积分变换-第1讲_傅里叶变换(1)

傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义频域的相位与时域的相位有关系吗信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。

积分变换的认识与应用

积分变换的一些应用 积分变换 积分变换是数学中对于函数的作用子,理论上用以处理微分方程等问题。所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换。最常见的积分变换有两种:傅里叶变换和拉普拉斯变换,其他的还包括梅林变换和汉克尔变换等。积分变换法凭借着它灵活方便的特点在理工科方面有很大的应用,本文将会讲述关于傅里叶变换和拉普拉斯变换的一些应用。 傅里叶变换 定义 傅里叶其实是一种分析信号的方法,既可以分析信号的成分,也可以利用这些成分合成信号。设f(t)是t的周期函数,如果t满足狄里赫莱条件:在下一个周期内具有有限个间断点,并且在这些间断点上函数是有限值;在一个周期内具有有限个极值点;绝对可积。则函数满足傅里叶变换: 它存在逆变换,则傅里叶逆变换: 有一种特殊的变换叫离散傅里叶变换,它是对一个序列进行的变换,为: 傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 个别应用 傅里叶变换最常见于图像处理跟数学信号处理中,而现在现在我介绍其中一种比较不错的应用:加密、解密图像。 根据Candan等人提出的离散分数傅里叶变换的定义为,X(n)是带有N个矢量元素的输入信号,是变换核矩阵,是分数阶。Soo-Chang Pei 等人将离散分数傅里叶变换核矩阵定义为,当N为奇数时,矩阵 ,当N为偶数时,,是一个对角矩阵,其对角线上的元素是V中年每列特征向量的特征根。我们将NXN DFT矩阵定义为: ,进而可以将阶DFRFT矩阵定义为:

积分变换习题解答2-4

2-4 1.求下列卷积: 3)m t n t (,m n 为正整数). 解:m t ()()()00 d 1C d n t t n k n m m k n k k n k t t t ττττ ττ-==?-=-∑?? ()() 1C d 1d C n n t t k k k n k m k m k k n k n n k k t t τ τττ-++-===-=-?∑∑? ? ()()()11 00 1C 1C 11m k n k n n k k k m n k n n k k t t t m k m k ++-++==?=-?=-++++∑∑ )1!!1!m n m n t m n ++=++. 注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积结果. 6)sin kt ()sin 0kt k ≠. 解 :sin kt ()()001sin sin sin d cos cos 2d 2t t kt k k t kt k kt τττττ??=-=---? ??? ()()011cos cos 2d 224t t kt k t t k k ττ=-+--? ()0sin 21 1sin cos cos 2422t t k kt t kt t kt k k τ-=-+ =-+ . 7) t sinh t 解 :t sinh sinh t t = t ()0 sinh d t t τττ=?-? ()()00 11e d e d 22t t t t ττ ττττ-= ---?? ()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττ ττ---??= -+-=-++-=-???? ?? 9)()u t a - ()()0f t a ≥ . 解:()u t a - ()()()( )0 0,d d ,t t a t a f t u a f t f t t a τττττ?

积分变换习题解答2-2

2-2 1.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2 132!1232132m m m t s s s s s t t +????==++=++???? 及有L L L . 2)()1e t f t t =-. 解 :[]() () 11 11 ,e e t t t t t s s s s --????= ==- ????2 2 2+1-1L L ,L 1-. 3)()()2 1e t f t t =-. 解: ()22-1e e 2e e t t t t t t t ????=-+???? L L () () () 2 3 2 3 2 2 145 .-1-1-1s s s s s s -+= - + = -1 5)()cos f t t at =. 解: 由微分性质有: [][]() 2 2 2 222 2 d d cos cos d d s s a t at at s s s a s a -?? =-=-= ? +?? +L L 6) ()5sin 23cos 2f t t t =- 解:已知[][]2 2 2 2 sin ,cos s t t s s ω ωωω ω= = ++L L ,则 []52 2 222103sin 23cos 25 34 4 4 s t t s s s --=-= +++L 8)()4e cos 4t f t t -=. 解: 由[]2 cos 416 t s +s = L 及位移性质有 42cos 4416 e t s t s -??=??++4(+)L . 3.若()()f t F s ??=??L ,证明(象函数的微分性质):

