钢板桩围堰设计计算书

钢板桩围堰设计计算书
钢板桩围堰设计计算书

钢板桩围堰设计计算书

1 工程概况

本方案陆地承台基坑开挖深度在3.0-5.0米之间,基坑开挖支护结构受力计算选择基坑最深、地质条件最差的最不利工况条件下进行受力计算。

本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性土、粉土、各类砂、软土为主,局部夹淤泥。

土层分层计算土压力,粘性土和粉土采用总应力法,即水土合算,强度指标采用快剪试验指标;对中、粗砂、碎石土,则应采用水土分算。

承台开挖高程范围内主要为人工填土、黏土、粉土,局部夹有淤泥质黏土,各土层已知条件:(1)人工填土:内摩擦角7?=?,粘聚力8kPa c =;(2)粘土:内摩擦角14?=?,粘聚力25kPa c =;(3)粉土:内摩擦角22?=?,粘聚力12kPa c =;(4)砂土:内摩擦角32?=?,粘聚力0kPa c =。土的天然重度γ取3

19kN/m 。非承压地下水位在地面下0.2~5.5处(承压水位不明)。

2 钢板桩围堰支撑结构受力计算

2.1钢板桩围堰

钢板桩围堰基坑开挖最大深度为5.0米,此类基坑承台最大高度为4.0米,设一道内支撑位于基坑底面以上3米,计算钢板桩围堰受力情况。

结合现场现有材料,拟采用WRU12a 钢板桩,其技术指标为:

单根钢板桩宽B=600mm,高H=360mm,厚t=9mm,每米截面积A=147.3cm2,单根钢板桩每米的重量69.5kg,每延米墙身每米的重量115.8kg,每延米墙身钢板桩惯性矩Ix=22213cm4,每延米的截面模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应力σ=140Mpa,允许剪应力τ=80 Mpa。钢板桩长12m。由于钢板桩刚度较小,需加强内支撑。拟设置一道水平钢支撑,在距承台底面3.0m处设置,不设竖向支撑。水平钢支撑采用I40b型工字钢,沿钢板桩内壁设置长方形围檩,并在四角设置加强斜撑。

考虑施工堆载,假设基坑顶部(地面)作用有无限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作用有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。

2.2计算作用于板桩上的土压力强度

依据《建筑基坑支护技术规程》(JGJ

120—99)第3.4~3.5节,计算土压力(水

平荷载及水平抗力)分布。土压力由四部

分组成:(1) 桩顶平台以下土自重引起;

(2) 局部荷载(汽车荷载)q2=80kN/m2

引起;(3) 均布荷载q1=10kN/m2引起。

对人工填土、黏土及粉土地层,采

用水土和算法进行计算,在桩顶下2.0m

处设置一道内支撑,计算可得土压力分

布如右图所示。

查《简明施工计算手册》P209。其中E 点为弯矩零点,其位置由主动土压力强度与被动土压力强度相等计算得出。

Y=CD=2.18m

2.3钢板桩内力计算

取1宽的钢板桩进行验算,用结构力学求解器计算得出: 受力图(单位:kN/m )

弯矩图(单位:kN ·m ) 剪力图(单位:kN )

Mmax=51.78kN ·m

Ra=91.06kN ;P 0=102.24kN ;

钢板桩截面验算:

σmax=Mmax/W

=51.78×103/1234×10-6=41.96Mpa<[σ]=140Mpa

x 2

3

1( 1 )( 2 )102.2431.60231

( 1 )( 2 )-51.78

-21.07

76.231.63

τmax=Qmax /A

=102.24×103/147.3×10-2=6.94Mpa<[τ]=80 Mpa

故所选钢板桩符合要求。

2.3计算板桩最小入土深度t0

钢板桩承台底面高程以下部分实际上已进入黏土层,计算查表得:

Kp=tg2(450+140/2)=1.64

Ka=tg2(450-140/2)=0.61

K=1.4

γ=19KN/m3

根据P0和墙前被动土压力地板桩底端的力矩相等,有:

