变压器突发短路故障的缺陷分析

变压器突发短路故障的缺陷分析
变压器突发短路故障的缺陷分析

变压器突发短路故障的

缺陷分析

集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变压器突发短路故障的缺陷分析引言

近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV

及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。

1 分析项目

1.1 变压器油中溶解气体色谱分析

用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。

1.2 绝缘电阻试验

变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。

1.3 绕组直阻试验

直阻试验检查导电回路中分接开关接触是否良好、引线接头焊接或接触是否良好、绕组是否断股、匝间有无短路等缺陷,可配合多种试验共同确定缺陷,被1997年的部颁预试规程确定为变压器最重要的电气试验项目。由于电网短路容量越来越大,短路事故在直阻方面的反映往往很明显。如北土城变电站110kV原#2变压器事故后,通过绕组变形试验发现低压绕组异常,但绝缘电阻正常,色谱分析结果表明发生了涉及绝缘部位的放电,最后依靠低压三相直阻不平衡的试验结果分析出:低压绕组明显变形且绕组严重受损,须进行大修。大修时发现几乎所有的绕组都已经扭曲变形,内部结构严重损坏。

1.4 绕组变形试验

它是通过各线圈在高频下的响应特性来判断其结构和周围状况是否发生明显变化的新型试验项目。如220kV怀柔变电站#1变压器1997年3月发生套管爆炸事故,由于不知线圈内部状况,不能决定是否更换线圈,后根据绕组变形试验结果正常的结论确定不再更换线圈。在大短路容量的电网中近年变压器发生出口短路事故比率较高(例如华北电网1998年的4起变压器事故中3起源于短路冲击),而绕组变形是其中常见的严重缺陷,所以该项目是现场决定变压器是否投运的主要依据,有其它试验项目不可替代的作用。220kV老君堂变电站原#2变压器短路事故后所有电气和色谱试验均正常,但绕组变形试验表明绕组已经变形并在大修

时被确认。该项试验在北京供电局已经开展4年,共进行229台次,其中事故后试验46台次,发现缺陷10起,没有一起判断错误的情况。

近3年来,共进行了40余次事故抢修,依照上述“四项分析”分析无一误判。可见,这套分析方法比较适于现场,但必须强调:“四项分析”要综合起来使用,方能得出正确的结论。

2 应用实例

例1:1998-10-1,110kV林河变电站一台10kV开关速断保护动作掉闸,重合失败,7s后#2变压器(SFZ—40000/110,1996-11投运)本体轻、重瓦斯,闸箱重瓦斯,差动保护均动作,变压器高、低压侧开关掉闸,退出运行。

油色谱分析表明:总烃含量急剧增加,CO、CO2增加较少,结论为变压器内部存在突发性的裸金属部位的放电。电气试验分析表明:绕组直流电阻试验正常;绕组变形试验发现低压绕组略有疑点;绝缘电阻试验发现低压绕组对高压绕组、铁心及地的绝缘仅有25 MΩ。进行分解试验

以查找缺陷位置:高压绕组对低压绕组、铁心以及地绝缘电阻正常;铁心对高、低压绕组及地绝缘电阻正常。判断结果是:低压绕组非线圈部位对地部位的绝缘有问题。

综合分析:变压器内部发生突发性的裸金属部位放电,但绕组变形、直流电阻试验又未发现明显缺陷,故线圈本身有缺陷的可能性很小;低压绕组有微弱的变形,对地绝缘只有25MΩ,故低压绕组接近变压器箱体的部位(尤其是出线处——即低压绕组对地部位)因短路冲击而放电的可能性最大;低压绕组出线处的手孔可以打开,故可方便地在现场检查。

变压器内部检查发现:低压内部引线铜排的多个木夹板中,有两处没有包扎铜排的辅助绝缘,其中低压引线上部木夹件处铜排有相间短路放电痕迹,木夹件表面烧黑,引发相邻部位铜排相间发生油间隙电弧放电。变压器内部散落放电后的铜渣少许,油中炭素较多,线圈上部垫块多处松动。证明试验对于故障部位的判断基本正确,该变压器现场处理后投入运行。

