铁磁性材料表面和近表面(开口和不开口)的缺陷。 能直接的观察出缺陷的位置、形状、大小和严重程度。 具有较高的检测灵敏度,可检测微米级宽度的缺陷。 单个工件的检测速度快、工艺简单,成本低、污染轻。 综合使用各种磁化方法,几乎不受工件大小和几何形状的影响。 检测缺陷重复性好。 可检测受腐蚀的在役情况。 a) 易于实现自动化 b) 较高的检测可靠性 c) 可以实现缺陷的初步量化 d) 在管道的检查中,在厚度高达30mm的壁厚范围內,可同时检测內外壁缺陷 e) 高效、无污染,可以获得很高的检测效率. 可检测出任何非松孔性材料表面开口性缺陷。 能直接的观察出缺陷的位置、形状、大小和严重程度。 具有较高的灵敏度。 着色检测时不用设备,可以不用水电,特别适用于现场检验。 检测不受工件几何形状和缺陷方向的影响。 对针孔和疏松缺陷的检测灵敏度较高。 非接触法检测,适用于对管件、棒材和丝材进行自动化检测,速度快。 可用检测材料导电率代替硬度检测。了解材料的热处理状态和进行材料分选。污染很小。 相对局限性

带钢表面缺陷检测系统

带钢表面缺陷检测系统 (无锡创视新科技有限公司李军) 表面质量是带钢质量的一项重要指标,随着科学技术的不断发展,对带钢表面质量的要求越来越高。在市场的激烈竞争条件下,其质量不仅代表企业的形象,而且还是赢得市场的首要条件。如何有效检测带钢表面缺陷的同时加快检测速度是当前带钢缺陷实时检测技术的一个很重要的课题。传统上,冷轧带钢的表面缺陷检测由检测人员通过人眼目光来完成。但是,这种方法存在着很多不足:(1)检测结果容易受检测人员主观因素影响;(2)这种方法只能用于检测运行速度很慢(在50m/min下)的带钢表面;(3)这种方法很难检测到小的缺陷。然而近年来,微电子技术、计算机技术、自动化技术和光电子技术的飞速发展,人工智能、神经网络理论的深化及实用化,和机器视觉被运用到带钢表面缺陷检测以后,带钢表面缺陷检测终于走向了智能自动化的时代。 一、带钢表面缺陷的分类 带钢表面缺陷往往具有多样性、复杂性的特点。不同生产线产生的表面缺陷往往会有不同的特点,同一生产线在不同工艺参数,或工艺参数相同而生产条件不同情况下产生的表面缺陷也有区别。由于带钢表面缺陷的种类太多,为研究方便,本文特提供带钢表面常见的几种缺陷。 1、压入氧化铁 “压入氧化铁”的典型形状见下图 特征:一般粘附在钢板表面,分布于板面局部和全部。外观呈现不规则形状。 成因:轧制节奏快,轧辊材质性能差等原因造成的轧辊表面氧化膜脱落。 2、结疤 “结疤”的典型形状见下图 特征:呈现叶状、羽状、条状、鱼鳞状、舌端状等形状。 成因:铸锭条件不佳或飞溅造成的表面缺陷和皮下气泡等。 3、擦伤 “擦伤”的典型形状见下图 特征:沿轧制方向呈现深浅不一的擦痕。 成因:辊道表面粗糙、磨损、变形或不转动,使钢板与辊道相擦。 4、辊印 “辊印”的典型形状见下图 特征:具有一定间距的凹凸缺陷。 成因:轧辊表面粘有异物压入带钢表面、轧辊材质不佳造成粘辊、带钢焊缝过高而轧制中抬辊不及时引起粘辊造成的。 5、边裂 “边裂”的典型形状见下图 特征:钢板边缘沿长度方向的一侧或两侧出现破裂,严重者呈现锯齿状。 成因:轧辊调整不好或辊型与版型配合不好,使钢带边部延伸不均。 6、划痕 “划痕”的典型形状见下图

带钢常见缺陷及其图谱

结疤(重皮) 图1 图2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;

②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害:导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。气泡 图1 开口气泡 图2 开口气泡 1.缺陷特征

钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氮不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害:可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。

压入氧化铁皮 图1 一次(炉生)氧化铁皮(压入) 图2 二次氧化铁皮(轧制过程产生)

图3 二次氧化铁皮(轧辊氧化膜脱落) 1.缺陷特征 热轧过程中氧化铁皮压入钢带表面形成的一种表面缺陷称压入氧化铁皮。按其产生原因不同可分为炉生(一次)氧化铁皮、轧制过程中产生的(二次)氧化铁皮或轧辊氧化膜脱落压入带钢表面形成的(二次)氧化铁皮。 2.产生原因及危害 产生原因: ①钢坯表面存在严重纵裂纹; ②钢坯加热工艺或加热操作不当,导致炉生铁皮难以除尽; ③高压除鳞水压力低、喷嘴堵塞等导致轧制过程中产生的氧化铁皮压入带钢表面; ④轧制节奏过快、轧辊冷却不良等导致轧辊表面氧化膜脱落压入带钢表面。 危害:影响钢带表面质量和涂装效果。 3.预防及消除方法 ①加强钢坯质量验收,表面存在严重纵裂纹的板坯应清理合格后使用; ②合理制订钢坯加热工艺,按规程要求加热板坯; ③定期检查高压除鳞水系统设备,保证除鳞水压力,避免喷嘴堵塞;

热轧带钢缺陷图谱

热轧带钢缺陷图谱

————————————————————————————————作者: ————————————————————————————————日期: ?

