钢纤维喷射混凝土的韧度试验简介

钢纤维喷射混凝土的韧度试验简介
钢纤维喷射混凝土的韧度试验简介

钢纤维喷射混凝土的韧度试验简介

钢纤维喷射混凝土的韧度可以通过能量吸收等级(板试验)和残余强度等级(梁试验)来要求并衡量。

(一)板试验——能量吸收等级

1.大板的制作

试件(大板)的模板采用钢模或木模,钢模最小厚度4mm,木模18mm。人工喷射时,试验模板最小尺寸600*600mm,建议尺寸800×800mm;机械喷射时,试验模板最小尺寸1000*1000mm。大板厚度需和大板试验的试件要求尺寸相对应(100mm或150mm)。将模板设置在斜面上,模型的一个侧面不设边模或留有较大开口。喷射时模型约呈45o放置,开口朝下,以避免回弹影响。

试件(大板)的制作同实际工程一致。应使用和实际工程一致的施工设备,施工程序,喷射距离,喷射角度,喷射厚度,并应使用相同的操作手。并且对试件(大板)进行详细标明(配合比,试验地点,日期,操作员)。

大板成型后24小时内不得移动,并处于一定的湿度和温度(不低于5℃)场中。

在大板成型后的24~48小时之间将大板试件运送至试验室继续养护。试件在运往实验室的过程中应当做好包装保护,防止机械损伤和湿度蒸发。试验室内的相对湿度保持在98±2%左右,温度保持在23±2%左右。

在大板成型后的48~72小时之间将模板去除。大板试件继续在试验室养护直至进行大板试验。去除模板的过程中注意对大板试件的保护。

2.试验装置

试验设备必须采用刚性电液伺服万能型试验机(JGT/3064)。位移控制,而非荷载控制。

试件四边支撑,中心加载,加载面积100x100mm。板的底部为毛面,从而保证加载方向和喷射方向相反。

加载速率:采取位移控制,板中心点变形为1.5mm/min。

3.计算

欧洲标准

试验时记录荷载—变形曲线,试验到板中心位移达到25mm为止。根据荷载—变形曲线可以画出第二根曲线——能量—变形曲线,表示板的变形能量吸收。

韧度要求可以用一定位移下的能量吸收值来表示。

(二)梁试验——残余强度等级

韧度试验和抗弯拉试验可从钢纤维喷射混凝土大板上截取试验梁,在三分点对称荷载下试验并计算得出。

1.试件(试验梁)的制作

试验梁由现场喷射、养护成型的大板上切割而成。因此,大板的制作、养护同大板试验相同。

2..试件(试验梁)的取样

在大板成型后的14天(EFNARC 要求7天即可)切割大板试件,舍弃边缘部分。将养护好的大板切割成100x100x350mm或150x150x600mm的梁试件,试件的尺寸应精确到1mm,承压面与相邻面的不垂直度不应大于1o。钢纤维混凝土应已经达到足够的强度,切割试件的时候不应损坏粗骨料,以及钢纤维和混凝土之间粘结。

在大板成型后的28天(既试验梁成型后的14天)、(EFNARC要求7天,即大板切割完成后可以马上进行梁试验)即可以进行钢纤维混凝土韧度试验。试件在切割后到试验进行之前在水中放置至少3天的时间。试件在运往实验室的过程中应当做好包装保护,防止机械损伤和湿度蒸发,试验时试件要保持湿润。

每一方案同一性能测试至少取三个试件,对每一种配合比的不同龄期应分别取样。(建议每组试件数量不少于6件,4件检测试件,2件备用试件)。

试件尺寸:当纤维的长度小于40mm的时候,试件尺寸为100×100×350mm3(跨度取300mm);当纤维长度大于等于40mm的时候,试件尺寸为150×150×600mm3(跨度取450mm)。

检测各项强度力学指标的试件尺寸参照表9.1。

3.试验装置

试验设备必须采用有变形控制的刚性电液伺服万能型试验机(JGT/3064),即要求设备有足够的刚度,以使试验能以位移控制的方式进行。并且采用三分点对称加载方法。

在进行三分点弯曲韧度试验的时候,试件的浇注面必须作为顶部或底部。试件应放置在支座的中间位置,上部加载位置在时间的三分点处。在这种情况下,加载装置和试件的接触

面之间不得有空隙。试验的支座间距是试件高度的3倍。加荷和支座应能在水平方向滚动。(JSCEP58)

加载过程应连续、均匀,无冲击荷载。在达到最大荷载之前,加载的速度应为常量(位移恒定)。一般而言,加载的速度为每分钟L/1500--L/3000(L是支座间距)。(JSCE)加载的速度为每分钟0.2-0.3mm,直到0.5mm,此后为每分钟1.0mm。(EFNARC)。记录试验最大荷载直至试件破坏,保留3位有效数字。

破坏截面的宽度在距离0.2mm的3个部位进行测量,得到平均值,保留4位有效数字。

弯拉强度和等效弯拉强度取不少于4组实验结果的平均值。

当试件在受拉面跨度三分点以外处断裂,则该试验的结果无效。

4.计算

通过大板切割取样后,取试件(试验梁)做力学性能试验用以测定抗弯拉强度、等效抗弯拉强度、韧性指数等指标,并计算钢纤维混凝土的弯曲韧度系数、剩余强度因子。

日本标准

4.1 抗弯拉强度

抗弯拉强度用下式计算,保留3为有效数字.

σb = PL / bh2

其中σb = 弯拉强度(N/mm2)

P =定义的最大荷载(N)

L=支座间距(mm)

b =破坏截面宽度(mm)

h =破坏截面高度(mm)

4.2 等效抗弯拉强度

根据JSCE—SF4的有关规定:

σb = (T b /δt b )x(L / bh2 )

其中

σb = 等效弯拉强度(N/mm2)

T b =由荷载-位移曲线中, 位移达到间距L的1/150部分下包含的面积。

δt b = 支座间距的1/150 (mm),当支座间距是450mm为3mm, 当支座间距是300时,为

2mm.

注:a: 当试件在达到规定挠度前发生破坏时, T b取试件破坏前曲线所包含的面积,δt b 取规定的挠度,即支座间距的1/150.

b: 当试件在达到规定挠度后发生破坏, T b取试件位移达到间距L的1/150部分时,荷载-位移曲线下所包含的面积;δt b 取规定的挠度,即支座间距的1/150.