例2:1996-10-28,吕村#2变压器(SFPSZ9—120000/220,1992年投运)110 kV侧B相套管爆炸,套管芯子向上窜起30cm,套管整体上移10cm,根部严重喷油,故障录波器、差动保护、轻重瓦斯、防爆筒均动作。

试验分析:拔掉高压、中压侧所有套管后,做电气试验结果正常。鉴于套管爆炸从未发生过,上级单位决定该变压器返厂大修。但变压器运输要经过一座高速公路桥,工期不允许。最后,根据试验人员的建议,先进行绕组变形试验,结果正常,之后进行局部放电试验,结果正常。投运后运行正常。

变压器突发短路故障的缺陷分析

变压器突发短路故障的 缺陷分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变压器突发短路故障的缺陷分析引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV 及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目

1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。 1.2 绝缘电阻试验 变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。 1.3 绕组直阻试验

配电变压器故障分析

配电变压器故障分析 配电变压器在运行过程中,由于安装和管理不当及使用寿命等原因,经常会出现各种故障。 绝缘老化 变压器在正常负载下,绝缘材料使用期限一般在20年左右。当绝缘枯焦、变黑、失去原有的弹性而变得脆弱时,只要绕组稍受振动或绕组间略有相对摩擦,已老化的绝缘就容易损坏,造成匝间或层间短路。由于绝缘老化而引起的事故很多,因此,必须认真监测变压器的负载和油温,不允许超过规定过负载运行,以免加速绝缘老化和缩短变压器的使用寿命。 绝缘油劣化 绝缘油有很好的电气性能和合适的黏度,它能增加绕组相间、层间以及绕组与铁心、外壳之间的绝缘强度,使运行中变压器的绕组、铁心得到冷却;另外,绝缘油能使变压器主绝缘保持原有的化学性能和物理性能,保护金属不受腐蚀。油纸的劣化会导致变压器发生故障。因此,要加强对绝缘油的维护和监视。

(1)严格按规定取样和做试验,发现不合格时应立即处理。 (2)监视变压器的负载和上层油温有无异常。 (3)减少油与空气接触的机会,防止水分渗入。 过电压 过电压一般分外部过电压和内部过电压。外部过电压主要由雷击引起,主要预防措施是安装避雷器;内部过电压是当电力系统中的参数发生变化时,由电磁振荡和积聚引起的,避雷器也能起到防护作用。 绝缘子损坏 因为测试、维护、检修工作不全面而引起的绝缘子损坏占多数。应加强对绝缘子的预防性试验,维护、检修工作人员应严格按照规程操作,防止人为损坏。 引线及绝缘故障 (1)引线连接处焊接不牢或引线与端头处接触不良、端头的螺钉未拧紧,均能引起局部发热而使接点熔毁,造成引线断线。

(2)水分或大量潮气进入变压器内,使绝缘损坏而击穿。 (3)变压器出口处短路,绕组匝间绝缘损坏。 (4)在高压绕组加强段或低压绕组端部处,因线包绝缘膨胀,堵塞油道,使内部绝缘老化而引起匝间短路。 磁路故障 (1)穿心螺杆及夹板碰触铁芯。 (2)硅钢片间绝缘损坏。 (3)铁芯未接地或接地不当。