热轧带钢外观缺陷 Visual Defects inHot Rolled Strip 2.1 不规则表面夹杂(夹层)(IrregularShells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.2 带状表面夹杂(夹层)(Seams)

【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.3 气泡(Blisters)

【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 2.4 结疤(重皮)(Scabs)

带钢轧制常见缺陷原因分析

带钢轧制常见缺陷原因分析 结疤(M01) 图7-1-1 图7-1-2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害: 导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。 4.检查判断 用肉眼检查; 不允许存在结疤缺陷,对局部结疤缺陷,允许修磨或切除带有结疤部分带钢的方法消除,如结疤已脱落,则比照压痕缺陷处理。 7.2气泡(M02)

图7-2-1闭合气泡 图7-2-2开口气泡 图7-2-3开口气泡 1.缺陷特征 钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氩不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害: 可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。 4.检查判断 用肉眼检查; 不允许存在气泡缺陷。 7.3表面夹杂(M03) 图7-3-1

表面缺陷检测

对于生产物件的检测,由于科学技术的限制,起初只能采用人工进行检测,这样的方式不仅消耗大量人力,而且浪费时间,效率低下。于是,基于机器视觉技术的表面缺陷检测技术应运而生,我们有必要关注关注,并了解相关注意事项。 当今社会,随着计算机技术,人工智能等科学技术的出现和发展,以及研究的深入,出现了基于机器视觉技术的表面缺陷检测技术。这种技术的出现,大大提高了生产作业的效率,避免了因作业条件、主观判断等影响检测结果的准确性,实现能更好更准确地进行表面缺陷检测,更加快速的识别产品表面瑕疵缺陷。 产品表面缺陷检测属于机器视觉技术的一种,就是利用计算机视觉模拟人类视觉的功能,从具体的实物进行图象的采集处理、计算、进行实际检测、控制和应用。产品的表面缺陷检测是机器视觉检测的一个重要部分,其检测的准确程度直接会影响产品的质量优劣。由于使用人工检测的方法早已不能满足生产和现代工艺生产制造的需求,而利用机器视觉检测很好地克服了这一点,表面缺陷检测系统的广泛应用促进了企业工厂产品高质量的生产与制造业智能自动化的发展。

在进行产品表面检测之前,有几个步骤需要注意。 首先,要利用图像采集系统对图像表面的纹理图像进行采集分析; 其次,对采集过来的图像进行一步步分割处理,使得产品表面缺陷能像能够按照其区域特征进行分类; 再者,在以上分类区域中进一步分析划痕的目标区域,使得范围更加的准确。 通过以上的三步处理之后,产品表面缺陷区域和特征能够进一步确认,这样表面缺陷检测的基本步骤就完成了。 利用机器视觉技术提高了用户生产效率,使得生产更加细致化,分工更加明确,同时,减少了公司的人工成本支出,节省了财力,实现机器智能一体化发展。 南京博克纳自动化系统有限公司总部位于美丽的中国古都南京,是国内专业研制无损检测仪器及设备的高科技企业。公司致力于涡流、漏磁和超声波仪器及各种非标设备的研制,已拥有自主研发的多项国家专利。产品被广泛应用于航天航空、军工、汽车、电力、铁路、冶金机械等行业。产品出口:美国、

带钢产生的缺陷

带钢缺陷及其产生的原因 带钢缺陷常见的几种: 1、结疤 特征:钢带表面呈“蛇状”或“鳞状”的金属薄片,外形近似一个闭和的曲线。一种是嵌在表面上不易脱落;一种是粘和到表面上易脱落。 产生原因: (1)钢锭由于浇注条件不同而产生的结疤、重皮,是轧制钢带表面产生结疤的主要原因。 (2)钢带内部靠近表面层的气泡及夹杂层在轧制中破裂变成结疤。 (3)轧辊表面不好,有缺陷或有砂眼,使钢带表面粗糙。 2、裂纹 特征:钢带表面完整性比较严重的破裂,它是以纵向、横向或一定角度的形式出现的尖底裂缝。 产生原因: (1)钢质不良,带坯上有非金属夹杂及皮下气泡。 (2)带坯表面缺陷清楚不彻底。 (3)热轧钢带加热制度不当,轧制时金属延伸不均。 3、分层(又称起层) 特征:钢带截面上有局部的、明显的金属结构分离层。 产生原因: (1)钢质不良,带坯有皮下气泡和非金属夹杂物。 (2)坯料有缩孔残余或严重的疏松。 4、气泡: 特征:钢带表面上有分布无规律的且大小不同的圆形凸包,沿凸包切断后称层状。