X=(6P0/γ×(K×Kp-Ka))1/2

=(6×102.24/19×(1.4×1.64-0.61)) 1/2=4.5m

t0=x+y=4.5+2.18=6.68m

而实际本方案选用的12m钢板桩,在开挖完成后,钢板桩入土深度为7m,满足要求。

2.4内支撑计算

根据现场现有材料,拟采用“热轧普通工字钢I40b”圈梁。I40b 的截面特性:截面高h=40cm,宽b=14.4cm,tw=1.25cm,面积A=94.07 cm2,每米重量73.84kg/m,截面惯性矩Ix=22781cm4,截面模量Wx=1139cm3,半截面面积矩Sx=671.2 cm3,Ix:Sx=33.94 cm,取允许拉应力[σ]=145MPa,允许剪应力[τ]=80 MPa。单根I40b的允许值:

[M]= [σ]×Wx=145×1139×103=165.16kN ·m

[Q]= [τ] I xtw/Sx=80×106×33.94×10-2×1.25×10-2=339.4kN

实际作用于圈梁上的均布荷载为31.6 kN/m ,圈梁长按15 m ,斜支撑分别位于距两端4米的位置,通过力学求解器计算得:

受力图(kN/m ) 弯矩图(kN ·m )

剪力图(kN )

Mmax=110.87kN ·m<165.16kN ·m

Nmax=201.52kN<339.4kN 采取单根I40b 即可满足要求。

x

x

钢板桩围堰计算书新(优质特享)

徒骇河大桥钢板桩围堰计算书 一、工程概况及围堰布置 本钢板桩围堰用于济石高铁禹齐徒骇河大桥水中墩的施工,徒骇河水流平缓的, 水深4米左右。河床为粉质粘土,承台基本标高和河床标高基本一致,施工时开挖至承台下1米,再进行1米的混凝土封底。钢板桩采用拉森IV型,钢板桩长15米。整个围堰采用三层围囹,围囹用八字型结构。型钢全采用140工字钢。按照从上至下抽水进行围囹的安装。围囹结构图如下: 胡板粧同務第一至三忌结构平面酌 二、基本参数 1、根据图纸提供的地质资料,河床以下土层为2.4m的粉土层,2.2m左右的粉质黏土层,3.2m左右的粉土层,6.3m的粉土。钢板桩入土到第四层的粉土层。根据规范,估取内摩擦角为25。,容重为18.5kN/m3,土层粘聚力C=15^,主动土压力系

n 数:32丿 ,被动土压力系数:P2) 二、钢板桩围堰受力验算 1.钢板桩计算: 1)I韦I堰结构:钢板桩桩顶设计标咼为+17.60米,钢板桩长度为15.0米,钢|韦| 堰平而尺寸为17.6X17.6米。围囹和支撐设置三道,自上而下进行安装。第一道围囹和支撑安装位于+14.90米,第二道围囹和支撑安装位于+11.9米,第三道围囹和支撑安装 位于8.9米,承台底标高+15.43米。(详见钢围堰平而图)钢板桩入河床10米左右。承台下进行1米的混凝土封底。 2)基本参数:动水压力计算: 每延米板桩截而而积A(cm2) 236.00 每延米板桩壁惯性矩I(cm4) 39600.00 每延米板桩抗弯模量W(cm3) 2037.00 p=K*H*V*EW2g2式中:p■每延米板壁上的动水压力总值,KN; H冰深,M; v-水 流平均速度,m/s;凸重力加速度(9.8m/s); b-板桩宽度(取1米);丫?水的容重,kn/m; k-系数(1.820)。 p= 1.9*4*0.5*1 * 11/2*9.82 =0.2 0.2KN动水压力可假设为作用在水面下1/3水深处的集中力,由于动水压力很小在计算过程中忽略不计。