4.3弯曲韧度系数Re,3

弯曲韧度系数指在规定变形范围内钢纤维混凝土的等效抗弯拉强度和抗弯拉强度极限值的比值。

Re,3 %=(σb/σb)*100%

备注:中国钢纤维喷射混凝土韧度测试的试验方法与上述介绍的日本标准相同,中国钢纤维喷射混凝土韧度标准值不得低于70%。

美国标准

4.4韧性指数I j

根据美国ASTM—C1018-89规范,将钢纤维混凝土的初裂强度定义为抗弯强度f0, 继而确定其不同点的弯曲韧性指数Ij。

初裂点定义为荷载-挠度曲线由线性转为非线性的点。弯曲韧性指数Ij实际上是钢纤维混凝土在荷载作用下达到给定挠度所吸收的能量与其达到初裂挠度所吸收能量的比值。荷载挠度曲线所包含的面积则为不同挠度下所吸收的能量。在该标准中,定义弯曲韧度指数I5、I10和I30分别为变形达到3δ、5.5δ和15.5δ时试件对应的吸收能与试件初裂时的吸收能之商值。其中δ为初裂挠度。弯曲韧性指数参照美国ASTM C1018-89标准试验计算得到,根据该规范计算剩余强度因子

R10/30=5(I30-I10);

5.试验报告的内容

5.1试验结果整理

在试验报告中必须包含以下内容:试验设备,试件编号,试件数量,试件尺寸,龄期,配合比,挠度测量位置,弯拉强度,等效弯拉强度,弯曲韧度系数的计算过程及结果,养护

方法和温度,破坏状况,荷载-位移曲线记录(EFNARC)以及最高的荷载值。

5.2当试验曲线中出现以下情况,该曲线无效。

a.初裂点对应的挠度大于0.2mm。

b.梁的中心点位移没有达到规定的挠度值,(当梁尺寸为100×100×300mm时,该值应为2mm)。

c.曲线中出现突然的下降和上升段。

d.当试件在受拉面跨度三分点以外处断裂,则该试验的结果无效。

5.3试验成果记录表

现场取样和大板试件测试钢纤维喷射混凝土的各项力学指标如下表所示。每个方案应有相应试验记录表格,同时要注明配合比和试件规格。

表9.2 钢纤维喷射混凝土的各项力学指标测量

5.4要求测出的28d各项力学指标不得低于表9-3所列的技术指标

表9.3 钢纤维喷射混凝土28d各项力学指标值

钢纤维混凝土塌落度宜控制在120~140mm范围内。

钢纤维喷射混凝土的韧度试验简介

钢纤维喷射混凝土的韧度试验简介 钢纤维喷射混凝土的韧度可以通过能量吸收等级(板试验)和残余强度等级(梁试验)来要求并衡量。 (一)板试验——能量吸收等级 1.大板的制作 试件(大板)的模板采用钢模或木模,钢模最小厚度4mm,木模18mm。人工喷射时,试验模板最小尺寸600*600mm,建议尺寸800×800mm;机械喷射时,试验模板最小尺寸1000*1000mm。大板厚度需和大板试验的试件要求尺寸相对应(100mm或150mm)。将模板设置在斜面上,模型的一个侧面不设边模或留有较大开口。喷射时模型约呈45o放置,开口朝下,以避免回弹影响。 试件(大板)的制作同实际工程一致。应使用和实际工程一致的施工设备,施工程序,喷射距离,喷射角度,喷射厚度,并应使用相同的操作手。并且对试件(大板)进行详细标明(配合比,试验地点,日期,操作员)。 大板成型后24小时内不得移动,并处于一定的湿度和温度(不低于5℃)场中。 在大板成型后的24~48小时之间将大板试件运送至试验室继续养护。试件在运往实验室的过程中应当做好包装保护,防止机械损伤和湿度蒸发。试验室内的相对湿度保持在98±2%左右,温度保持在23±2%左右。 在大板成型后的48~72小时之间将模板去除。大板试件继续在试验室养护直至进行大板试验。去除模板的过程中注意对大板试件的保护。 2.试验装置 试验设备必须采用刚性电液伺服万能型试验机(JGT/3064)。位移控制,而非荷载控制。 试件四边支撑,中心加载,加载面积100x100mm。板的底部为毛面,从而保证加载方向和喷射方向相反。 加载速率:采取位移控制,板中心点变形为1.5mm/min。 3.计算 欧洲标准 试验时记录荷载—变形曲线,试验到板中心位移达到25mm为止。根据荷载—变形曲线可以画出第二根曲线——能量—变形曲线,表示板的变形能量吸收。 韧度要求可以用一定位移下的能量吸收值来表示。

钢纤维混凝土配合比

l—2 钢纤维混凝土的配合比设计 钢纤维混凝土虽已在各种工程领域得到较广泛的应用,但对钢纤维混凝土拌合料的配合比设计,尚未建立起合理而成热的设计方法。国外有关学者,曾介绍过关于钢纤维混凝土配合比方面的资料,提出一些参考用表和经验配合比。国内有关单位”,曾提出要以抗折强度为指标进行钢纤维混凝土配合比设计,并通过试验,建立抗折强度与各主要影响因素之间量的关系,有利于配合比的设计。但多数仍按普通水泥混凝土的配合比设计方法,以混凝土的抗压强度确定拌合料的配合比,只是适当调整砂率、用水量和水泥用量。按此确定配合比时,为了获得较高的抗折强度,势必使抗压强度也相应提高,这是不必要的。钢纤维混凝土配合比的设计,应根据对钢纤维混凝土的使用要求和钢纤维混凝土配合比的特点进行合理的设计。 1-2-11-2-1钢纤维混凝土配合比设计的要求和特点 一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将其组成的材料,即钢纤维、水泥、水、粗细骨料及外掺剂等合理的配合,使所配制的钢纤维混凝土应满足下列要求: 1. 满足工程所需要的强度和耐久性。对建筑工程一般应满足抗压强度和抗拉强度的要求对路(道)面工程一般应满足抗压强度和抗折强度的要求。 2.配制成的钢纤维混凝土拌合料的和易性应满足施工要求。 3.经济合理。在满足工程要求的条件下,充分发挥钢纤维的增强作用,合理确定钢纤 维和水泥用量,降低钢纤维混凝土的成本。 二、钢纤维混凝土配合比设计的特点 钢纤维混凝土的配合比设计与普通水泥混凝土相比,其主要特点是: 1.在水泥混凝土的配合拌合料中掺入钢纤维,主要是为了提高混凝土的抗弯、抗拉、抗疲劳的能力和韧性,因此配合比设计的强度控制,当有抗压强度要求时,除按抗压强度控制外,还应根据工程性质和要求,分别按抗折强度或抗拉强度控制,确定拌合料的配合比,以充分发挥钢纤维混凝土的增强作用,而普通水泥混凝土一般以抗压强度控制(道路混凝土以抗折强度控制)来确定拌合料的配合比。 2.配合比设计时,应考虑掺人拌合料中的钢纤维能分散均匀,并使钢纤维的表面包满砂浆,以保证钢纤维混凝土的质量。 3.在拌合料中加入钢纤维后,其和易性有所降低。为了获得适宜的和易性,有必要适当增加单位用水量和单位水泥用量。 1-2-2钢纤维混凝土配合比设计原理与方法。 钢纤维混凝土配合比设计的基本方法是建立在钢纤维混疑土拌合料的特性及其硬化后的强度基础上的。其主要目的是根据使用要求,合理确定拌合料的水灰比,钢纤维体积率、单位用水量和砂率等四个基本参数,由此,即可计算出各组成材料的用量。 在确定基本参数时,既要满足抗压强度要求,又要符合抗折强度或抗拉强度要求,以及和易性、经济性要求。 试验表明,钢纤维混凝土的抗压强度、抗折强度和抗拉强度与水泥标号;水灰比、钢纤维体积率和长径比、砂率、用水量等因素有关,其中水灰比和水泥标号对抗压强度影响最大,其他因素影响较小。即钢纤维体积率和长径比、水泥标号却对抗折强度和抗拉强度影响最大,砂率和用水量对和易性影响较大。因此,采用以抗压强度与水灰比,水泥标号的关系来确定水灰比,然后用抗折强度或抗拉强度确定