积分变换

积分变换、数学物理方程与特殊函数 经过十二周的学习,我们学到了很多知识,这与以后的学习和工作打下了基础,老师讲解十分认真,讲课效果很好。由于现在还处于理论的学习阶段,无法将学到的这些内容应用到实际问题中,但我相信,在以后的实验和实际问题中肯定能发挥相当大的作用。这门课是数学的更深一个层次,与高等数学的关系密不可分。下面就我学习的状况谈一下我对这门课的认识。 首先学习的是《积分变换》的内容,我们主要学习了Fourier 变换、逆变换及其应用。Fourier 积分变换相对于后面学到的《数学物理方程》偏重于理论,其中与多种函数和理论密切相关,Fourier 变换中经常用到欧拉公式。 复数形式的欧拉公式: ?? ???-=+=-=+= ---x i x e x i e i e e n w t e e n w t ix ix inwt inwt inwt inwt sin cos ,sin cos 2sin ,2cos 其中有三个基本函数,在学习《积分变换》时经常用到; 1.单位阶跃函数: ?? ?<>=0 ,00,1)(t t t u 可以用阶跃函数吧分段函数表达出来。 2.矩形脉冲函数: ???????><=2,02 ,τττ t t E t P )( 3.δ函数: ? ??≠=∞+=0,00 ,)(x x x δ 表示密度分布的极限。 δ函数具有筛选性质: )0()()(-f dx x f x =? +∞ ∞ δ 其一般形式为:)()()(0-0x f dx x f x x =-?+∞∞ δ 同时还学习了卷积定理:假定)(1t f ,)(2t f 都是满足Fourier 积分定理中的条件,且[])()(11w F t f =?,[])()(22w F t f =?,则

(整理)傅立叶积分变换.

第一章 傅里叶积分变换 所谓积分变换,实际上就是通过积分运算,把一个函数变成另一个函数的一种 变换.这类积分一般要含有参变量,具体形式可写为: ()()ττF dt t f t k b a ??→ ??记为 ),( 这里()t f 是要变换的函数,称为原像函数;()τF 是变换后的函数,称为像函数;()τ,t k 是一个二元函数,称为积分变换核 . 数学中经常利用某种运算先把复杂问题变为比较简单的问题,求解后,再求其逆运算就可得到原问题的解. 如,初等数学中,曾经利用取对数将数的积、商运算化为较简单的和、差运算; 再如,高等数学中的代数变换,解析几何中的坐标变换,复变函数中的保角变换, 其解决问题的思路都属于这种情况.基于这种思想,便产生了积分变换.其主要体现在: 数学上:求解方程的重要工具; 能实现卷积与普通乘积之间的互相转化. 工程上:是频谱分析、信号分析、线性系统分析的重要工具. 1.傅里叶级数的指数形式 在《高等数学》中有下列定理: 定理1.1 设()t f T 是以()0T T <<∞为周期的实函数,且在,22T T ?? - ??? 上满足狄利克雷条件,即()t f T 在一个周期上满足:(1)连续或只有有限个第一类间断点; (2)只有有限个极值点. 则在连续点处,有 ()()∑∞ =++=1 0sin cos 2n n n T t n b t n a a t f ωω (1) 其中()dt t f T a T T T ?-=22 01 , ()() ,2,1cos 1 22==?-n tdt n t f T a T T T n ω, ()() .2,1sin 1 22 ==?-n tdt n t f T b T T T n ω, 在间断点0t 处,(1)式右端级数收敛于 ()()2 0000-++t f t f T T . 又2cos φφφi i e e -+=,i e e i i 2sin φ φφ--=,.于是

傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略 傅立叶变换、拉普拉斯变换、Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换。研究的都是什么?从几方面讨论下。 这三种变换都非常重要!任何理工学科都不可避免需要这些变换。 傅立叶变换,拉普拉斯变换, Z变换的意义 【傅里叶变换】在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。

积分变换主要公式

一、傅里叶变换 1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件: 1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞ -∞?收敛; 则傅氏积分公式存在,且有 ()()()()()(), 1[]11002,2 iw iw t f t t f t f e d e dw f t f t t f t τττπ +∞+∞--∞ -∞ ??=-?++-? ?? ? 是的连续点是的第一类间断点 2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞ --∞ ==? 1-2 傅里叶逆变换定义式:()1 1[]()()2iw t F F w f t F w e dw π +∞--∞ == ? 1-3 3、常用函数的傅里叶变换公式()1 ()F F f t F ω-??→←?? 矩形脉冲函数 1 ,22()sin 2 0, 2 F F E t E f t t τ τωτω-?≤?? ??→ =? ←???> ?? 1-4 单边指数衰减函数 ()()1 ,01 1 ,0 t F F e t e t F e t iw j t βββω --?≥??→=?= ??? ←????++