钢板桩围堰设计说明

N2~N4围堰设计说明书(讨编稿) 一、基本资料 1、承台平面尺寸24.30×11.30,承台顶高程+10.5,承台厚5.0m,承台底高程+5.5m; 2、围堰内净尺寸24.45×11.45m(考虑到位移变形影响,每侧增加75mm); 3、围堰顶面高程暂按+20.5 m; 4、围堰底高程+4.0,围堰高度20.5-4.0=16.50 m; 5、河床底高程+8.85 m; 6、分节制造: 第一节(底节)高程从4.0~5.5,高1.5m(含起吊梁); 第二节(中节)高程从5.5到10.5m,高5.0m(到承台顶面,水平加劲桁架设在外侧); 第三节(上节)高程从10.5到20.5m高10.0m(水平加劲桁架高在内侧); 7、抽水高程暂按+19.5m时抽水(按10月份的平均水位)。此时抽水头高差14m(水头差); 8、围堰底端入泥高度4.885m,利用吸泥机吸泥和自重下沉到+4.0。 二、吊箱围堰的结构设计 1、设计特点: 根据目前已完成桩基施工的前提,以及结合桥址处河床地形地质和水文条件,本次钢吊箱在施工下沉前为无底的钢吊箱,下沉到位后转化成有底的钢吊箱的总方案。 a、设计采用单壁式构造; b、根据钢吊箱工况需要中节用外侧桁架,上节用内支撑工字梁的全焊结构设计; c、拼弃传统的分块模式,本设计采用叠层式分块,以利于制造、起吊、拼装和拆除; d、采用特殊的止水带和节段间的联结; e、采用整体拆除钢吊箱的方案,采取特殊的工艺削减承台侧面和箱侧砼的粘结力,以利于整体提升拆除和重复使用; 按照目前施工设备浮吊的起吊能力仅为150t,因此N2~N4钢吊箱设计分为底节、中节和上节组成共有三部分,结构尺寸和起吊重量如下表:

钢板桩围堰设计计算书

钢板桩围堰设计计算书 1 工程概况 本方案陆地承台基坑开挖深度在3.0-5.0米之间,基坑开挖支护结构受力计算选择基坑最深、地质条件最差的最不利工况条件下进行受力计算。 本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性土、粉土、各类砂、软土为主,局部夹淤泥。 土层分层计算土压力,粘性土和粉土采用总应力法,即水土合算,强度指标采用快剪试验指标;对中、粗砂、碎石土,则应采用水土分算。 承台开挖高程范围内主要为人工填土、黏土、粉土,局部夹有淤泥质黏土,各土层已知条件:(1)人工填土:内摩擦角7?=?,粘聚力8kPa c =;(2)粘土:内摩擦角14?=?,粘聚力25kPa c =;(3)粉土:内摩擦角22?=?,粘聚力12kPa c =;(4)砂土:内摩擦角32?=?,粘聚力0kPa c =。土的天然重度γ取3 19kN/m 。非承压地下水位在地面下0.2~5.5处(承压水位不明)。 2 钢板桩围堰支撑结构受力计算 2.1钢板桩围堰 钢板桩围堰基坑开挖最大深度为5.0米,此类基坑承台最大高度为4.0米,设一道内支撑位于基坑底面以上3米,计算钢板桩围堰受力情况。 结合现场现有材料,拟采用WRU12a 钢板桩,其技术指标为:

单根钢板桩宽B=600mm,高H=360mm,厚t=9mm,每米截面积A=147.3cm2,单根钢板桩每米的重量69.5kg,每延米墙身每米的重量115.8kg,每延米墙身钢板桩惯性矩Ix=22213cm4,每延米的截面模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应力σ=140Mpa,允许剪应力τ=80 Mpa。钢板桩长12m。由于钢板桩刚度较小,需加强内支撑。拟设置一道水平钢支撑,在距承台底面3.0m处设置,不设竖向支撑。水平钢支撑采用I40b型工字钢,沿钢板桩内壁设置长方形围檩,并在四角设置加强斜撑。 考虑施工堆载,假设基坑顶部(地面)作用有无限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作用有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。 2.2计算作用于板桩上的土压力强度 依据《建筑基坑支护技术规程》(JGJ 120—99)第3.4~3.5节,计算土压力(水 平荷载及水平抗力)分布。土压力由四部 分组成:(1) 桩顶平台以下土自重引起; (2) 局部荷载(汽车荷载)q2=80kN/m2 引起;(3) 均布荷载q1=10kN/m2引起。 对人工填土、黏土及粉土地层,采 用水土和算法进行计算,在桩顶下2.0m 处设置一道内支撑,计算可得土压力分 布如右图所示。