产生原因: (1)由于钢锭凝固时气体析出形成气泡。 (2)酸洗时,金属内部孔隙中进入氢原子形成气泡 (3)冶炼过程中,浇铸过程中脱气不良造成的。 5、表面夹杂: 特征:钢带表面上的非金属夹杂物,颜色为红棕色、淡黄色、灰白色、形状为点状、块状或长条状。 产生原因: (1)炼钢时造渣不好或盛钢桶不净。 (2)热轧时,坯料在加热过程中,炉渣或耐火材料碎块粘附到坯料上。6、麻点: 特征:钢带表面存在细小凹坑群和局部的粗糙面,麻点的数量多,面积小,形状不规则;凹坑的数量少,面积大。 产生原因: (1)热轧时压入了氧化铁皮,酸洗未净,又经过冷轧造成。 (2)冷轧时,粘在轧辊或平整机组工作辊上的氧化铁皮压入钢带表面上。(3)轧辊磨损严重造成钢带的麻面。 (4)冷轧钢带时表面不净,粘有污泥尘土,或异物压入钢带表面后脱落。(5)钢带严重的锈蚀。 (6)过酸洗造成钢带的麻眼。 7、划痕: 特征:钢带表面呈直而细得沟痕,一般是沿轧制方向,连续或断续的分布于带钢的全长或局部。 产生原因: (1)卫板粗糙不平,或粘上了金属微粒,当轧件通过时产生的划痕。(2)轧机附件的尖角及突出部分摩擦钢板。 (3)冷加工、热处理等过程中,钢带或异物摩擦。

冷轧带钢表面鼓泡缺陷分析

冷轧带钢表面鼓泡缺陷分析 李殿凯,袁晓敏 (安徽工业大学材料科学与工程学院,安徽马鞍山243002) 摘 要:采用扫描电镜对冷轧带钢表面鼓泡处的横、纵断面,鼓泡的破裂面以及鼓泡处拉断表面的形貌进行了观察,并对微区成分作了分析。鼓泡主要是在钢坯皮下由保护渣形成了层状夹杂,导致冷轧原料板出现分层,从而在轧制过程中心部、表面的塑性变形不一致而形成。关键词:冷轧带钢;鼓泡缺陷;夹杂 中图分类号:T G 335.5 文献标识码:A 文章编号:100121447(2007)0420023203 Analysis of surface bubbly defects in cold rolled strip L I Dian 2kai ,YUAN Xiao 2min (School of Materials Science &Engineering ,Anhui U niversity of Technology ,Ma ’ans 2 han 243002,China ) Abstract :In t his paper ,t he microst ruct ure and composition of surface bubbly defect s in cold rolled st rip in cross and vertical section were st udied by SEM and EDAX.The re 2sult s showed t hat t he bubbly defect s were caused by banded inclusion lied in steel slab f rom mould powder and plastic deformation were not consistent from center to t he sur 2face during rolling. K ey w ords :cold rolled st rip ;bubbly defect ;inclusion 作者简介:李殿凯(1973-),男,安徽人,硕士,主要从事钢铁材料电镜检测工作. 带钢表面缺陷是影响其表面面质量的主要因素。这些缺陷包括起泡、翘皮、裂纹等,连铸坏经常由于在轧制过程中出现这类缺陷而导致报废。特别是由于在冶炼过程中由于保护渣材料而导致出现的起泡现象,由于在轧制过程中不易发现,更易出现大量的废品[1]。 1 起泡现象的缺陷特征 通过对生产过程中出现的“起泡”废品的统计,其出现位置具有不固定性。一般大小在4mm 以下,主要呈圆形,并且有起泡相连的现象。 2 鼓泡处微观特征及分析 在带钢起泡缺陷处的横截面方向切开,用扫描电镜对其进行观察。图1为切开面的形貌。可以看到里面有片层状的夹杂存在。将其片层状的夹杂进一步放大,即将图1中的A 点进一步放大,如图2所示,并对其进行能谱分析,结果如图 3所示。结果表明,层状夹杂的成分主要有Al 、Si 、Ca 、Na 、K 、F 、Cl 、S 元素,其中Na 、K 、F 均是保 护渣的特定元素,所以可以认定该层状夹杂主要是由保护渣引起。 图1 起泡缺陷处横截面切开的形貌 再将带钢沿其纵断面切开,对其观察并进行成分分析。图4和图5分别为纵截面切开后的形 ? 32?2007年 8月第35卷第4期钢铁研究 Research on Iron &Steel Aug.2007 Vol.35 No.4

