高三数学正弦定理和余弦定理的应用

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

1.2.2正弦、余弦定理应用

1.2.2解斜三角形 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题, 要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用二:测量高度 例1 如图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。设计一种测量建筑物高度AB 的方法 分析:由于建筑物的底部B 是不可到达的,所以不能直接测量建筑物的高。由解直角三角形的知识,只要能测出一点C 到建筑物的顶部A 的距离CA ,并测出由点C 观察A 的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA 的长。 解:选择一条水平基线HG , 使H 、G 、B 三点在同一条直线上,由在H, G 两点用测角仪器测得A 的仰角分别为α,β,CD=a. 测角仪器的高为h, 那么,在△ACD 中,根据正弦定理可得: sin sin() a AC βαβ= - sin asin sin = sin(-) AB AE h AC h h ααβαβ=+=++ 例2 如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=54°40′, 在塔底C 处测得A 处的俯角β=50°1′ 。已知铁塔BC 部分的高为27.3m, 求出山高CD (精确到1m ) 分析:根据已知条件,应该设法计算出AB 或AC 的长 解:在△ABC 中, ∠BCA=90°+ β , ∠ABC=90°-α, , ∠BAC= α -β, ∠BAD=α. 根据正弦定理得: E D G H C A B A α β

1正弦定理和余弦定理-教学设计-教案

教学准备 教学目标 1. 知识目标:理解并掌握正弦定理,能初步运用正弦定理解斜三角形;技能目标:理解用向量方法推导正弦定理的过程,进一步巩固向量知识,体现向量的工具性情感态度价值观:培养学生 在方程思想指导下处理解三角形问题的运算能力; /难点教学重点2. 重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判 断解的个数。教学用具 3. 多媒体标签 4. 正弦定理 教学过程 讲授新课在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角 根据锐BC=a,AC=b,AB=c, ABC.与边的等式关系。如图11-2,在Rt中,设角三角函数中正弦函数的定义,有 . ,又,则,中,ABC从而在直角三角 形.

思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: ,根上的高是CDABC1(证法一)如图.1-3,当是锐角三角形时,设边AB CD=据任意角三角函数的定义,有,则. . 同理可得,从而

是钝角三角形时,以上关系式仍然成立。(由学生课后ABC类似可推出,当自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ] 理解定理[)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系 数为同1 ( ;使一正数,即存在正数k,,

等价于2(),,。从而知正弦定理的基本作用为: ;①已知三角形的任意两角及其一边可以求其他边,如②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 . 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。. 评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 2(1)题。)、(页练习第第随堂练习[]511

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得 BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶 A 的仰角为θ,求塔高A B . 分析:本题是一个高度测量问题,在?BCD 中,先求 出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出 塔高AB. 解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得 sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠= tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高. 二、在测量不可到达的两点间距离中的应用 例2某工程队在修筑公路时,遇到一个小山 包,需要打一条隧道,设山两侧隧道口分别为A 、B , 为了测得隧道的长度,在小山的一侧选取相距3km 的C 、D 两点高,测得∠ACB=750, ∠BCD=450 , ∠ADC=300,∠ADC=450(A 、B 、C 、D ) ,试求隧道的长度. 分析:根据题意作出平面示意图,在四边形 ABCD 中,需要由已知条件求出AB 的长,由图可知,在?ACD 和?BCD 中,利用正弦定理可求得AC 与BC ,然后再在?ABC 中,由余弦定理求出AB. 解析:在?ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3. 在?BCD 中,∠CBD==600 由正弦定理可得,BC=003sin 75sin 60=26)2 +

正弦定理和余弦定理

04—正弦定理和余弦定理 利用正弦定理解三角形 (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. [例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2 b ,且 a > b ,则B =( ) A.π6 B.π3 C.2π3 D.5π 6 (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6,则b =________. [解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos A =12b 中,得2R sin A ·sin B cos C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6 . (2)在△ABC 中,∵sin B =12,0b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°. 由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·????-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B. (2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3 2 c =b ,化简 整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π 6 利用正、余弦定理解三角形 [例3] 设△ABC 1,A =2B . (1)求a 的值;(2)求sin ??? ?A +π 4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2 2ac .因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-1 3 .因为0