低桩承台桩基内力与位移计算书

《墩台基础工程》课程设计计算说明书 一.工程概况 江阴市澄东大道张家港大桥全长886.56米,分左右双幅,中间间隔9米,主桥为 (49+82+49)米的三跨变截面连续箱梁,梁底按二次抛物线变化,本桥属于大跨度预应力连 续梁桥,采用挂篮分节段悬臂对称现浇施工,通过梁段合龙、施加预应力,实现“T 型钢构→悬臂梁→连续梁”的结构体系转换,最后形成连续结构。 二.桩基础的选择及施工 2.1 桩基础的选择 桩基础是工程中经常应用的基础形式之一。当地质条件不良,可做持力层的地基土埋置深度较深,从地基强度、沉降变形、稳定性等方面考虑,采用浅基础较困难或者不经济,此时采用桩基础。 桩基础按照承台的位置可以分为高桩承台基础和低桩承台基础(建成高桩承台和低桩承台)。高桩承台是指承台底面位于地面线(无冲刷)或局部冲刷线以上,它由于承台位置较高,故能减少圬工量,减轻自重,施工较方便,但是基础整体刚度较小,基桩受力不利,相反地,低桩承台是指承台底面位于地面线(无冲刷)或局部冲刷线以下,其特点是基桩全部埋入土中(桩的自由长度为零),而且承台也埋入土中一定深度,所以在计算低桩承台承受土抗力时还需要考虑承台侧面土抗力参加工作(本例中不考虑承台底土及侧面土的作用),基础整体刚度较大。本工程中使用的即为低桩承台。 2.2 桩基础施工工艺 2.2.1测定桩位。 平整清理好施工场地后,设置桩基轴线定位点和水准点,根据桩位平面布置施工图,定出每根桩的位置,并做好标志。施工前,桩位要检查复核,以防被外界因素影响而造成偏移。 2.2.2埋设护筒。 护筒的作用是:固定桩孔位置,防止地面水流入,保护孔口,增高桩孔内水压力,防止塌孔,成孔时引导钻头方向。护筒用4—8mm 厚钢板制成,内径比钻头直径大100—200mm ,顶面高出地面0.4~0.6m ,上部开1一2个溢浆孔。埋设护筒时,先挖去桩孔处表土,将护筒埋入土中,其埋设深度,在粘土中不宜小于1m ,在砂土中不宜小于1.5m 。其高度要满足孔内泥浆液面高度的要求,孔内泥浆面应保持高出地下水位1m 以上。采用挖坑埋设时,坑的直径应比护筒外径大0.8~1.0m 。护筒中心与桩位中心线偏差不应大于50mm ,对位后应在护筒外侧填人粘土并分层夯实。 2.2.3泥浆制备。 泥浆的作用是护壁、携砂排土、切土润滑、冷却钻头等,其中以护壁为主。 泥浆制备方法应根据土质条件确定:在粘土和粉质粘土中成孔时,可注入清水,以原土造浆,排渣泥浆的密度应控制在1.1~1.3g /cm3;在其他土层中成孔,泥浆可选用高塑性(Ip ≥17)的粘土或膨润土制备;在砂土和较厚夹砂层中成孔时,泥浆密度应控制在1.1—1.3g /cm3;在穿过砂夹卵石层或容易塌孔的土层中成孔时,泥浆密度应控制在1.3~1.5g /cm3。施工中应经常测定泥浆密度,并定期测定粘度、含砂率和胶体率。泥浆的控制指标为粘度18~22s 、含砂率不大于8%、胶体率不小于90%,为了提高泥浆质量可加入外掺料,如增重剂、增粘剂、分散剂等。施工中废弃的泥浆、泥渣应按环保的有关规定处理。 2.2.4成孔方法 …………………………..……..…..……装 …………………….……………….订 ……………..…………………………..线 ………………………………………………… …………………………..……..…..……装 …………

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m 3,内摩擦角φ=15o ,卵石重度γ= KN/m 3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m 2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m 3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 (φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。=

基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m 2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ

=1000*1340=<175 Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载: q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢 板桩最大弯矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支 点力T1=,钢板桩最大弯矩M max =*m 剪力图

双壁钢围堰计算书

双壁钢围堰施工及计算1、概述 围堰所处的地理环境水文地质资料 2、钢围堰结构尺寸拟定

3、钢围堰重量计算 3.1 钢板 围堰钢板: 178.512(1210.38)40.006506.0G s kN γδ==??+??= 隔舱钢板: 278.512 1.280.00654.3G s kN γδ==????= 3.2角钢 竖肋角钢: 310.0918012194.4G l k kN =?=??= 横肋角钢: 420.0944.761248.3G l k kN =?=??= 弦杆角钢: 530.09 1.231290119.6G l k kN =?=???=