220kV变压器故障的电气试验分析

220kV变压器故障的电气试验分析 发表时间:2017-11-29T15:19:10.303Z 来源:《电力设备》2017年第23期作者:王庆1 王少鲁2 [导读] 摘要:变压器在用电高峰期过后进行本体排油,从检查窗进去对变压器内部检查验证后,发现B相低压线圈发生轻度变形,核实了本次试验结论的正确无误性。 (1.国网陕西省电力公司西安供电公司;2.国网陕西省电力公司检修公司陕西省西安市 710043) 摘要:变压器在用电高峰期过后进行本体排油,从检查窗进去对变压器内部检查验证后,发现B相低压线圈发生轻度变形,核实了本次试验结论的正确无误性。此次缺陷处理提醒大家,试验是电力设备运行和维护中的一个重要环节,用以发现运行中设备的隐患,预防事故的发生或设备的损坏,对设备进行检查、试验或监测,是保证电力系统安全运行的有效手段之一。不能有丝毫懈怠,一时的疏忽就可能放过一个故障,造成无法弥补的后果。这就要求对试验工作要抓细、抓严,善于对试验数据进行分析,建立样本档案,并且要不断积累经验,以便及时发现、了解设备缺陷,确保安全生产。 关键词:220kV;变压器故障;电气实验分析 一、电气试验分析 2010年10月25日,该主变进行了周期性预试,预试结果正常。2011年10月20日,该主变停止运行后,于10月28日进行了主变频谱试验、绕组电容量试验、低电压短路阻抗试验、直流电阻试验和绝缘电阻试验。 1.绕组电容量测试中高中对低地电容量变化达16%,低对高中电容量变化达13%,其余试验数据差异不大判断分析为2#主变中压侧绕组发生变形。 2.频谱试验中反映高压共同绕组部分三相一致性较好,中压、低压绕组的三相响应曲线差异性大,绕组极可能已发生局部变形现象。从绕组频响法变形试验结果及电容量变化量分析,基本判定变压器中压绕组存在严重变形情况。直流电阻值无异常,说明中压绕组虽然已严重变形,但尚未形成匝间短路。 3.2012年7月27日,在变压器油中乙炔的体积分数出现第1次跳变后进行油位、潜油泵检查,铁心接地电流监测,以及局部放电、高频局部放电试验,未发现明显放电信号。油箱液位检查,变压器本体油位一直指示在本体油箱60%位置,有载油位持续指示在储油柜50%位置,油位没有变化,对油枕进行红外测温,未见油位变化,排除分接开关油箱向本体油箱内漏引起油色谱超标的可能性;潜油泵启动检查,潜油泵手动运行1h并进行色谱分析,乙炔的体积分数没有明显变化,可以排除潜油泵绕组短路故障的可能;对该变压器铁心接地电流测试,为0.6mA,说明设备铁心没有多点接地的缺陷。2013年3月19日,对该变压器停电检修,检查高中压套管,进行例行试验和耐压及局部放电试验,均未发现异常。2013年5月,该变压器检修投入运行后乙炔的体积分数发生第2次跳变。对该变压器进行油位、潜油泵相关检查,并进行铁心接地电流监测,局部放电、高频局部放电试验,未发现异常。 4.变压器吊罩检查。2013年7月进行变压器吊罩检查。将变压器外罩吊开后,发现固定U相分接引线的支架与围屏表面发生局部放电故障。在U相中压侧围屏表面有树枝状放电痕迹,固定U相分接引线的支架上部、下部也有放电痕迹。在U相中压侧底部支架上发现掉落的胶垫残条,胶垫残条上有烧蚀痕迹。通过查找发现U相中压侧升高座底部法兰胶垫部分缺损,通过复原发现掉落的胶垫残条正是此处缺损的部分。