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正弦定理和余弦定理的应用

第二节应用举例 题型一 测量距离问题 A 、 B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C ,测出 AC 的距离是55m, 51=∠BAC , 75=∠ACB .求A 、B 两点间的距离(精 确到1.0m ). 分析 所求的边AB 的对角是已知的,又已知三角形的一边AC ,根 据三角形内角和定理可计算出AC 的对角,根据正弦定理,可以计算出边AB . 解答 根据正弦定理,得 ABC AC ACB AB ∠= ∠sin sin ABC ACB ABC ACB AC AB ∠∠= ∠∠=sin sin 55sin sin 76554 sin 75sin 55)7551180sin(75sin 55?≈=--= (m) 点拨 本题是测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决。 本题型的解题关键在于明确:(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决。(2)测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化 A B C

为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题。 衍生1★★ 如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。若两船同时启航出发,则两船相遇之处距C 点 海里。(结果精确到小数点后1位) 解析 AB DB 2< ∴两船相遇点在BC 上,可设为E ,设x CE =,则 V BE AB DE 22+= 故 V x x 45cos 2252)225(22??-+V x 2)50(50-+= 得 3 5000 2= x ,∴8.40≈x 答案 8.40 点拨 本题考查了测量距离问题。 衍生2★★★如图所示,B A ,两点都在河的对岸(不可到达),设计一种测量B A , 两点间距离的方法。 分析 可以先计算出河的这一岸的一点C 到对岸两点的距离, 再测 A B C D α β A γ δ

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导; 2.利用正、余弦定理判断三角形的形状和解三角形; 3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.

学习要领 1.理解正弦定理、余弦定理的意义和作用; 2.通 过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识梳理 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可 以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦 定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab .

3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半 径),并可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解 [难点正本 疑点清源] 1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A

正弦定理余弦定理

第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a km D .2a km 解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦 定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×? ?? ??-12=3a 2, ∴AB =3a . 答案B 2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km

C .3 3 km D .2 3 km 解析 如图,由条件知AB =24×15 60=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =AB sin45°sin30°=3 2. 答案B 3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里 D .70海里 解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120° = 502+302-2×50×30cos120°=70. 答案D 4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时

需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△AB C的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a-4,a ,a +4,则(a+4)2=(a -4)2+a2-2a (a-4) co s 120°,解得a =10,故S =12×10×6×s in 120°=15错误!. 答案 15错误! 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C间的距离是________海里. 解析 由正弦定理,知 B Csi n 60° =错误!.解得BC =5错误!(海里). 答案 5错误! 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68si n 120°si n 45° =34\r(6)(海里),船的航行速度为错误!=错误!(海里/时). 答案 错误! 4.在△ABC 中,若2错误!abs in C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a2+b 2+c 2,a 2+b2-c 2=2ab cos C 相加,得a 2+b 2=2ab sin 错误!.又a2+b 2≥2ab ,所以 sin 错误!≥1,从而s in 错误!=1,且a =b,C =错误!时等号成立,所以△ABC 是等边三角形. 答案 等边三角形 5.(2010·江苏卷)在锐角△A BC中,角A,B ,C 的对边分别为a ,b ,c.

人教新课标版数学高二-2014版数学必修五练习1-1正弦定理与余弦定理

习题课 正弦定理与余弦定理 双基达标 (限时20分钟) 1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ). A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B . 答案 C 2.在△ABC 中,若a 2=bc ,则角A 是 ( ). A .锐角 B .钝角 C .直角 D .60° 解析 cos A =b 2+c 2-a 2 2bc = b 2+ c 2 -bc 2bc = ????b -c 22+3c 2 4 2bc >0,∴0°<A <90°. 答案 A 3.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于 ( ). A.21 B.106 C.69 D.154 解析 设BC =a ,则BM =MC =a 2. 在△ABM 中, AB 2=BM 2+AM 2-2BM ·AM cos ∠AMB , 即72=14a 2+42-2×a 2×4·cos ∠AMB ① 在△ACM 中, AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即62=42+14a 2+2×4×a 2·cos ∠AMB ② ①+②得:72+62=42+42+1 2 a 2,