3.3 灌水和混凝土 围堰壁间混凝土重量: 62544.76(5 1.2 1.6 1.2/2)5639.8G V kN γ==???-?= 加水(4m )重量: 710444.76 1.22148.5w G V kN γ==???= 钢围堰总重: 12345678710.9G G G G G G G G kN =++++++= 4、封底混凝土厚度计算 假设封底混凝土厚度为h , 围堰外壁所围面积: 2253.132 3.14 6.2910.416 4.85360 S m ?= ??+?=外 围堰内壁所围面积: 2253.132 3.14598118.34360 S m ?= ??+?=内 围堰内抽水后围堰浮力: =110164.8510.517309.3F gsh kN ρ=???=浮 有G G F +≥浮封 17309.38710.9 2.9125118.34 F G h m S γ--= ==?浮内 封底混凝土厚度取3m 。 5、水流方向围堰受力分析

钢板桩围堰计算书

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 中铁四局集团有限公司设计研究院 2019年4月

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 计算: 复核: 审核: 中铁四局集团有限公司设计研究院 建筑行业甲级铁道行业甲(Ⅱ)级市政行业甲级 二〇一九年四月

目录 一、项目概况 (1) 二、水文地质条件 (1) 三、计算依据 (3) 四、材料参数 (4) 五、围堰工况介绍 (4) 六、围堰计算 (5) 1、外侧围堰计算 (5) 2、内侧围堰计算 (12) 七、结论及建议 (18) 1、结论 (18) 2、注意事项 (19)

一、项目概况 津石高速公路是连接南部港区通往石家庄方向的重要通道,路线主线起自滨海新区南港工业区桩号K0+000,接已建的海滨大道及南港工业区港北路,经大港电厂南、东台子,止于西青区小张庄附近,接已建的津石高速和长深高速共线段桩号K36+500,全长约31.3公里。全线在南港工业区、大港油田、东台子、小张庄4处设置互通式立交。 本标段起点桩号为K29+730,路线沿独流减河北堤后侧台布设,跨越长深高速并设置小张庄互通立交,终点桩号为K31+150,路线长1420m。 本互通立交主线设计速度采用100Km/h,A、B、E、F匝道设计速度采用60Km/h,C、D匝道设计速度采用40 Km/h;主线为双向四车道,标准路基宽度27.5m;B、E匝道为单向单车道,标准路基宽度9m;A、C、D、F匝道为单向双车道,标准路基宽度10.5m。 其中A、F匝道位于独流减河河道中,河道水位标高为2.8m,本工程中钢板桩围堰是为了阻隔河水,以进行项目施工。 本工程钢板桩围堰位于独流减河中河水深度1m~5.2m,围堰采用12m双排钢板桩从河岸打设到河中央滩涂位置,上游、下游各打设一道,上、下游距离272m,每道长度360m,每道采用间距为4m的双排钢板桩形式,两排钢板桩中间抽2.5m水,保持内、外侧钢板桩水位差,确保钢板桩稳定。双排钢板桩围堰示意图见图1-1。 河面 内侧外侧 图1-1 双排钢板桩围堰示意图 二、水文地质条件

三桩承台计算书

三桩承台计算书 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 1 设计资料 1.1 已知条件 承台参数(3 桩承台第 1 种) _承台底标高 _: -2.000(m) _承台的混凝土强度等级_: C30 _承台钢筋级别 _: HRB400 _配筋计算a s _: 50(mm) 承台尺寸参数 桩参数 _桩基重要性系数 _: 1.0 _桩类型 _: 混凝土预制桩 _承载力性状 _: 端承摩擦桩 _桩长 _: 15.000(m) _是否方桩 _: 否 _桩直径 _: 400(mm) _桩的混凝土强度等级 _: C35 _单桩极限承载力标准值_: 2400.000(kN) _桩端阻力比 _: 0.400 _均匀分布侧阻力比 _: 0.400 _是否按复合桩基计算 _: 否 _桩基沉降计算经验系数_: 1.000 _压缩层深度应力比 _: 20.00% 柱参数 _柱宽 _: 600(mm) _柱高 _: 600(mm) _柱子转角 _: 0.000(度)