热轧带钢氧化铁皮表面缺陷的产生及对策

热轧带钢氧化铁皮表面缺陷的产生及对策 [我的钢铁] 2009-02-16 07:02:16 1氧化铁皮分类 氧化铁皮是热轧钢带较常见的一种产品质量缺陷,按照生成部位不同一般分为炉生氧化铁皮、粗轧和精轧氧化铁皮和卷取后氧化铁皮和保护渣去除不净铁皮。 2氧化铁皮产生机理 氧化铁皮的生成一般是由于钢坯在加热炉内加热或高温状态下与氧化性气氛接触后发生化学反应生成Fe304、Fe203、FeO的一种混合物。当温度高于700℃时,FeO在最接近钢坯的内层形成,占95%;Fe304在中间层形成,占4%;Fe203在最外层形成,占1%。 3炉生氧化铁皮 炉生氧化发生在加热炉内,同化学成分、加热温度、在炉时间、炉内气氛有关。加热温度越高、在炉时间越长、炉内氧化性气氛越强则越容易生成铁皮。化学成分中C、Si、Ni、Cu等元素促进氧化铁皮生成,Mn、Al、Cr可以减缓氧化铁皮的生成。例如:生产中常见的含Si钢、高碳钢和高强钢在钢带通条长度,整个板面均有分布的氧化铁皮,且下表面较上表面重,由于含Si钢中低熔点(1170℃)的化合物FeSi204在氧化铁皮和钢基体之间产生,这种呈楔形的氧化物在随后的轧制过程中保留下来形成棕红色的氧化铁皮。 4轧制过程氧化铁皮 粗轧氧化铁皮的清除与粗轧除鳞水压力、水嘴角度、水质、立辊侧压能力等有关,除鳞水压力越高、立辊侧压越大则氧化铁皮除鳞效果越好。

精轧区氧化铁皮分为水系统铁皮和轧辊生成铁皮。水系统铁皮是指除鳞水、侧喷水、除尘水等压力不足,水嘴角度、高度不正确,或不投入、堵塞,在高温下钢带与空气中的氧结合而生成氧化铁皮不能及时扫射掉由工作辊压入而生成的氧化铁皮。另外,侧喷水也可以抑制氧化铁皮的生成。正常生产时,精轧除鳞水、除尘水必须投入使用。但有时生产薄规格产品时,为了保证板形,降低钢板边部温降,提高轧制稳定性,防止甩尾,往往不投入侧喷水,导致精轧机架内生成的铁皮不能及时被除去,氧化铁皮压入钢板表面。 精轧机组的另一种氧化铁皮缺陷是所谓辊生氧化铁皮,其产生机理见图3。影响辊生氧化铁皮的主要因素有轧辊材质以及轧辊温度。轧辊表面与钢板表面接触时,瞬间高温,表面温度急剧升高而膨胀(一般热轧轧辊接触瞬间温度为600~800℃),呈现较高的压应力;轧件离开轧辊时,轧辊由于冷却水的冷却而急剧降温(精轧机架轧辊温度一般为60~90℃),表面转呈拉应力,如此反复,在轧辊表面易出现疲劳裂纹,造成表面氧化膜破损,破损表面印入钢板表面,形成辊生氧化铁皮缺陷。 一般辊生氧化铁皮发生在精轧前三机架,即F1、F2和F3,主要是由于前三架轧辊表面温度高,导致轧辊表面氧化膜破裂,产生辊生氧化铁皮。由图4可见,加热温度1230℃,进精轧温度950~1010℃时,即图中阴影为无铁皮区域。进精轧温度1030~1080℃之间氧化铁皮严重,进精轧温度在950~1030℃之间,没有氧化铁皮或氧化铁皮较轻。根据各热轧厂设备及所生产钢质不同,进精轧温度控制在950℃生产高强钢或高碳钢时,前三架轧制力过高,可能损坏设备,建议根据轧辊材质不同进精轧温度应控制在950~1030℃,可有效降低上游机架轧辊温度,减少辊生氧化铁皮的发生。 5卷取产生氧化铁皮 卷取后氧化铁皮转变速度非常快,钢卷刚刚从卷取机出来时,表面呈现白色粉末状条带分布,宽窄不一,十几分钟后转变成深色氧化铁皮,作用机理目前尚不清楚。同一钢卷出卷取机瞬间和15分钟之后步进梁上表面生成氧化铁皮表面形貌