∴a =106. 答案 B 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________. 解析 ∵a 2+c 2-b 2=3ac , ∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π 6. 答案 π 6 5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________. 解析 由sin B +cos B =2sin ????B +π 4=2得 sin ????B +π4=1,∴B =π 4. 由正弦定理a sin A =b sin B 得 sin A =a sin B b = 2sin π 4 2 =12 , ∴A =π6或56 π. ∵a <b ,∴A <B ,A =π 6. 答案 π6 6.在△ABC 中,内角A 、B 、C 成等差数列,其对边a ,b ,c 满足2b 2=3ac ,求A . 解 由A 、B 、C 成等差数列及A +B +C =180°得B =60°,A +C =120°. 由2b 2=3ac 及正弦定理得 2sin 2B =3sin A sin C , 故sin A sin C =12 . cos(A +C )=cos A cos C -sin A sin C =cos A cos C -1 2, 即cos A cos C -12=-1 2, cos A cos C =0, cos A =0或cos C =0,

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

浅谈正弦、余弦定理在中考中的应用.doc

浅谈正弦、余弦定理在中考中的 应用 (1)余弦定理:c2=a2+b2-2ab*cosC 文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边 与它们夹角的余弦的积的两倍。 (2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r 为Z\ABC 外接圆的 半径) 文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。 F面我们来证明: 证明:(1)作BC上的高AD=h,设CD二x,则BD=a-x 贝ij b2=h2+x2=c2- (a~x) 2+x2=c2-a2+2ax-x2+ x2 又x二b*cosC 所以c2=a2+b2-2ab*cosC (2)因为sinB=h/c, sinC=h/b 所以h二b*sinC二c*sinB 所以b/sinB=c/sinC 同理可得:a/si nA二b/s i nB二c/sinC 下面我们来看如何运用正弦、余弦定理解题: 例1: 25-右「/XABC 中,AC-BC. ZACB^90: , D、E 是用线AB 上两点.ZDCE^45c (1)当CE丄AB时,点D与点A晅合?能然DE‘=AD ‘十BE’(不必证明) (2)如图,当点D不与点A直合时,求证:DE2=AD-4-BE2 (3 )当点D衽BA的延L3上时.(2 )中的结论是否成立?训山图形.说明理由? (2)证明:令ZACD二Zl, ZBCE=Z2,则Z1 + Z2=ZACB~ZDCE=45° 因为AD/sinZl=CD/sinZA, BE/sinZ2=CE/sinZB, sinZA= sinZB= sin45° C 所以AD2+ BE2 = (CD:f:sinZl/sinZA) 2+ (CE* sinZ2/sinZB) 2 =(CD2* sin2Z 1+ CE2* sin2Z2)/ sin245°又 CD/sin(45°+Z2)= CE/sin(45°+ Z1 )=DE/sin45°所以AD2+ BE2={[ DE* sin(45°+ Z2) *sinZl/sin450]2 + A [DE* sin(45°+Zl) *sinZ2 /sin450]2}/ sin245°因为sin(45°+Z2) *sinZl = sin(45°+Z2) *sin (Z45°-Z2) =cos2Z2/2, sin(45°+Zl) *sinZ2= sin(45°+Zl) *sin (Z45°-Z1) =cos2Zl/2, 2 (Z1+Z2) =90° 所以AD2+ BE2 =DE2 cos22Z2+ DE2COS22Z1= DE2(cos22Z2+sin22Z2)= DE2 即DE2=