_柱的混凝土强度等级_: C35 柱上荷载设计值 _弯矩M x _: 0.000(kN.m) _弯矩M y _: 0.000(kN.m) _轴力N _: 4400.000(kN) _剪力V x _: 0.000(kN) _剪力V y _: 0.000(kN) _是否为地震荷载组合 _: 否 _基础与覆土的平均容重_: 20.000(kN/m3) _荷载综合分项系数 _: 1.35 土层信息 _地面标高 _: 0.000(m) _地下水标高_: -10.000(m) (m)(kN/m3)(kN/m3)(MPa)征值(kPa)程度(kPa) 1.2 计算内容 (1) 桩基竖向承载力计算 (2) 承台计算(受弯、冲切、剪计算及局部受压计算) (3) 软弱下卧层验算 (4) 桩基沉降计算 2. 计算过程及计算结果 2.1 桩基竖向承载力验算 (1) 桩基竖向承载力特征值R计算 根据《桩基规范》5.2.2及5.2.3 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 2400.000(kN) 单桩竖向承载力特征值 R a = 1200.000(kN) (2) 桩基竖向承载力验算 根据《桩基规范》5.1.1 式5.1.1-1计算轴心荷载作用下桩顶全反力,式5.1.1-2计算偏心荷 载作用下桩顶全反力

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m,开挖尺寸×,筑岛顶标高:495m;常水位标高:+;承台顶标高:+;承台底标高:489m;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m3,内摩擦角φ=15o,卵石重度γ= KN/m3,内摩擦角φ=36o,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。 钢板桩最小嵌入深度t,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ 平均 =(*+*)/= KN/m3 φ 平均=(15*+36*)/=

主动土压力系数:K a =-45Tan 2(φ/2)=; 被动土压力系数:K p =+45Tan 2(φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。= 基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。=h K -KK P 6a P 0+?(γ= t=。= 已知外界荷载:q =Ka*30=m2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175

Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载:q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢板桩最大弯 矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。 2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支点力T1=, 钢板桩最大弯矩M max =*m 剪力图 弯矩图 满足要求,围檩施工完后可继续开挖。 3)、工况三:当基坑开挖到基坑底时,相当于多层支点支护结构 支点力T1=,T2=,基坑底部钢板桩受力T3=,钢板桩最大弯矩M max =50KN*m 剪力图 弯矩图 如图所示工况三维钢板桩受力最不利时: 钢板桩满足要求,可继续下一道工序。

基坑支护(钢板桩)设计及计算书

目录 1 计算依据 (1) 2 工程概况 (1) 3 地质情况 (1) 4 设计施工方案概述 (1) 5 围堰结构计算 (2) 5.1 设计计算参数 (2) 5.1.1材料设计指标 (2) 5.1.2单元内支撑支撑刚度计算 (3) 5.1.3单元内支撑材料抗力计算 (3) 5.1.4 设计安全等级 (4) 5.2 拉森钢板桩封闭支护结构设计分析 (4) 5.2.1 开挖过程结构分析 (4) 5.2.2 拉森钢板桩单元计算分析结果 (4) 5.2.3 内支撑应力和变形计算 (18) 5.2.4支护结构强度验算 (19) 5.2.4 支撑型钢强度、稳定性验算 (23)

基坑拉森钢板桩围堰设计及计算书 1 计算依据 1.2 《特大桥承台基坑拉森钢板桩围堰设计图》; 1.3 《建筑施工计算手册》; 1.4 《钢结构设计规范》(GB500017-2003); 1.5 《理正深基坑软件7.0版》; 1.6 《基坑工程设计规程》(DBJ08-61-97) 1.7 《建筑基坑支护技术规程》(JGJ120-2012) 1.8 《建筑基坑工程技术规范》(YB9258-97) 2 工程概况 桥址处为荒地、民房,地势平坦,交通便利。根据现场调查,特大桥1#承台施工为最不利基坑,承台尺寸为4.85×5.7×2m,开挖后深度4.209m。 3 地质情况 根据工程地质勘测报告,承台处的地质情况如表1。 表3-1 承台地质情况 取样 编号厚度(m)名称 重度 (kN/m3) 粘聚力 (Kpa) 摩擦角(。) 侧摩阻力 (Kpa) 1 1.25 杂填土17.7 11.00 7.20 30.0 2 4.25 淤泥质土17. 3 13.00 6.00 22.0 3 6.20 粉砂18.0 45.00 --- 40.0 4 4.60 粘性土19.8 49.00 --- 65.0 5 21.60 粉砂19. 6 47.00 --- 70.0 4 设计施工方案概述 使用9m拉森Ⅳ钢板桩对基坑进行封闭支护,钢围檩设于承台顶标高以上1.509m,钢板桩顶往下1m处,围檩采用H400×400×13×21mm型钢,围檩长边下方设置不少于3个牛腿,上方采用直径8mm钢丝绳兜吊在拉伸钢板桩上,斜角撑采用H400×400×13×21mm型钢,斜撑两端与围檩型钢焊接牢固。基坑尺寸控制原则为自承台外轮廓外扩1.2m,为保证承台模板与钢筋的顺利施工,围檩斜角撑的位置应避免阻碍模板与钢筋的吊装施工。