表面缺陷测试论文

带钢表面缺陷检测方法研究 学号:1110121096 班级:11材控2班姓名:倪明 摘要:表面质量的好坏是带钢的一项重要指标,随着科学技术的不断发展,后续加工工业对带钢的表面质量要求越来越高。如何检测出带钢表面缺陷并加以控制,引起带钢生产企业的高度关注。本文通过对带钢表面的缺陷检测的重要性分析,讲述了国内外带钢表面缺陷检测的发展现状,并比较分析了几种检测方法,最终得出本研究的意义。由于带钢表面缺陷种类繁多,建议下一步研究工作重点放在缺陷种类识别与分类部分,以满足带钢表面缺陷的无遗漏检测。 关键词: 带钢表面缺陷缺陷检测 1.1带钢表面缺陷检测的重要性 随着生活水平的提高和生产力的发展,人们对产品质量提出了更高的要求,带钢作为机械、航天、电子等行业的原材料,用户对其表面质量的要求更加严格。影响带钢表面质量的主要因素是带钢在制造过程中由于原材料、轧制设备和加工工艺等多方面的原因,导致其表面出现的擦伤、结疤、划痕、粘结、辊印、针眼、孔洞、表面分层、麻点等不同类型的缺陷。这些缺陷不仅影响产品的外观,更严重的是降低了产品的抗腐蚀性、耐磨性和疲劳强度等性能。原料钢卷的表面缺陷是造成深加工产品废次品的主要原因。由于部分质量缺陷在出厂前不能有效地被检测出来,而在用户使用过程中被发现,造成用户索赔,不仅给企业带来巨大的经济损失,还严重影响了产品的市场形象,降低了用户对产品的信任度。因此,必须加强对带钢表面缺陷的检测和控制,这对于剔除废品、减少原料浪费、提高成材率、改善工人劳动条件都有重要意义。而如何在生产过程中检测出带钢的表面缺陷,从而控制和提高带钢产品的质量,一直是钢铁生产企业非常关注的问题。 1.2 国内外带钢表面缺陷检测方法与装置研究现状 目前带钢表面缺陷检测装置主要分为采用传统检测方法的检测装置、采用自动检测方法的检测装置和采用计算机视觉检测方法的检测装置。 1.2.1传统检测方法 非自动化的传统表面缺陷检测方法可以分为人工目视检测方法和频闪光检测法两种。05年代至06年代,冷轧带钢表面缺陷检测主要采用人工目视检测,检测者凭借肉眼观察缺陷。由于带钢轧制速度很快,人眼无法可靠的捕获缺陷信息。同时,某些高质量的带钢要求其表面缺陷小于0.5mm×0.5mm,这种微小缺陷人的视觉很难发觉,从而产生大量的漏检和误检。人工检测需要在高温、噪音、粉尘、振动的恶劣环境下进行,对人的身体和心理造成极大伤

带钢缺陷分析

带钢缺陷分析 一、压痕 特征:带钢表面呈周期性凹状印痕 原因:1、在轧机空转时预压力过小,造成工作辊与中间辊点接触而使中间辊周长方向磨损,受损中间辊反过来造成新更换工作辊表面压印而造成带钢表面压痕 2、中间辊掉肉造成工作辊表面压印,即在带钢表面产生压痕 措施:1、轻微小面积压痕可对工作辊进行修磨(用砂石),严重压痕应更换工作辊 2、轧机空转时给一定轧制压力或采用弯辊,以避免局部损伤轧辊,发现中间辊、支撑辊局部损伤,减轻轧辊表面压痕深度,勤换工作辊,必要时及时更换中间辊或支撑辊 二、压印 特征:带钢表面呈周期性凸状印痕 原因:工作辊表面产生裂纹或掉皮 措施:1、更换新工作辊之前,严格检查轧辊表面质量,防止未磨净裂纹辊投入使用,(轧辊间应确保应有磨削量,特别是粘钢辊,以完全消除裂纹层) 2、确保各机架工艺润滑良好,轧制液温度、浓度、压力在正常范围,防止喷嘴堵塞,避免轧辊局部温度过高 3、发现压印及时更换轧辊,更换新辊后,要进行一定预热,同时,开轧头几卷钢要严格控制升速制度

三、划伤 特征:带钢沿轧制方向的直线凹状缺陷 原因:1、各种导辊与带钢速度不一样 2、带钢与辅助设备异常接触 3、生产线设备有异物 措施:1、定期检查辅助传动辊是否转动灵活及表面状况 2、固定辅助设备与带钢应保持一定间隔 3、及时检查、清除生产线设备中的异物 4、发现带钢表面有划伤,应从后向前逐个检查,查出事故原因后,根据情况采取办法给予处理 四、裂边 特征:带钢边部局部开裂或呈锯齿形裂口 原因:1、酸洗剪切边部状况不好,造成轧后带钢裂边 2、热轧板本身边部裂口或龟裂 3、吊运中夹钳碰撞,使带钢边部碰损 措施:1、酸洗切边剪刃间隙,应按剪切的不同厚度规格精确调节 2、热轧原板边部缺陷应在酸洗工序尽量切除(呈月牙形)