法兰胶垫及掉落的残条。通过对变压器吊罩检查,认为变压器安装不良造成U相中压侧升高座底部法兰胶垫受力不均匀,导致部分胶垫挤压过度,在设备投入正常运行一段时间后,在设备启动或运行过程中,外界的轻微干扰造成挤压过度的U相中压侧升高座底部法兰胶垫残条掉落,恰好落到U相分接引线的支架上,与围屏表面搭连,造成局部瞬时放电故障。 二、常规试验检查 1.绝缘电阻试验。在大短路电流作用下,初始机械损伤的基本形式是变压器绕组变形,它们发展的典型方式是变形引起局部放电,匝、股间短路,整段主绝缘放电或完全击穿导致主绝缘破坏,测量变压器的绝缘电阻是变压器出口近区短路后一项必要的检测项目。在测量绝缘电阻中,严格执行了Q/CSG 114002-2011规程标准。采用2 500 V摇表,绝缘电阻值与前一次的测量结果进行了比较,无明显差别。 2.直流电阻试验。由于大电流冲击,电流流过薄弱环节,会造成分接开关、套管引线接头、将军帽与线圈引出线之间接触不良。如果未能及时发现处理,任其发展会使接触不良点发热熔化而烧断,进而烧坏变压器。接触不良,匝间和股间短路可通过测量绕组直流电阻来发现。对该变压器试验数据进行分析,直流电阻试验的结果没有明显异常,220 kV侧绕组直流电阻的三相不平衡率和变化率与往年试验数据较一致,由此初步确定低压绕组出现轻微的损伤。 3.气相色谱分析。确定目标后,需进一步核实。对近区短路这类突发性故障,因为由于故障突然,产气快,一部分气体来不及溶解于油中就进入气体继电器。为此对气体继电器的气体进行了色谱分析,并且根据气体继电器中气体颜色初步确定一下故障的大致情况。试验结果表明,各种气体含量未发现异常,其中甲烷(CH4)、乙烯(C2H4)相比以前有微量的增加,根据气体组份与内部故障特征关系,异常类型为过热或绝缘不良,但各项数据都在合格范围以内,可认为试验人员的测试误差,故不足以明确故障性质。 三、缺陷的判定及处理 1.缺陷的判定。近区短路后,绕组受到巨大电动力作用产生位移变形,绕组变形或位移后,即使没有立即损坏,也会留下严重故障隐患。通过绕组变形试验发现的差异,结合常规试验中直流电阻及气相色谱分析发现的微小变动,综合各个数据进行科学分析后,断定该变压器低压绕组B相存在轻微变形。 2.处理结果。变压器绕组变形后,要根据变压器的故障严重程度来决定能否继续运行,且运行时间的长短取决于变形的严重程度和部位。一是绝缘距离发生改变,固体绝缘受到损伤、击穿,导致突发性绝缘故障,甚至在正常运行电压下,因为局部放电而使绝缘击穿。二是绕组机械强度下降,其积累效应使绕组再一次遭受近区短路电流冲击时,将承受不住巨大电动力作用而发生损坏事故。为此根据本变压器故障性质,结合正值夏季用电高峰期,提出低压绕组受到近区短路冲击后有轻微变形,但不影响主变的运行。在制定了相关的技术安全措施和监视手段后,报上一级部门批准后主变顺利投运。运行期间特别执行了重点巡视、加强监测、减少负荷等。 四、处理措施及效果 1.处理措施。(1)对变压器U相中压侧围屏放电部分进行局部切割,并进行修补,对中压侧分接引线等部分进行绝缘处理。(2).更换变压器U相中压侧升高座底部法兰胶垫。(3)对变压器油箱进行滤油处理,直到绝缘油中特征气体的体积分数为零为止。 2.处理效果。2013年7月3日变压器检修投运后,通过油色谱在线监测装置对主变压器的油色谱数据进行监测在变压器投运半个月后,