积分变换的应用

浅谈积分变换的应用 学院:机械与汽车工程学院 专业:机械工程及自动化 年级:12级 姓名:郑伟锋 学号:201230110266 成绩: 2014年1月

目录 1.积分变换的简介 (3) 1.1积分变换的分类 (3) 1.2傅立叶变换 (3) 1.2拉普拉斯变换 (4) 1.3梅林变换和哈尔克变换 (5) 1.3.1梅林变换 (5) 1.3.2汉克尔变换 (6) 2.各类积分变换的应用 (6) 2.1总述 (6) 2.2傅立叶变换的应用 (6) 2.2.1傅立叶变换在图像处理中的应用 (6) 2.2.2傅立叶变换在信号处理中的应用 (7) 2.3拉普拉斯变换的应用 (8) 2.3.1总述 (8) 2.3.2 运用拉普拉斯变换分析高阶动态电路 (8) 参考文献 (9)

1.积分变换的简介 1.1积分变换的分类 通过参变量积分将一个已知函数变为另一个函数。已知?(x),如果 存在(α、b可为无穷),则称F(s)为?(x)以K(s,x)为核的积分变换。 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。 1.2傅立叶变换 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。其定义如下 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换

傅里叶变换算法详细介绍

傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 /**************************************************** ***********************************************/ 这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。感谢原作者们(July、dznlong)的精心编写。 /**************************************************** **********************************************/

前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科)

积分变换第一章练习题及答案

积分变换第一章练习题(100分) 一、填空题(每空4分,共60分) 1.()sin t tdt δ+∞ -∞?= . 2.设[()]()F f t F w =,则()F w 与 ()f t 有 (相同,不同) 的奇偶性. 3.[sin2]F t = . 4.[(3)]F u t = . 5.函数0()sin3()f t t t t =δ-的傅立叶变换 6.傅立叶积分公式的三角形式为: 00()()cos ()sin f t a td b td +∞+∞=ωωω+ωωω?? 这里=)(ωa ;=)(ωb 7.函数0()()j t f t e t u t ω=??的傅立叶变换 。 8.已知函数()f t 的傅立叶变换为()F ω,则函数()f at b + 的傅立叶变换为 。 9.0[()]t t δ-=F [1]=F 0[]jw t e =F 0[()sin ]u t w t =F [(23)()]t f t -=F 10.设 50,0(),0 t t f t e t -

二、综合题(每题10分,共40分) 1.若10,0()1,010,1t f t t t t ? ,20,0()1,020,2t f t t t ?, 求: 12()*()f t f t (10分) 2.求函数()sin cos f t t t =的傅立叶变换)(ωF 。 (10分) 3.证明在傅氏变换下 123123f f f f f f **=**????????成立。(10分) 4.求余弦函数 0()cos f t t =ω的傅氏变换。 (10分)

Fourier积分和Fourier变换.

§7.2 Fourier积分和Fourier变换 一、复数形式的Fourier级数 二、Fourier积分 1. 从Fourier级数到Fourier 积分 2. Fourier积分存在的条件 3.* Fourier余弦积分和Fourier正弦积分 三、Fourier变换及其性质 1. Fourier变换 2.*Fourier余弦变换和Fourier正弦变换(略) 3. 对称形式傅氏变换间的关系 4. Fourier变换的性质 5. 多重Fourier变换 四、例题 一、复数形式的Fourier级数 根据Euler公式,有 = (7.2 - 1)

= (7.2 - 2) 代替,{} (n=0,1,2…),可以采用{} (n=0,±1,…)作为基本函数族。容易验证 (7.2 - 3) 现在,可以将周期为2l的函数f(x)展开为复数形式的 Fourier 级数 (7.2 - 4) (7.2 - 5) 可以证明(7. - 4)、(7,2 - 5)式与(7.1 - 5)、(7.1 - 6)式完全等价,即从(7.2 - 4)、(7.2 - 5)式可得到(7.1 - 5)、(7.1 - 6)式。 反之,也可以从实数形式 Fourier 数级(7.1 - 5)、(7.1 - 6)式,直接导出复数形式的Fourier 级数(7.2 - 4)、(7.2 - 5)式。 二、Fourier积分

1. 从Fourier级数到Fourier 积分 定义在(-∞,∞)上的非周期函数,不能用上述 Fourier级数来表示。然而,可以设想这个函数的周期为无穷大,即→∞,这样可以从(7.2 - 4)、(7.2 - 5)式出发,作极限过渡,形式上得到非周期函数的表达式。 令得 使→∞,则Δk→dk,k为连续变数,∑→∫,形式上可得 (7.2 - 6) (7.2 - 7) (7.2 - 6)称为函数f(x)的Fourier积分表示式,(7.2 - 7)称为的 Fourier 变换式。 上述复数形式的Fourier积分可化为实数形式的 Fourier 积分 (7.2 - 8)