冷轧钢带表面常见缺陷及改进措施

目 录 一、冷轧卷缺陷 辊印 (4) 粘结 (5) 压痕 (6) 锯齿边 (7) 树纹 (8) 划伤 (9) 凹坑 (10) 锈-1 (11) 锈-2 (12) 锈-3 (13) 氧化皮 (14) 氧化色 (15) 污板 (16) 振纹 (17) 碳化边 (18) 边部折皱 (19) 脱脂不良 (20) 油斑 (21) 卷印 (22) 擦伤 (23) 撞伤 (24) 浪形 (25)

刀印 (26) 中间折皱 (27) 燕窝 (28) 二、热轧卷缺陷 边部开裂 (29) 分层 (30) 条伸 (31) 夹杂 (32) 孔洞 (33)

缺陷名:辊印(ROLL-MARK) 不良代码:12 发生形态: 1)沿轧制方向有周期性的,板面有点状、块状、条状突起或凹陷进去的有间隔的不良。 2)平整辊印与轧钢辊印的区分:平整辊印伤疤处无粗糙度且发亮;轧钢辊印伤疤处发暗,有一定的粗糙度。 发生原因: 1)轧钢辊表面受损 2)TM辊表面粘有异物 3)ANN不良产生氧化皮后,脱落粘附在TM辊上,TM时产生 4)作业各Line其它辊面受损 对产品的影响: 1)外观不良,加工(冲压)时易发生破裂 2)影响镀层效果 防止对策: 1)需要防止由各种杂质飞入钢带影响辊面质量2)对轧钢及TM工程中工作辊的硬度确认(爆辊) 3)ANN保护气体的纯净度保证,防止氧化皮的产生

缺陷名:压痕(DENT) 不良代码:10 发生形态: 1)有一定周期性的压痕:异物粘附于发生原因: 1)作业line各辊上粘有凸起的异物引起 2)钢卷摆放位置有异物,导致产生 3)小车压痕 4)行车吊钩撞击后产生对产品的影响:对产品的影响:

表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较 方法 项目 磁粉检测(MT)漏磁检测(MLF)渗透检测(PT)涡流检测(ET)方法原理磁力作用磁力作用毛细渗透作用电磁感应作用 能检出的缺陷表面和近表面缺陷表面和近表面缺陷表面开口缺陷表面及表层缺陷 缺陷部位的显示形式漏磁场吸附磁粉形成 磁痕 漏磁场大小分布渗透液的渗出 检测线圈输出电压和 相位发生变化 显示信息的器材磁粉计算机显示屏渗透液、显像剂 记录仪、示波器或电 压表 适用的材料铁磁性材料铁磁性材料非多孔性材料导电材料 主要检测对象铸钢件、锻钢件、压 延件、管材、棒材、 型材、焊接件、机加 工件在役使用的上述 工件检测 铸钢件、锻钢件、压 延件、管材、棒材、 型材、焊接件、机加 工件在役使用的上述 工件检测 任何非多孔性材 料、工件及在役使 用过的上述工件检 测 管材、线材和工件检 测;材料状态检验和 分选;镀层、涂层厚 度测量 主要检测缺陷裂纹、发纹、白点、 折叠、夹渣物、冷隔 裂纹、发纹、白点、 折叠、夹渣物、冷隔 裂纹、白点、疏松、 针孔、夹渣物 裂纹、材质变化、厚 度变化 缺陷显示直观直观直观不直观缺陷性质判断能大致确定能大致确定能基本确定难以判断灵敏度高高高较低 检测速度较快快慢很快 污染较轻无污染较重无污染 相对优点可检测出铁磁性材料 表面和近表面(开口 和不开口)的缺陷。 能直接的观察出缺陷 的位置、形状、大小 和严重程度。 具有较高的检测灵敏 度,可检测微米级宽 度的缺陷。 单个工件的检测速度 快、工艺简单,成本 低、污染轻。 综合使用各种磁化方 法,几乎不受工件大 a) 易于实现自动化 b) 较高的检测可靠 性 c) 可以实现缺陷的 初步量化 d) 在管道的检查中, 在厚度高达30mm的 壁厚范围內,可同时 检测內外壁缺陷 e) 高效、无污染,可以 获得很高的检测效率. 可检测出任何非松 孔性材料表面开口 性缺陷。 能直接的观察出缺 陷的位置、形状、 大小和严重程度。 具有较高的灵敏 度。 着色检测时不用设 备,可以不用水电, 特别适用于现场检 验。 检测不受工件几何 形状和缺陷方向的 非接触法检测,适用 于对管件、棒材和丝 材进行自动化检测, 速度快。 可用检测材料导电率 代替硬度检测。了解 材料的热处理状态和 进行材料分选。 污染很小。