喷射混凝土

喷射混凝土干拌法 干拌法是将水泥、砂、石在干燥状态下拌合均匀,用压缩空气将其和速凝剂送至喷嘴并与压力水混合后进行喷灌的方法。此法须由熟练人员操作,水灰比宜小,石子须用连续级配,粒径不得过大,水泥用量不宜太小,一般可获得28~34兆帕的混凝土强度和良好的粘着力。但因喷射速度大,粉尘污染及回弹情况较严重,使用上受一定限制。 喷射混凝土湿拌法 是将拌好的混凝土通过压浆泵送至喷嘴,再用压缩空气进行喷灌的方法。施工时宜用随拌随喷的办法,以减少稠度变化。此法的喷射速度较低,由于水灰比增大,混凝土的初期强度亦较低,但回弹情况有所改善,材料配合易于控制,工作效率较干拌法为高。 将预先配好的水泥、砂、石子、水和一定数量的外加剂,装入喷射机,利用高压空气将其送到喷头和速凝剂混合后,以很高的速度喷向岩石或混凝土的表面而形成。 宜采用普通水泥,要求良好的骨料,10mm以上的粗骨料控制在30%以下,最大粒径小于25mm;不宜使用细砂。主要用于岩石峒库、隧道或地下工程和矿井巷道的衬砌和支护。 编辑本段喷射混凝土安全技术措施 1、准备工作 ①、检查锚杆安装是否符合设计要求,发现问题及时处理。 ②、清理喷射现场的矸石杂物,将喷浆机安设在顶帮围岩稳定安全地点,距离道轨间隙不能小于0.5m。接好风、水管路,输料管路要平直不得有急弯,接头要严密,不得漏风,严禁将非抗静电的塑料管做输料管使用。 ③、检查喷浆机是否完好,并送电空载试运转,紧固好磨擦板,不得出现漏风现象。 ④、喷射前必须用高压风水冲洗岩面,在巷道拱顶和两帮应安设喷厚标志。 ⑤、喷射人员要佩戴齐全有效的劳保用品。 2、配拌料 ①、利用筛子、斗检查粗细骨料配比是否符合要求。 ②、检查骨料含水率是否合格。 ③、按设计配比把水泥和骨料送入拌料机,上料要均匀。?水泥:砂:石子,砼重量配合比水泥∶砂∶石子=1∶2∶2,人工拌料时采用潮拌料,水泥、砂和石子应清底并翻拌三遍使其混合均匀。 ④、检查拌好的潮料含水率,要求能用手握成团,?松开手似散非散,吹无烟。 ⑤、速凝剂按水泥含量的2.5-4%在喷浆机上料口均匀加入。? 3、喷射工作 喷射工作开始前,应首先在喷射地点铺上旧皮带,以便收集回弹料,回弹率不超过10%。 ①、开水开风,调整水量,保持风压不得低于是0.4MPa, 水压应比风压高0.1MPa左右,加水量凭射手的经验加以控制,水灰比0.4。 ②、喷射手操作喷头,自上而下冲洗岩面。 ③、送电,开喷浆机拌料机,上料喷浆。 ④、根据上料情况再次调整风水量,保证喷面无干斑,无流淌,粘着力强,回弹料少。 ⑤、喷射手分段按自下而上先墙后拱的顺序进行喷射。 ⑥、喷射时喷头尽可能垂直受喷面,夹角不得小于70度。 ⑦、喷射时,喷头运行轨迹应呈螺旋形,按直径200-300mm,?一圆压半圆的方法均匀缓慢移动。

钢纤维及钢纤维混凝土的技术及规定

钢纤维及钢纤维混凝土知识 混凝土用纤维的分类: 所用纤维按其材料性质可分为:①金属纤维。如钢纤维(钢纤维混凝土)、不锈钢纤维(适用于耐热混凝土)。②无机纤维。主要有天然矿物纤维(温石棉、青石棉、铁石棉等)和人造矿物纤维(抗碱玻璃纤维及抗碱矿棉等碳纤维)。③有机纤维。主要有合成纤维(聚乙烯、聚丙烯、聚乙烯醇、尼龙、芳族聚酰亚胺等)和植物纤维(西沙尔麻、龙舌兰等),合成纤维混凝土不宜使用于高于60℃的热环境中。 钢纤维的性能和规格: 钢纤维是以切断细钢丝法、冷轧带钢剪切、钢锭铣削或钢水快速冷凝法制成长径比(纤维长度与其直径的比值,当纤维截面为非圆形时,采用换算等效截面圆面积的直径)为40~80的纤维。 因制取方法的不同钢纤维的性能有很大不同,如冷拔钢丝拉伸强度为800-2000MPa、冷轧带钢剪切法拉伸强度为600-900MPa、钢锭铣削法为700MPa;钢水冷凝法虽为380MPa,但是适合生产耐热纤维。 为增强砂浆或混凝土而加入的、长度和直径在一定范围内的细钢丝。常用截面为圆形的长直钢纤维,其长度为10~60毫米,直径为0.2~0.6毫米,长径比为50~100。为增加纤维和砂浆或混凝土的界面粘结,可选用各种异形的钢纤维,其截面有矩形、锯齿形、弯月形的;截面尺寸沿长度而交替变化的;波形的;圆圈状的;端部放大的或带弯钩的等。 钢纤维的规格:

钢纤维是当今世界各国普遍采用的混凝土增强材料。钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。 纤维混凝土的作用: 制造纤维混凝土主要使用具有一定长径比(即纤维的长度与直径的比值)的短纤维。但有时也使用长纤维(如玻璃纤维无捻粗纱、聚丙烯纤化薄膜)或纤维制品(如玻璃纤维网格布、玻璃纤维毡)。其抗拉极限强度可提高30~50%。 纤维在纤维混凝土中的主要作用,在于限制在外力作用下水泥基料中裂缝的扩展。在受荷(拉、弯)初期,当配料合适并掺有适宜的高效减水剂时,水泥基料与纤维共同承受外力,而前者是外力的主要承受者;当基料发生开裂后,横跨裂缝的纤维成为外力的主要承受者。 若纤维的体积掺量大于某一临界值,整个复合材料可继续承受较高的荷载并产生较大的变形,直到纤维被拉断或纤维从基料中被拨出,以致复合材料破坏。与普通混凝土相比,纤维混凝土具有较高的抗拉与抗弯极限强度,尤以韧性提高的幅度为大。 钢纤维主要用于制造钢纤维混凝土,任何方法生产的钢纤维都能起到强化混凝土的作用。 纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即I/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。 钢纤维混凝土的力学性能: 加入钢纤维的混凝土其抗压强度、拉伸强度、抗弯强度、冲击强度、韧性、冲击韧性等性能均得到较大提高。 1、具有较高的抗拉、抗弯、抗剪和抗扭强度 在混凝土中掺入适量钢纤维,其抗压强度提高10%~80%(C50以上混凝土提高幅度显著),抗拉强度提高50%~100%,抗弯强度提高50%~80%,抗剪强度提高50%~100%。试验表明,长度为5~15mm,长径比为10~30的超短钢纤维抗压强度提高幅度较短纤维大得多,但抗拉强度、抗折强度较短纤维低得多。 2、具有卓越的抗冲击性能 材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。 3、收缩性能明显改善 在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低