讲义1 正弦定理和余弦定理

讲义一 正弦定理和余弦定理以及其应用 洞口三中 方锦昌 一、知识与技能: 掌握正弦定理和余弦定理,并能加以灵活运用。 二、知识引入与讲解: Ⅰ、正弦定理的探索和证明及其基本应用: 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C ==2R 例1.(1)、已知?ABC 中,∠A 060= ,a =求sin sin sin a b c A B C ++++ (=2) (2)、已知?ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3) Ⅱ、余弦定理的发现和证明过程及其基本应用: 例2.(1)、在?ABC 中,已知=a c 060=B ,求b 及A ( =b 060.=A ) (2)、在?ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。 例3.在?ABC 中,已知7a =,5b =,3c =,判断?ABC 的类型。 分析:由余弦定理可知 222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+???>+???<+??ABC 是锐角三角形 ? (注意:是锐角A ?ABC 是锐角三角形?) 解:222753>+,即222a b c >+, ∴ABC 是钝角三角形?。 练习: (1)在?ABC 中,已知sin :sin :sin 1:2:3A B C =,判断?ABC 的类型。 (2)已知?ABC 满足条件cos cos a A b B =,判断?ABC 的类型。 (答案:(1)ABC 是钝角三角形? ;(2)?ABC 是等腰或直角三角形) 例4.在?ABC 中,060A =,1b =,求sin sin sin a b c A B C ++++的值 分析:可利用三角形面积定理111sin sin sin 222 S ab C ac B bc A ===以及正弦定理sin sin a b A B =sin c C ==sin sin sin a b c A B C ++++ 解:由1sin 2 S bc A ==得2c =,则2222cos a b c bc A =+-=3,即a 从而 sin sin sin a b c A B C ++++2sin a A == 例题5、某人在M 汽车站的北偏西20?的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。公路的走向是M 站的北偏东40?。开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米。问汽车还需行驶多远,才能到达M 汽车站?

正弦定理和余弦定理

正弦定理和余弦定理 【知识梳理】 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三: 形式四: 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 222 2cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二: 【典型例题】 111sin sin sin 222ABC S ab C bc A ac B ?===::sin :sin :sin a b c A B C =sin ,sin ,sin 222a b c A B C R R R ===222cos 2b c a A bc +-=222cos 2a c b B ac +-=222 cos 2a b c C ab +-=

题型一:利用正弦定理解三角形 1.在ABC ?中,若5b =,4B π∠=,1sin 3A =,则a = . 2.在△ABC 中,已知a = 3,b =2,B=45°,求A 、C 和c . 题型二:利用余弦定理解三角形 1.设ABC ?的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,4 1cos = C . (Ⅰ)求ABC ?的周长;(Ⅱ)求()C A -cos 的值. 2. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.

正弦、余弦定理应用

1.2.3正弦、余弦定理应用 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用三:测量角度 例1 如图 一艘海轮从A 出发,沿北偏东75°的方向航行67.5 n mile 后到达海岛C. 如果下次航行直接从A 出发到达C, 此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile ) 0000 ABC ABC=1807532137∠-+=解:在中, 220 AC AB BC 2AB BC cos 67.554267.554cos137 =113.15 ABC +-??∠+-???22根据余弦定理可知: =BC sin AC CAB ABC =∠∠根据正弦定理可知:sin 0 sin 54sin137sin 0.3255113.15 BC ABC CAB AC ∠∠==≈ 00019 7556CAB CAB ∠=-∠= 答:此船应该沿北偏东56°的方向航行,需要航行113.15 n mile. 应用四:有关三角形计算 知识1:在△ABC 中,边BC,CA,AB 上的高分别记为h a , h b ,h c ,那么容易证明: h a =bsinC=csinB h b =csinA=asinC h c =bsinC=csinB 32C B 0

正弦定理与余弦定理

精心整理 正弦定理与余弦定理 一、三角形中的各种关系 设ABC ?的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系: 1、三内角关系 三角形中三内角之和为π(三角形内角和定理),即A B C π++=,; 2、边与边的关系 三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即 ,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<; 3、边与角的关系 (1)正弦定理 三角形中任意一条边与它所对应的角的正弦之比都相等,即 2sin sin sin a b c R A B C ===(这里,R 为ABC ?外接圆的半径). 注1:(I )正弦定理的证明: 在ABC ?中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c R A B C ===(这里,R 为ABC ?外接圆的半径) 证:法一(平面几何法): 在ABC ?中,作CH AB ⊥,垂足为H 则在Rt AHC ?中,sin CH A AC = ;在Rt BHC ?中,sin CH B BC =

sin ,sin CH b A CH a B ∴==sin sin b A a B ?=即 sin sin a b A B = 同理可证: sin sin b c B C = 于是有 sin sin sin a b c A B C == 正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系. (Ⅲ)正弦定理适用的范围: (i )已知三角形的两角及一边,解三角形; (ii )已知三角形的两边及其中一边所对应的角,解三角形;

相关文档
最新文档