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶积分变换整理 1 基本概念 首先理清下面的概念: 三角函数形式傅里叶级数(系数含1/T ) 三角函数形式傅里叶级数改写为复指数形式傅里叶级数(系数含1/T ) 复指数形式傅里叶积分,系数1/T 变为1/(2π) 三角函数形式傅里叶积分(将复指数核函数改写为三角函数形式,利用奇偶性变为余弦核函数). 复指数形式傅里叶积分与更一般的积分变换:象函数,象原函数和核 2 基本公式和变换过程 欧拉公式,是连接复指数和三角函数,频域和时域的桥梁 cos()sin()i e t i t ωωω=+ 三角函数改写为复指数形式: cos 2 i i e e θθ θ-+=,sin 2i i e e i θθθ--= 2.1 三角函数形式的傅里叶级数 “级数”就是对数列求和。

01 ()(cos sin )2T n n n a f x a n x b n x ωω∞ ==++∑ 其中 /20/2 /2 /2 /2 /222()2()cos 2()sin T T T T n T T T n T T T a f x dx T a f x n xdx T b f x n xdx T πωωω---= ===??? 注意这里的系数含1/T 2.2 复指数形式的傅里叶级数 我们可以把三角函数形式的傅里叶级数改写为复指数形式,最后甚至合并成一个简单的式子: 0101011 /2 000/2 /2/2 ()() 222()2221()21()cos ()sin 2n n in x in x in x in x T n n n in x in x n n n n n i x i x n n n n T i x T T T n n n T T T T a e e e e f x a b i a a ib a ib e e c c e c e a c f x e dx T a ib c f x n dx i f x n dx T ωωωωωωωωωω--∞=∞-=∞ ∞ -==-??---+-=++-+=++=++==-==-∑∑∑∑??,其中 /2 /2/2/2 /2 /21()1()2()n T T i n x T T T i n x n n n T T i x T n f x e dx T a ib c f x e dx T f x c e ωωω-??-??--∞ -∞? ?=????+===???∑最后 其中/2 /2 1()n T i x n T T c f x e dx T ω--=?,n n ωω= 即/2/21()()n n T i x i x T T T f x f x e dx e T ωω∞ --∞-??=???? ∑?

傅里叶变换基础知识

傅里叶变换基础知识 1.傅里叶级数展开 最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。 1.1周期信号的傅里叶级数 在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。 1.1.1(1(2(31.1.2(1a.定义(0x b.。 (21.1.3式中:0a 0a 、n a 式中:0T 1.1.4(1的变化关系,即信号的结构,是n A ω-(或n A f -)和n θω-(或n f θ-)的统称; (2)信号的幅频谱:周期信号幅值n A 随ω(或f )的变化关系,用n A ω-(或n A f -)表示; (3)信号的相频谱:周期信号相位n θ随ω(或f )的变化关系,用n θω-(或n f θ-)表示; (4)信号的频谱分析:对信号进行数学变换,获得频谱的过程; (5)基频:0ω或0f ,各频率成分都是0ω或0f 的整数倍; (6)基波:0ω或0f 对应的信号; (7)n 次谐波:0(n 2,3,...)n ω=或0(n 2,3,...)nf =的倍频成分0cos()n n A n t ω?+或0cos(2)n n A nf t πθ+;

1.1.5周期信号的傅里叶级数的复指数函数展开 根据欧拉公式cos sin (j t e t j t j ωωω±=±,则1 cos () 21sin j() 2 j t j t j t j t t e e t e e ωωωωωω--=+=- 因此,傅里叶级数三角函数表达式()0001 ()cos sin n n n x t a a n t b n t ωω∞==++∑可改写成 令 则 或 这就是周期信号的傅里叶复指数形式的表达式。 将0 /22T ??????? 由C 则x )0 n t ?±来描1.1.6由C 综合n A 由?2傅里叶变换 出准周期函数之外的非周期信号称为一般周期信号,也就是瞬态信号。瞬态信号具有瞬变性,例如锤子敲击力的变化、承载缆绳断裂的应力变化、热电偶插入加热的液体中温度的变化过程等信号均属于瞬态信号。瞬态信号是非周期信号,可以看作一个周期的周期信号,即周期T →∞。因此,可以把瞬态信号看作周期趋于无穷大的周期信号。 2.1傅里叶变换 设有一周期信号()x t ,则其在[]/2,/2T T -区间内的傅里叶级数的复指数形式的表达式为

相关文档
最新文档