钢纤维混凝土配合比设计及质量控制

钢纤维混凝土配合比设计及质量控制 [摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。 [关健词]钢纤维配合比设计质量控制 钢纤维混凝土是以水泥净浆、砂浆或混凝土为基体,以金属纤维增强材料组成的水泥基复合材料。它是将短而细的,具有高抗拉强度、高极限延伸率、高抗碱性等良好性能的金属纤维均匀分散在混凝土基体中形成的一种新型建筑材料。 桥面铺装层作为桥梁的非主体结构,通常被设计和施工所忽视,长期车辆荷载的作用,是造成桥面开裂、损坏的主要原因,从而影响桥梁的使用质量,降低使用寿命,在桥面铺装层使用钢纤维混凝土将会有效地解决桥面使用过程中容易出现的质量问题。

一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将组成材料,即钢纤维、水泥、水、粗细集料及外掺剂合理配合,使配制的钢纤维混凝土能够最大限度的满足施工和工程使用要求。 (1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能; (2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求; (3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。 二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜ 2,掺加量不超过70㎏/M 3。 水泥:采用32.5级或42.5级普通硅酸盐水泥。 碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。 细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。 水:无污染的自然水或自来水。 外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。 三、钢纤维混凝土配合比设计步骤

喷射砼原材料-要求

喷射混凝土原材料要求 6.2.1水泥:应符合第4.4.7条规定的要求。 6.2.2骨料应符合下列要求: 1粗骨料应选用坚硬耐久的卵石或碎石,粒径不宜大于15mm;当使用碱性速凝剂时,不得使用含有活性二氧化硅的石料。 2细骨料应选用坚硬耐久的中砂或粗砂,细度模数不宜大于2.5。干拌法喷射时,骨料的含水率应保持恒定并不小于6%。 3喷射混凝土骨料级配宜控制在表6.2.2数据范围内。 表6.2.2 喷射混凝土骨料通过各筛经的累计质量百分率(%) 6.2.3拌合水应符合第4.4.8条规定的要求。 6.2.4喷射混凝土速凝剂应符合下列要求: 1掺加正常用量速凝剂的水泥净浆初凝不应大于3min,终凝不应大于12min; 2加速凝剂的喷射混凝土试件,28d强度应不低于不加速凝剂强度的90%; 3宜用无碱或低碱型速凝剂。 6.2.5喷射混凝土中的矿物掺合料,应符合以下规定: 1粉煤灰的品质应符合现行国家标准《用于水泥和混凝土中的粉煤灰》GB1596的有关规定。粉煤灰的级别不应低于Ⅱ级,烧失量不应大于5%。 2硅粉的品质应符合表6.2.5的要求。 表6.2.5 硅粉质量控制指标要求

3粒化高炉矿渣粉的品质应符合现行国家标准《用于水泥和混凝土中粒化高炉矿渣粉》GB/T18046的有关规定。 6.2.6纤维:喷射混凝土用钢纤维及合成纤维应符合以下规定: 1钢纤维 钢纤维的抗拉强度应不低于1000N/mm2,直径宜为0.40~0.80mm,长度 宜为25~35mm,并不得大于混合料输送管内径的0.7倍,长径比为35~80。 2合成纤维 合成纤维的抗拉强度不应低于280N/mm2,直径宜为10~100μm,长度宜 为4~25mm。 6.2.7喷射混凝土中各类材料的总碱量(Na2O当量)不得大于3 kg / m3;氯离 子含量不应超过胶凝材料总量的0.1%。 摘自:GB50086-2011《岩土锚固与喷射混凝土支护工程技术规范》 SL377-2007《水利水电工程锚喷支护技术规范》