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

变压器短路事故分析

变压器短路事故分析 变压器事故时有发生,而且有增长的趋势。从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。 变压器经常会发生以下事故:外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏;外部短时内频繁受短路冲击而损坏;长时间短路冲击而损坏;一次短路冲击就损坏。变压器短路损坏的主要形式有以下几种: 1、轴向失稳。这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形。 2、线饼上下弯曲变形。这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。 3、绕组或线饼倒塌。这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。 4、绕组升起将压板撑开。这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。 5、辐向失稳。这种损坏主要是在轴向漏磁产生的辐向电磁力作用

下,导致变压器绕组辐向变形。 6、外绕组导线伸长导致绝缘破损。辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。 7、绕组端部翻转变形。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。 8、内绕组导线弯曲或曲翘。辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

关于变压器烧毁的事故分析示范文本

关于变压器烧毁的事故分 析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

关于变压器烧毁的事故分析示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 致:重庆华德机械制造有限责任公司领导 来电收到,我公司对贵公司配电房2号变压器因短路 烧毁事件深表关切,接电后立即展开了事故分析工作,我 公司调阅所有的来图档案、技术部的设计资料和采购部采 购元器件的资料及产品合格证都显示符合设计院设计的图 纸要求(以上图纸合格证等贵公司工程部都有资料),况 且配电柜已经运行了3个多月了,可以排除因元器件质量 原因而造成短路的可能性。 现根据现场具体情况分析可能是由于谐波造成的瞬间 系统电压升高,再加上设计院选用的电流互感器是BH- 0.66的,电流互感的电压偏低,这样反复的系统电压瞬间升 高,造成了电流互感器的绝缘下降而引起的。当然这只是

分析,另外,根据我们了解,现场配电房是无人值班的,而且配电房门始终开着,任何人都能随便进入,所以也不排除现场其它因素或者小动物进入造成事故的可能性。 不管怎样,我公司将会积极配合贵公司做好事故的排查分析工作,并全力做好事故后的处理和善后工作。 谢谢 上海一电集团有限公司 20xx年7月8日 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

全国110kV及以上等级电力变压器短路损坏事故统计分析_金文龙

全国110kV及以上等级 电力变压器短路损坏事故统计分析 金文龙 陈建华 国家电力公司安全运行与发输电部,100031北京 李光范 王梦云 薛辰东 国家电力公司电力科学研究院,100085北京清河 STATISTICS A ND ANALYSIS ON POWER TRA NFORMER DAMAGES CAUSED BY S HORT-CIRCUIT FAULT I N110kV A ND HIGHER VOLTAGE CLASSES Jin Wenlong Chen Jianhua Department of Safety Operatio n,Genera tion and Tra nsmissio n,Sta te Pow er Co rpora tion of China Beijing,100031China Li Guang fa n Wang Meng yun Xue Chendong Electric Pow er Resea rch Institute,State Pow er Co rpo ra tion o f China Beijing,100085China ABSTRAC T According to the information on transformer faults provided by major electric pow er companies in China from1990to1998,the statistics and analysis on the trans-former damages caused by short-circuit faults in110kV and higher voltage classes are carried out.The general situation of high capacity pow er transformer damage caused by short-circuit is summarized,the feature and regular patterns of these faults are put forw ard.The result of analysis can be used as a good guidance of improving pow er transformer se-cure operation and provides an objective foundation for the manufacturers of high capacity anti-break-down transformers in China. KEY W ORDS pow er transformer;short-circuit fault;dam-age of transformer 摘要 根据1990~1998年全国各网省(市)电力公司提供的变压器事故统计数据,对全国110kV及以上电压等级变压器的短路损坏事故进行分析,总结了全国大型电力变压器的短路事故特点和规律,为运行部门提高设备安全运行管理水平、变压器制造厂提高设备抗短路能力,提供了依据。 关键词 变压器 短路事故 统计分析 1 前言 通过历年对全国电力变压器运行情况和事故的统计分析,发现因外部短路故障引起的设备损坏事故逐年增多。截止1996年底,全国110kV及以上等级电力变压器因外部短路故障造成损坏的事故达到事故总数的50%。扼制此类事故的上升势头,已成为提高电力变压器安全运行水平的关键。 本文统计的因短路事故造成损坏的变压器共有145台。包括:各网省电力公司报送的1990~1996年全国110kV及以上等级事故变压器中因外部短路损坏的变压器124台;由19个网省(市)电力公司于1998年8~10月报送的110kV及以上等级的短路损坏变压器21台(实际上报数为62台,但其中41台变压器在1990~1996年报送样本中已出现过)。 按各网省电力公司历年上报的数据,全国110kV及以上等级变压器在1990~1996年期间,共发生事故409台次,事故总容量为32306MV A;其中因短路损坏的变压器共124台次,容量8432.6MV A。 1990~1996年间变压器短路损坏事故台次和容量见图1、图2。图3为1990~1996年间变压器短路损坏事故占总事故的百分比。 图1 1990~1996年间每年变压器短路损坏台次 Fig.1 Transf ormer damaged by short-circuit between1990and1996(by sets) 自1990年以来,110kV及以上等级变压器的短路损坏事故明显增多。从最初每年两三台到1995、1996年的29台。到1996年,全国110kV及以上电压等级变压器的短路损坏事故台次已经占统计总事故台次的50%。因外部短路引起变压器损坏的事故已成 第23卷第6期1999年6月 电 网 技 术 Po we r System T ech no lo gy V ol.23N o.6 Jun. 1999 DOI:10.13335/j.1000-3673.pst.1999.06.021