冷轧质量缺陷图谱1

冷轧产品表面缺陷图谱 为方便管理者和操作者识别冷轧产品的表面缺陷、了解缺陷产生的原因及规X冷轧产品的质量缺陷定义,收集和整理了本缺陷图谱手册,以利于提高产品质量。 目录 第一部分:冷轧质量缺陷定义规X 第二部分:质量缺陷实例及分析 第一部分 冷轧质量缺陷定义规X 1.凸棱:分布在钢带的纵向上,目视缺陷部位发亮,用手触摸有凸起的感觉。 2.夹杂:钢板表面有明显的呈白色或黑色的点状、块状、长条状缺 陷,严重时表面起皮。 3.氧化铁皮:钢带表面粘附着一层鱼鳞状、细条状、块状或弥散型 点状的棕色或灰黑色物,可表现为麻点、线痕或大面积的压痕。 4.翘皮:是呈舌状、线状、层状或M状的折叠(不连续,常出现翘 起),常出现在钢带表面边部。 5.欠酸洗:钢带表面残留着未酸洗掉的氧化铁皮,呈横向的黑色条 纹(类似“抬头纹”的横向黑色细纹),形成带状或片状分布在钢

板表面上。用手摸,手上将粘有黑色的污物。 6.过酸洗:钢带表面比正常酸洗后的钢板粗糙,颜色不是银白色, 而是呈现暗黑色或棕黑色。 7.停车斑:停车斑是酸洗线停车时,由于化学物质沾在钢带表面形 成大片斑迹。可分布在钢带的任何位置。 8.震纹:呈不规则波纹状,沿轧制方向可分布在整个钢带宽度上, 在轧制方向上钢带厚度有变化。 9.乳化液斑:是残留在钢带表面的裂化乳化液,随机的分布在钢带 表面,形状不规则,颜色发暗。 10.黑带:钢板表面上的黑色薄膜,呈条状或片状纵向分布,条状 宽窄不同,颜色深浅不一。 11.轧油斑:钢带表面上存在大小不等的黑色或褐色的斑痕,经退 火后一般有明显的轮廓线。 12.孔洞:钢带表面非连续的、贯穿钢带上下表面的缺陷。一般位 于钢带的中部或边部,大多呈串状分布。 13.清洗黑印:钢带经过清洗机组后,沿带钢轧制方向有表面残留 的黑色痕迹。 14.清洗液残留:经过清洗机组后,钢带表面残留的清洗液,呈片 状,退火前不明显,退火后呈现白色斑迹。 15.氧化:冷轧钢带退火后在钢带表面呈现的黄色或蓝色痕迹,罩 式炉退火后在钢带边部呈S形,在连续退火情况下,变色痕迹会均匀的分布在整个钢带表面。

带钢表面缺陷检测方法研究

带钢表面缺陷检测方法研究 学号:班级:姓名: 摘要:表面质量的好坏是带钢的一项重要指标,随着科学技术的不断发展,后续加工工业对带钢的表面质量要求越来越高。如何检测出带钢表面缺陷并加以控制,引起带钢生产企业的高度关注。本文通过对带钢表面的缺陷检测的重要性分析,讲述了国内外带钢表面缺陷检测的发展现状,并比较分析了几种检测方法,最终得出本研究的意义。由于带钢表面缺陷种类繁多,建议下一步研究工作重点放在缺陷种类识别与分类部分,以满足带钢表面缺陷的无遗漏检测。 关键词: 带钢表面缺陷缺陷检测 1.1带钢表面缺陷检测的重要性 随着生活水平的提高和生产力的发展,人们对产品质量提出了更高的要求,带钢作为机械、航天、电子等行业的原材料,用户对其表面质量的要求更加严格。影响带钢表面质量的主要因素是带钢在制造过程中由于原材料、轧制设备和加工工艺等多方面的原因,导致其表面出现的擦伤、结疤、划痕、粘结、辊印、针眼、孔洞、表面分层、麻点等不同类型的缺陷。这些缺陷不仅影响产品的外观,更严重的是降低了产品的抗腐蚀性、耐磨性和疲劳强度等性能。原料钢卷的表面缺陷是造成深加工产品废次品的主要原因。由于部分质量缺陷在出厂前不能有效地被检测出来,而在用户使用过程中被发现,造成用户索赔,不仅给企业带来巨大的经济损失,还严重影响了产品的市场形象,降低了用户对产品的信任度。因此,必须加强对带钢表面缺陷的检测和控制,这对于剔除废品、减少原料浪费、提高成材率、改善工人劳动条件都有重要意义。而如何在生产过程中检测出带钢的表面缺陷,从而控制和提高带钢产品的质量,一直是钢铁生产企业非常关注的问题。 1.2 国内外带钢表面缺陷检测方法与装置研究现状 目前带钢表面缺陷检测装置主要分为采用传统检测方法的检测装置、采用自动检测方法的检测装置和采用计算机视觉检测方法的检测装置。 1.2.1传统检测方法 非自动化的传统表面缺陷检测方法可以分为人工目视检测方法和频闪光检测法两种。05年代至06年代,冷轧带钢表面缺陷检测主要采用人工目视检测,检测者凭借肉眼观察缺陷。由于带钢轧制速度很快,人眼无法可靠的捕获缺陷信息。同时,某些高质量的带钢要求其表面缺陷小于0.5mm×0.5mm,这种微小缺陷人的视觉很难发觉,从而产生大量的漏检和误检。人工检测需要在高温、噪音、粉尘、振动的恶劣环境下进行,对人的身体和心理造成极大伤