钢纤维喷射混凝土在隧道支护中的应用分析

钢纤维喷射混凝土在隧道支护中的应用分析 发表时间:2009-05-25T13:29:58.013Z 来源:《中小企业管理与科技》2009年3月下旬供稿作者:王警卫[导读] 本文介绍在隧道衬砌施工中喷射钢纤维混凝土过程中对钢纤维的技术要求和具体的施工工艺,供大家参考。摘要:本文介绍在隧道衬砌施工中喷射钢纤维混凝土过程中对钢纤维的技术要求和具体的施工工艺,供大家参考。关键词:钢纤维隧道衬砌支护韧性 0 引言钢纤维混凝土和钢纤维喷射混凝土作为一种新型建筑材料,近年来在国内外得到了迅速发展。和普通混凝土相比,钢纤维混凝土不仅能明显改善抗拉、抗剪、抗弯、抗磨和抗裂能力,而且能大大增强断裂韧性和抗冲击等多项性能,加之施工简便,价格相对低廉,所以在道路路面、桥梁结构、隧道衬砌支护等工程中的应用日益广泛。其中,钢纤维喷射混凝土是由均匀散布有钢纤维的混凝土拌和料,借助压缩空气高速喷射至受喷面而成的新型复合材料,它随着在隧道和地下工程中新奥法的推广和使用,已引起人们的高度重视,并在实际工程中取得了良好的效果。 1 喷射钢纤维混凝土1.1 对钢纤维的基本要求为了达到最佳施工质量及相关要求,在进行喷射钢纤维混凝土施工时,对钢纤维的几何参数及体积率都有具体的要求。 1.1.1 钢纤维的几何参数钢纤维混凝土的增强效果与钢纤维的长度、直径、长径比有关。钢纤维增强作用随长径比增大而提高。钢纤维长度太短起不到增强作用,太长施工困难,影响拌和质量,直径过细在拌和时易弯折,过粗则在同体积率时,其增强效果差。试验表明,钢纤维长度在15~60mm、直径或等效直径在0.3~1.2mm、长径比在30~100的范围内选用,其增强效果和施工性能可满足要求。不同的钢纤维混凝土结构中选用的钢纤维不同。 1.1.2 钢纤维的体积率选用范围钢纤维混凝土中钢纤维的体积率过小,其增强作用较差,国内外一般以0.59/5为最小体积率。钢纤维体积率超过2时,拌和物的和易性变差,施工困难,质量难以保证。确定钢纤维掺入量时根据钢纤维的性能、混凝土结构对增强效果的要求及经济合理的原则选定。结构对增强要求低时可选用低值,结构对增强要求较高时可选用高值。 1.2 配合比设计及要求槎路隧道因喷射钢纤维混凝土地段相对分散,同时受机具设备和开挖方法的限制,在施工时均采用干喷法施工。在此就干喷法施工的主要问题进行论述。 1.2.1 配合比设计槎路隧道初期支护混凝土设计强度为C20混凝土,其理论配合比为:42.5MPa普通硅酸盐水泥,400kg;中粗砂(河道中),835kg;粗骨料(河卵石)5~15mm,835kg;耐腐蚀剂,32kg;钢纤维,80kg。 1.2.2 有关要求:①钢纤维参数及掺量:根据采用的喷射机型号,本隧道选用钢纤维类型为ZH一06凸痕型,长度为20ram,等效直径0.4mm,长径比为50,钢纤维体积率为1.0,约每立方混凝土80kg。②水泥:钢纤维混凝土中常用强度等级为42.5MPa或52.5MPa的普通硅酸盐水泥,钢纤维混凝土中水泥用量较大,一般为360~450kg/m。③细骨料:采用硬质、洁净的中砂为宜,细度模数M一2.5~3.3。据经验,天然含水率在59/5~7为宜。④粗骨料:天然河卵石或质地坚硬的人工碎石均可,平均粒径在5-15mm为宜。⑤水:只要不含影响水泥正常凝结硬化及对纤维和基体有腐蚀作用(pH<4的酸性水和含硫量(按SO。计)超过水量的1)的有害物质的水均可。⑥外加剂:槎路隧道整体处于膨胀泥岩和粉砂质泥岩中,泥岩中的水具有侵蚀性和腐蚀性,需加6~8 的耐腐蚀剂。隧道开挖中渗水较大时,为尽快提高混凝土的早期强度,一般按2~49/5的掺量加入速凝剂。在渗水量不大时,为避免混凝土的后期强度损失过大,速凝剂尽可能少加或不加。 1.3 喷射钢纤维混凝土施工1.3.1 工艺流程具体步骤见图1。 1.3.2 关键技术 ①混凝土拌制、存放和运输。钢纤维在拌和料中的分布均匀性,不仅与原材料和搅拌工艺有关,而且受搅拌机械和投料方法影响更大。试验表明:采用强制搅拌机比自落式搅拌机效果好。本隧道施工中因受机械设备影响而采用自落式搅拌机。投料时采用先投水泥、砂和碎石,在拌和过程中分散加入钢纤维的方法进行拌和,拌和时间不少于2min。钢纤维混凝土施工时,喷锚料应尽量随拌随用,掺入速凝剂时存放时间不得超过20min,不掺入速凝剂时干混合料存放时间不超过2h,否则被视为废料,不可再行使用。在运输和存放过程中不得淋雨、流入水或混合杂物。②喷射作业。混合料通过胶管长距离的高速输送,在喷头处已稍有分离,水在距受喷面lm左右处加入,喷射应根据其当前标定的给水速度调整水阀,按混凝土配合比设计确定的水灰比供水。喷射混凝土时,喷枪要垂直正对工作面,连续平稳地自下而上水平横向移动,喷头一圈压半圈的旋转喷射。在施工时还应注意风压对喷射钢纤维混凝土的影响。在混合料输送时,采用适当的风压是钢纤维均匀分布、减少回弹损失的主要条件。风压太大钢纤维的分布就不均匀。试验表明,钢纤维混凝土喷射堆中心的钢纤维含量为喷堆周边的85.3,这种现象产生的主要原因是由于料流喷出后,分布在料束外缘的钢纤维在接近受喷面前被横向气流吹至周围(其中部分钢纤维落地,部分钢纤维滞留在喷堆周边),因此,降低风压则横向气流的压力和流速也会降低,这样不仅会减少钢纤维的回弹损失,也会改善钢纤维分布的不均匀性。一般混合料输送距离在100m以内时,喷射风压控制在0.15~0.2MPa为宜。③养护。混凝土施工质量的好坏,受养护的影响相当明显。因此在混凝土喷射完毕后要及时洒水或喷水雾养护。避免因养护不及时而导致喷射钢纤维混凝土的质量不合格。 2 湿喷效果分析2.1 综合效益主要体现在提高效率、加快进度、保证施工安全等宏观综合效益方面,采用湿喷强化初期支护,可在软弱地层条件下采用大断面开挖技术。 2.2 社会效益粉尘浓度大幅度降低,机房几乎没有粉尘,保护了环境。 2.3 速度效益①湿喷机本身生产率提高;②回弹率降低相当于问接地提高了生产率;③一次完成湿喷厚度大,提高了施工进度。 2.4 质量和安全效益喷射混凝土强度取决了水灰比控制是否准确,拌和及水化作用是否充分以及速凝剂按比例添加的准确度等方面。同时由于一次喷层厚度比干喷大幅度提高,容易达到设计喷层厚度要求。由于喷射混凝土强度及喷层厚度得到保证,提高了支护质量,施工安全有了保障。 3 结束语

C50钢纤维混凝土配合比设计说明

C50钢纤维砼配合比设计说明书 一、 设计目的: 该配合比适用于k75+500-k94+900段桥梁伸缩缝等的施工。 二、 设计说明: 1、 设计依据 ① 《公路工程国内招标文件范本》 ② 《普通混凝土配合比设计规程》 ③ 《普通混凝土拌合物性能试验方法标准》 ④ 《普通混凝土力学性能试验方法标准》 ⑤ 《普通混凝土长期性能和耐久性能试验方法标准》 GB/T 50082 ⑥ 《公路工程水泥及混凝土试验规程》 ⑦ 《公路工程岩石试验规程》 ⑧ 《公路工程集料试验规程》 ⑨ 《通用硅酸盐水泥》 ⑩ 《公路桥涵施工技术规范》 (11) 《建设用卵石、碎石》 (12) 《混凝土外加剂》 (13) 《钢纤维混凝土》 2、 配合比设计公式选用 根据《公路桥涵施工技术规范》 砼试配强度R 下式确定: JGJ 55-2011 GB/T 50080 GB/T 50081 JTGE30-2005 JTGE41-2005 JTGE42-2005 GB175-2007 JTG/T F50----2011 GB/T 14685-2011 GB8076-2008 JG/T 472-2015 JTG/T F50— 2011

Feu, o二f eu, k+1.645 a 其中值按下表选用: 三、C50砼配合比计算 1、原材料: ①水泥:柳州鱼峰水泥厂P .0 52.5普通硅酸盐水泥。 ②砂:贝江砂场河砂,细度模数2.72,表观相对密度2.654g/cm3。 ③碎石:神龙石场5?20mm,表观相对密度2.678g/cm3。采用 4.75-9.5mm碎石和9.5-19mm碎石按照30:70的比例进行掺配。 ④钢纤维:河北衡水鑫归机械加工厂,按照设计图纸每方掺量为60Kg ⑤水:饮用水 ⑥外加剂:郑州市邦基建材有限公司BJ聚羧酸高效减水剂,减水率为28%,掺量为1.0%。 ⑦设计坍落度:130?170mm 2、试配强度: f eu, o=f cu,k+1.645 (T =50+1.645 8=59.9 Mpa 3、水泥强度:(富余系数取1.0) f ee=52. 5Mpa 4、确定水灰比:

钢纤维混凝土在钢筋混凝土

钢纤维增强钢筋网混凝土(SFRC) 在桥面铺装改造工程中的应用 李永鳞 (江苏扬子大桥股份有限公司江苏靖江 214500) 摘要:桥面铺装层常被设计和施工所忽视,往往造成桥面铺装开裂等病害,引起桥梁使用质量下降,成为桥梁结构安全隐患,降低使用寿命。钢纤维混凝土作为桥面铺装材料及铺装层的修复材料是目前国内外纤维混凝土较为成功的领域,江阴大桥南接线引桥采用剪切异型钢纤维混凝土修复桥面铺装,成功解决了桥面铺装开裂、渗水等问题。本文介绍了剪切异型钢纤维混凝土的优点、施工要求和使用效果。 关键词:钢纤维桥面铺装改造应用 1 钢筋混凝土桥梁桥面铺装存在的问题 桥面铺装层不是桥梁的主体结构,因而常被设计和施工所忽视,所以桥面铺装经常出现混凝土强度不足,发生裂缝、表面蜂窝、麻面等病害;同时,道路超载现象屡禁不止,桥面铺装层在重车荷载作用下容易开裂、破碎,引起混凝土渗水,腐蚀主梁混凝土,锈蚀钢筋,从而使桥梁的使用质量下降,使用寿命降低,严重的甚至造成桥梁的破坏。桥面铺装层一旦损坏,修复非常麻烦,所以重视铺装结构,采用高质量的桥面铺装材料,保证桥面铺装的良好使用状态非常重要。 2 钢纤维增强钢筋网混凝土的优点、作用 钢纤维混凝土作为桥面铺装材料以及铺装层的修复材料也是目前国内外纤维混凝土较为成功的领域。钢纤维增强钢筋网混凝土是由钢筋、钢纤混凝土复合而成的高性能混凝土材料,简称为SFRC,研究表明,钢纤维混凝土具有比钢筋混凝土更为优良的抗拉性能、抗裂度,其耐磨性能,其韧性和疲劳性能为同等级普通混凝土的数倍,在公路、机场、桥梁、建筑等工程领域得到广泛的应用。大量工程实践证明,钢纤维增强钢筋混凝土大大提高了桥面铺装的抗裂度、耐磨耐久性,延长桥梁的使用寿命。采用钢纤维增强钢筋混凝土作为桥面铺装对于减少桥面铺装病害效果明显,有着良好的经济效益。 2.1钢纤维混凝土的力学强度 2.1.1抗压强度 钢纤维混凝土虽受压强度较普通混凝土增加不明显,但受压韧性却大幅度提高了。这是由于钢纤维的存在,增大了试件的压缩变形,提高了受压破坏时的韧性。从宏观上呈现,钢纤维混凝土受压破坏时,没有明显的碎块或崩落,仍保持这整体性。 2.1.2抗剪强度 钢纤维混凝土具有优异的抗剪性能,对提高钢筋混凝土结构抗剪能力有重要意义。通常在钢筋混凝土的构件中,其抗剪承载力主要靠箍筋和弯起钢筋承担,这些筋多了,不仅要提高工程投资,而且施工很不方便,尤其对薄壁、抗震结构和复杂形状的特种结构,问题则尤为突出。因此采用钢纤维混凝土是提高结构抗剪能力的有效途径。

钢纤维混凝土劈裂抗拉强度试验设计

北方工业大学 课程名称:高等钢筋混凝土结构专业班级:土木研-14 学生姓名:学号 任课教师:张燕坤 成绩: 评语:

钢纤维混凝土劈裂抗拉强度试验设计 1、试验名称 钢纤维混凝土劈裂抗拉强度试验设计 2、试验的目的意义 ①了解并掌握混凝土的抗裂度指标; ②学会劈裂抗拉试验的测量方法,分析钢纤维混凝土与普通混凝土之间的抗拉性能差异及影响钢纤维混凝土抗拉强度的因素,并讨论各因素影响的大小。 3、试验基本原理 根据混凝土劈裂抗拉强度可以确定混凝土的抗裂强度。 图1 劈裂试验示意图 4、试验仪器设备[1、4] ①压力试验机或万能试验机。精度示值的相对误差应是在2%以内。 ②试模。采用边长150mm方块作为标准试件,其最大集料粒径应小于40mm。 ③标准养护室。温度20℃、相对湿度大于90%。 ④振动台。频率50 Hz,空载振幅0.5mm。 ⑤捣棒、小铁铲、金属直尺、镘刀等。 ⑥垫块、垫条及支架。垫块采用半径75 mm的钢制弧形垫块,长度与试件相同;垫条为三层胶合板制成,宽度为20 mm、厚度为3~4 mm,长度不小于试件长度,垫条不得重复使用;支架为钢支架。

5、钢纤维混凝土的试验方案 对比常规混凝土的抗拉强度试验,并根据实际经验易知[2、3],钢纤维混凝土抗拉强度的主要影响因素有钢纤维体积率、混凝土强度、钢纤维比表面积。 试验原材料: 1.钢纤维的选择 为了选择增强效果较好的钢纤维配制混凝土,应结合钢纤维体积率、混凝土强度、钢纤维比表面积加以选择,A、B两种钢纤维由于比表面积不同可分A1、A2、A3,B1、B2、B3,(粗短,正常,细长)钢纤维和混凝土接触表面积不同,则钢纤维与混凝土的粘结力不同,则钢纤维混凝土的承载力和韧性和抗裂性不同两种钢纤维的体积率可取0.5% 1% 1.5% 2.混凝土的选择 按混凝土强度等级选择 C30 C40 C50 举例其中C30配合比 混凝土强度等级:C30;坍落度:35-50mm;水泥强度42.5级;砂子种类;中砂; 石子最大粒径40mm;砂率;34%配制强度:38.2(MPa) 材料用量(kg/m3):水泥:337kg 砂:642Kg 石子:1246Kg 水:175Kg 配合比:1:1.91:3.70:0.52 体积比:水泥散装337kg(0.232m3):砂0.403m3:碎石0.86m3:0.175m3 本试验由于要考虑A、B两种钢纤维混凝土的抗拉性能,且影响因素比较多,为了能够尽可能地减少试验数目且能为分析试验结果提供丰富而全面的信息,故而选择采用正交试验法进行试验设计。故本试验方案中,为三因素三水平进行。 将上述的影响因素和变化水平总结如表1所示。 由表1易知本试验是三因素三水平正交试验,选用正交表L9(3^4)即可满足试验要求,其水平组合如表2所示。