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

变压器突发短路故障的缺陷分析详细版

文件编号:GD/FS-8626 (解决方案范本系列) 变压器突发短路故障的缺 陷分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

变压器突发短路故障的缺陷分析详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经

验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目 1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

大型电力变压器短路事故统计与分析_王梦云

大型电力变压器短路事故统计与分析王梦云 凌 愍(电力工业部电力科学研究院,北京100085) 摘要:针对1991~1995年110kV及以上电压等级变压器的事故情况,统计分析了因外部短路引起电力变压器损坏事故的主要原因,提出了减少这类事故的措施。 关键词:变压器 短路 事故 统计 分析 Statistics and Analysis on Short-Circuit Faults of Large Power Transformers Wang Mengyun and Ling Min Elect ric Power Research Insti tute,Ministry of Electric Pow er,Beijing100085 Abstract: Based on the faults of110kV pow er transformers and above occur red in 1991~1995,the main reasons of faults caused by ex ter nal short-circuit are analyzed s tatistically in this paper,and th e steps taken to decrease th ese faults are presented. Key words: Transformer,Short-circuit,Fault,Statistics,Analysis 1 前言 电力变压器在电力系统中运行,发生短路是人们竭力避免而又不能绝对避免的,特别是出口(首端)短路,巨大的过电流产生的机械力,对电力变压器危害极大。因此,国家标准GB1094和国际标准IEC76均对电力变压器的承受短路能力作出了相应规定,要求电力变压器在运行中应能承受住各种短路事故。然而,近五年来对全国110kV及以上电压等级电力变压器事故统计分析表明,因短路强度不够引起的事故已成为电力变压器事故的首要原因,严重影响了电力变压器的安全、可靠运行。 本文就因外部短路造成电力变压器损坏事故的情况作一统计分析,进而提出了减少这一类事故的措施,试图以此促进制造厂对电力变压器产品的改进和完善,同时促使运行部门进一步提高运行管理水平。2 大型电力变压器短路事故情况根据1991~1995年的 不完全统计,全国110kV及以上电压等级电力变压器共发生事故317台次,事故总容量为25348.6MV A。以台数计的平均事故率为0.83%,以容量计的平均事故率为 1.10%。在这些事故中,因外部短路引起电力变压器损坏的有93台次,容量为6677.6MV A,分别占同期总事故台次的29.3%,占总事故容量的26.3%(详见表1)。 由表1不难看出,电力变压器短路强度不 表1 1991~1995年全国电力变压器短路事故 台次及容量统计 第34卷 第10期1997年10月 变压器 TRANSFORM ER Vol.34 No.10 Octo ber 1997

配电变压器常见故障分析(正式版)

文件编号:TP-AR-L5164 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 配电变压器常见故障分 析(正式版)

配电变压器常见故障分析(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声

音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接

变压器短路的原因是什么

因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。 (1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。 (2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。 (3)采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。 (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。 (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。 (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。 (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。 (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。 (9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

相关文档
最新文档