冷轧带钢酸洗产生的问题和防止手段

冷轧带钢酸洗产生的问题和防止手段 所谓带钢,通常是指那种对厚度和宽度有严格限制的产品。带钢在冷状态(常温)条件下,或在再结晶温度以下,经轧制后达到塑性变形的目的,通常称为冷轧带钢,习惯上往往叫做冷带。冷轧窄带钢生产毕竟有其简便、灵活、投资少、收效快等特点。为适应我国国情,必须进一步提高冷轧窄带钢生产的技术水平。普碳钢带经酸洗、水洗和干燥后,其表面应呈灰白色或银白色。但因操作不当、酸洗工艺制度和某些机械设备不良的影响,往往会造成带钢的不同缺陷。这些缺陷主要有:酸洗气泡、过酸洗、欠酸洗、锈蚀、夹杂、划伤和压痕等。这些缺陷占冷轧产品缺陷的2%左右,其中主要是欠酸洗、过酸洗和酸洗气泡等。 (1) 酸洗气泡。酸洗气泡是由于酸与裸露的金属作用生成氢气所造成的。它在冷轧时会发生噼啪的爆炸声,它的外观特征是呈条状的小鼓泡,破裂后呈黑色细裂缝。经过轧制后,气泡裂缝会延伸扩大,致使产品的力学性能(冲击韧性)降低。 酸洗气泡产生的机理是:金属和酸产生化学反应时,生成了部分氢原子,它渗透到金属的结晶格子中,并使其变形,变形后使氢更向金属内扩散,其中一部分氢原子穿过金属并分子化,从酸液中逸出,部分氢原子的分子化在晶格变形产生的“显微空孔”边界上,或金属的夹杂及孔隙中进行,氢在空孔中的压力可达到很大值(几十兆帕),使金属中产生了引起氢脆的内应力。 防止产生气泡的措施是:调整酸液的浓度;控制酸洗时溶液的温度和带钢表面平直状态等。 (2) 过酸洗。金属在酸溶液中停留时间过长,使其在酸溶液作用下,表面逐渐变成粗糙麻面的现象称为过酸洗。 过酸洗的带钢延伸性大大降低,在轧制过程中,很容易断裂和破碎,并且造成粘辊。过酸洗的带钢即使轧制成材也不能作为成品,因为它的力学性能大大降低了。 产生过酸洗的原因是:机组连续作业中断,使酸洗失去连续性,或因带钢断带处理时间过长等。防止措施是尽量密切全机组的操作配合,保证生产正常进行。 (3)欠酸洗。钢带酸洗之后,表面残留局部未洗掉的氧化铁皮时称为欠酸洗。欠酸洗的带钢(或钢板),轻者在轧制之后产品表面呈暗色或花脸状;严重时氧化铁皮被压入呈黑斑。此外,氧化铁皮的延伸性较差,故在轧制后因延伸不均使产品出现浪形或瓢曲等缺陷。有时铁皮可能牢固地贴附在轧辊表面,直接造成轧制废品增多等。 造成欠酸洗的原因是:氧化铁皮厚度不匀,较厚部分的氧化铁皮需要较长酸洗时间,同时其中的Fe0分解成了较难溶解的Fe2O3(Fe3O4);带钢波浪度和镰刀弯较大,在酸洗过程中,起浪部分或弯起部分没有浸泡在酸液中通过,造成漏酸洗;酸洗前机械破鳞不完善,特别是带钢两边端铁皮未被破碎等。 实际生产中欠酸洗多出现在带钢的头尾段和两侧边缘。根据实测数据,欲酸洗掉大块红色铁皮需要3~4倍的酸洗黑色氧化铁皮的时间,此时已洗掉铁皮的带钢将会形成过酸洗。因此处理欠酸洗的方法是:预先平整好板形,对于铁皮较厚,而面积又不大的带钢,可采用先局部酸洗一次,而后再过酸洗线的方法去锈。 (4) 锈蚀。原料酸洗后表面重新出现锈层的现象称为锈蚀。 锈蚀形成的原因是:带钢(钢板)酸洗后表面残留少许的酸溶液,或带钢清洗后没有达到完全干燥而使表面重新生锈。此外,带钢在酸洗后于高温的清洗水中停留时间过长,也会产生锈蚀现象。 带钢锈蚀处的钢板表面在轧制之后呈暗色,它促使成品在库存时再次锈蚀,从而降低成品材的表面质量,严重时使产品报废。 防止锈蚀的措施是严格执行酸洗、清洗操作规程,及时给表面涂油,并应堆放在干燥的

相关文档
最新文档