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

钢纤维喷射混凝土的试验方法及应用技术

钢纤维喷射混凝土的试验方法及应用技术 钢纤维混凝土是在混凝土中均匀的掺加适量乱向分布的短钢纤维的复合材料,它不仅具有混凝土本身的优点,由于钢纤维的掺入,更使混凝土基体产生增强、增韧以及阻裂的效果。钢纤维喷射混凝土则是以压缩的空气为动力,用喷射机喷敷于工程结构物面上的钢纤维混凝土,按照施工方法可以分为干喷、湿喷以及半湿喷三种。 1钢纤维喷射混凝土的特点 1.1强度高、韧性好。抗拉强度可以提高10%~50%,抗剪强度平均提高60%~80%,对混凝土的裂缝控制效果更为突出,提高裂后的强度,有效的阻止裂缝的扩大,具有很高的韧性,钢纤维混凝土也具有很好的抗冲击、抗疲劳、抗震动、抗爆炸等性能。 1.2施工方便。施工时可以省去钢筋网的架设,钢纤维混凝土在没有钢筋网时也可以达到和岩石很好的黏结,施工方便,同时节省了工程量,钢纤维喷射混凝土的集料回弹率比普通的喷射混凝土小5%~10%,降低了造价。 2钢纤维混凝土的力学性能及试验方法 2.1抗压、弯拉强度要求及试验方法 抗压强度是评定喷射质量的一个参考指标,钢纤维喷射混凝土的抗压强度要能够达到设计要求的强度等级,钢纤维混凝土的强度等级不小于CF30,评定方法和普通的混凝土评定方法大致相同。 弯拉强度要复合相关规范的要求,一般情况下要符合下表。 2.2弯曲韧性要求及试验方法 为了保证结构在围岩变形和岩块坍落等荷载的作用下,钢纤维喷射混凝土有足够的承载力和耗能能力,确保围岩和结构的安全性和稳定性,要对钢纤维喷射混凝土的韧性指标做出严格要求。 一般采用较为简单的方法,采用韧度比规定的韧性要求,确保钢纤维喷射混凝土的韧度比大于等于0.70。 2.3试件制备和试验的特殊要求 在试配阶段可以采用拌合模筑方法进行成型,研究其各组分的最佳配合比、所能达到的强度、外加剂和掺合料的适用性等。但是在正式配合比和施工检验时则必须采用喷射成型切割的试件进行,因为模筑和喷射的成型的混凝土有很大的差别。 采用喷射大板成型切割而成的试块进行弯曲韧性和积累耗能的试验,模板可以采用钢模板或者木模板,保证底部模板具有足够的强度,高度和切割后的截面高度保持相同,喷射时模板底部要与水平呈45°夹角,喷射用的其他设备尽可能的与施工时相同,完成后养护7天进行切割处理。 试件切割时舍弃边沿的125mm,梁试件可以切割成100mm×100mm×350mm 或者75mm×125mm×600mm,板试件可以切割成600mm×600mm。试验时将喷射的顶面放在受拉面。 喷射混凝土和岩面或者混凝土面的黏结强度试验可以采用现场拉拔法,或者切割试件直接拉伸法进行测量。拉拔法是采用钻芯法进行钻取芯样,直径在50~60mm为宜,在圆芯面上用高强树脂贴上拉拔连接件,使用千斤顶、荷载传感器和小型承力架组成的试验装置对喷射混凝土芯样进行拉拔,利用最大拔出力计算

钢纤维混凝土配合比设计方法

以抗压强度为主控的钢纤维混凝土配合比设计方法 一、基本要求: 1、钢纤维直径为0.35~0.70mm,长径比50~80,适宜体积掺量为1.0%~2.0%,掺量低于0.5%时增韧效果不明显,掺量过高时纤维难分散、混凝土流动度变差、成本高。钢纤维参数选择参照表5-19、表5-20; 2、每立方米混凝土中胶凝材料用量400~500kg,水泥用量宜在300~400kg之间,水泥强度等级不宜低于42.5级,砂率一般为45%~60%,配合比参数参照表1; 3、粗骨料粒径不宜大于20mm; 表5-19 钢纤维类型[2] 表5-20 钢纤维几何参数采用范围[2]

二、钢纤维增强混凝土配合比设计方法[1,2] 4 混凝土配制强度的确定 4.0.1混凝土配制强度应按下列规定确定: 1.当混凝土的设计强度等级小于C60时,配制强度应按下式计算: cu,0cu,k 1.645f f σ≥+ (4.0.1-1) 式中,f cu,o —钢纤维混凝土配制强度,MPa ; f cu,k —钢纤维混凝土立方体抗压强度标准值,这里取设计混凝土强度等级值,MPa ; σ—混凝土强度标准差,MPa 。 2.当设计强度等级大于或等于C60时,配制强度应按下式计算: cu,0cu,k 1.15f f ≥ (4.0.1-2) 4.0.2混凝土强度标准差应按照下列规定确定: 1.当具有近1个月~3个月的同一品种、同一强度等级混凝土的强度资料时,其混凝土强度标准差σ应按下式计算: σ= (4.0.2) 式中,f cu ,i —第i 组的试件强度,MPa ; m f cu —n 组试件的强度平均值,MPa ; n —试件组数,n 值应大于或者等于30。 对于强度等级不大于C30的混凝土:当σ计算值不小于3.0MPa 时,应按照计算结果取值;当σ计算值小于3.0MPa 时,σ应取3.0MPa 。对于强度等级大于C30且不大于C60的混凝土:当σ计算值不小于4.0MPa 时,应按照计算结果取值;当σ计算值小于4.0MPa 时,σ应取4.0MPa 。 2.当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差σ可按表4.0.2取值。

喷射混凝土

6 喷射混凝土 6.1一般规定 6.1.1喷射混凝土适用于隧道、洞室、边坡和基坑等工程的面层支护。 6.1.2喷射混凝土的设计强度等级不应低于C20;用于大型洞室及特殊条件下的 工程支护时,其设计强度等级宜不低于C25。 6.1.3开挖后呈现明显塑性流变或高应力易发生岩爆的岩体中的隧洞、受采动影 响、高速水流冲刷或矿石冲击磨损的隧洞和竖井,宜采用喷射钢纤维混凝土支护。 6.1.4大断面隧道及大型洞室喷射混凝土支护,宜采用湿拌喷射法施工;基坑、 边坡喷射混凝土支护,宜采用干拌喷射法施工;矿山井巷及小断面隧洞喷射混凝土支护,宜采用半湿拌喷射法施工。 6.2原材料 6.2.1水泥:应符合第4.4.7条规定的要求。 6.2.2骨料应符合下列要求: 1粗骨料应选用坚硬耐久的卵石或碎石,粒径不宜大于15mm;当使用碱性速凝剂时,不得使用含有活性二氧化硅的石料。 2细骨料应选用坚硬耐久的中砂或粗砂,细度模数不宜大于2.5。干拌法喷射时,骨料的含水率应保持恒定并不小于6%。 3喷射混凝土骨料级配宜控制在表6.2.2数据范围内。 表6.2.2喷射混凝土骨料通过各筛经的累计质量百分率(%)

6.2.3拌合水应符合第4.4.8条规定的要求。 6.2.4喷射混凝土速凝剂应符合下列要求: 1掺加正常用量速凝剂的水泥净浆初凝不应大于3min,终凝不应大于12min; 2加速凝剂的喷射混凝土试件,28d强度应不低于不加速凝剂强度的90%; 3宜用无碱或低碱型速凝剂。 6.2.5喷射混凝土中的矿物掺合料,应符合以下规定: 1粉煤灰的品质应符合现行国家标准《用于水泥和混凝土中的粉煤灰》GB1596的有关规定。粉煤灰的级别不应低于Ⅱ级,烧失量不应大于5%。 2硅粉的品质应符合表6.2.5的要求。 表6.2.5硅粉质量控制指标要求 3粒化高炉矿渣粉的品质应符合现行国家标准《用于水泥和混凝土中粒化高炉矿渣粉》GB/T18046的有关规定。 6.2.6纤维:喷射混凝土用钢纤维及合成纤维应符合以下规定: 1钢纤维 钢纤维的抗拉强度应不低于1000N/mm2,直径宜为0.40~0.80mm,长 度宜为25~35mm,并不得大于混合料输送管内径的0.7倍,长径比为 35~80。 2合成纤维 合成纤维的抗拉强度不应低于280N/mm2,直径宜为10~100μm,长度 宜为4~25mm。 6.2.7喷射混凝土中各类材料的总碱量(Na2O当量)不得大于3 kg / m3;氯离 子含量不应超过胶凝材料总量的0.1%。

水泥钢纤维井盖标准

中华人民共和国城镇建设行业标准 JC889-2001 钢纤维混凝土检查井盖 teel fiber reinforced concrete checking well cover (节录) 1、范围 (1) 2、引用标准 (1) 3、定义 (1) 4、产品分类 (4) 5、原材料及构造要求 (5) 6、技术要求 (5) 7、试验方法 (6) 8、检验规则 (7) 9、标志、产品合格证 (8) 10、贮存、运输 (8)

附录A 钢纤维混凝土检查井盖承载能力的试验装置和试验方法 (标准的附录) (9) 1、范围 本标准规定了钢纤维混凝土检查井盖的定义、产品分类、技术要求、试验方法、检验规则和标志。 本标准适用于城市道路、公路、生活小区等机动车辆行驶或停放场地检查井上的井盖,也适用于安装在绿化带等禁止机动车辆行驶或停放的通道、场地检查井上的井盖。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 175-1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 700-1988 碳素结构钢 GB 1348-1998 球墨铸件 GB 1499-1998 钢筋混凝土用热轧带肋钢筋

GB 8076-1997 混凝土外加剂 GB 9439-1998 灰铸铁件 GB/T 14684-2001 建筑用砂 GB/T 14685-2001 建筑用卵石、碎石 GB 50204-1992 混凝土结构工程施工及验收规范 GBJ 10-1989 混凝土结构设计规范(含1996年局部修订) GBJ 82-1985 普通混凝土长期性能和耐久性能试验方法 GBJ 321-1990 预制混凝土构件质量检验评定标准 JG/T 3064-1999 钢纤维混凝土 JGJ 63-1989 混凝土拌合用水标准 3、定义 3.1检查井 在地下管线位置上每隔一定距离修建的竖井。主要供检修管道,清除污泥及用于连接不同方向、不同高度的管线使用。 3.2支座 固定于检查井井口的部分,用于安装井盖。

钢纤维混凝土

钢纤维混凝土 随着国民经济建设和公路交通事业的飞速发展,城市道路和国道干线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的损坏也日趋严重起来。特别是对损坏的水泥混凝土路面而言,它不仅翻修投资大,且施工周期较长,严重影响交通畅通及行车安全。如用普通水泥混凝土修复路面虽有强度高,板块性好,有一定的抗磨性及承受气象作用的耐久性好等特点,但它的最大缺陷是脆性大、易开裂、抗温性差,路面板块容易受弯折而产生断裂,所以就要求路面面板应有足够的抗弯、抗拉强度和厚度。用钢纤维混凝土修筑路面,就是意将钢纤维均匀地分散于基体混凝土中(与混凝土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的细裂缝端部的应力集中,从而控制混凝土裂缝的扩展,提高整个复合材料的抗裂性。同时由于混凝土与钢纤维接触界面之间有很大的界面粘结力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混凝土作为一个均匀的整体抵抗外力的作用,显着提高了混凝土原有的抗拉、抗弯强度和断裂延伸率。特别是提高了混凝土的韧性和抗冲击性。 实践证明,采用钢纤维混凝土这一新型高强复合材料对路面修理,既可提高路面的抗裂性、抗弯曲、耐冲击和耐疲劳性,而且可改善路面的使用性能,延长使用寿命从而减少老路开挖,对节省工程造价等具有重要的经济效益和社会效益;为提高道路补强与改造提供了良好的途径。 1、基本要求 1.1钢纤维混凝土材料 钢纤维混凝土就是在一般普通混凝土中掺配一定数量的短而细的钢纤维所组成的一种新型高强复合材料。由于钢纤维阻滞基体混凝土裂缝的产生,不但具有普通混凝土的优良性能,而且具有良好的抗折、抗冲击、抗疲劳以及收缩率小、韧性好、耐磨耗能力强等特性。可使路面厚度减薄50%以上,缩缝间距可增至15m~30m,不用设胀缝和纵缝。钢纤维混凝土用钢纤维类型有圆直型、熔抽型和剪切型钢纤维。其长度分为各种不同规格,最佳长径比为40~70,截面直径在0.4mm~0.7mm范围内,抗拉强度不低于380mpa.在施工时钢纤维在混凝土中的掺入量为1.0%~2.0%(体积比),但最大掺量不宜超过2.0%。水泥采用425#~525#普通硅酸盐水泥,以保证混合料具有较高的强度和耐磨性能。钢纤维混凝土用的粗骨料最大粒径为钢纤维长度的23.不宜大于20mm.细集料采用中粗砂,平均粒径0.35mm~ 0.45mm,松装密度1.37g/cm3.砂率采用45%~50%。 1.2钢纤维混凝土配合比 钢纤维混凝土混合料配合比的要求首先应使路面厚度减薄,其次是保证钢纤维混凝土有较高的抗弯强度,以满足结构设计对强度等级的要求即抗压强度与抗折强度,以及施工的和易性。钢纤维混凝土配合比设计基本按以下步骤进行。 (1)根据强度设计值以及施工配制强度提高系数,确定试配抗压强度与抗折强度;钢纤维混凝土抗折强度设计值的确定:fftm=ftm(1+atmpflf/df) 式中fftm――钢纤维混凝土抗折强度设计值;ftm――与钢纤维混凝土具有相同的配合材料、水灰比和相近稠度的素混凝土的抗折强度设计值;atm――钢纤维对抗折强度的影响系数(试验确定);pf――钢纤维体积率,%;lf/df――钢纤维长径比,当ftm<6.0n/mm2时,可按表1采用。 (2)根据试配抗压强度计算水灰比;

相关文档
最新文档