钢板围堰计算书

目录 1设计资料 (1) 2钢板桩入土深度计算 (1) 2.1力计算 (1) 2.2入土深度计算 (2) 3钢板桩稳定性检算 (3) 3.1管涌检算 (3) 3.2基坑底部隆起验算 (4)

跨宁启特大桥跨高水河连续梁主墩承台 钢板桩围堰施工计算书 1设计资料 (1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。 (2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。 (3)封底混凝土采用C30混凝土,封底厚度为1m 。 (3)坑、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;摩擦角加 权平均值 20=?;粘聚力C : 33KPa 0 5.02h ===。 (4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。 水压:210 6.3763.7/w w p h kN m γ=?=?= 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+= (5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。 2计算资料 水压:210 6.3763.7/w w p h kN m γ=?=?= 0 5.02h === 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+=

桩承台沉降计算

桩承台沉降计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.荷载信息 荷载:N=1000.00Kn 2.桩信息 桩数:num=7 桩长:pl=16.00m 桩截面尺寸:pld=0.5000m 桩端阻比: =0.1250 是否圆桩:yp=1 3.快速输入参数 参数:A=1000 mm 参数:B=4000 mm 参数:C =500 mm A A 4.标高信息 天然地面标高:bg=0.00m 地下水标高:wbg=-8.00m 承台高:cth=0.50m 承台底标高:ctdbg=-2.00m 5.计算用参数 计算步长:jsbc=0.05 沉降点坐标:x=0.00m y=0.00m 沉降计算经验系数:xs=1.00 地下水标高-8.00土层顶标高0.00 5 . 5 . 5 . 8 . 6.土层信息: 土层信息表

7.桩位信息: 8.承台边界节点信息: 二、计算结果 1.计算单桩底面的附加压力 承台底面土层自重应力 ∑γi h i = 18.0×2.0 = 36.00Kn 上式中γi地下水位下的重度取浮重度 承台自重及其上土重荷载 G k = A×p =23.0×30.0= 690.3Kn 承台底面的附加荷载 N = Nz +G k-A×∑γi h i = 1000.00+690.33-23.01×36.0 = 861.9Kn 单桩附加荷载 Q = N npile= 861.93 7= 123.13Kn 2.确定分层厚度 按用户输入的桩长倍数确定 △Z = 16.00×0.05 = 0.80 m 3.计算分层沉降量 根据基础规范附录R采用如下的公式计算,计算的分层沉降值见下表: s = φp Q l2 ∑ j=1 m ∑ i=1 n j△h ji E sji ∑ k=1 n [aI pk + (1-a)I s2k] 分层总和法沉降计算表

拉森钢板桩支护方案计算书

桂林市西二环路道路建设工程排水管道 深基坑开挖施工方案计算书 一、工程概况 桂林市西二环路二合同段污水管道工程的起点K12+655,终点K17+748,埋设管道为聚氯乙烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采用粗砂垫层,基础至管顶上50cm范围为粗砂回填,其上为级配碎石回填至路床;起点管道底部标高为,管道平均埋深为米左右,最深为米,地下水位较高,其中有局部里程段厚土层以下是流沙层,开挖时垮塌较严重,为防止开挖时坍塌事故发生,特制定该方案,施工范围为K12+655~K14+724段左侧污水管。 本段施工段地质为松散耕土、粉质粘土,地下水位高,遇水容易形成流砂。 二、方案计算依据 1、《桂林市西二环路道路建设工程(二期)施工图设计第三册(修改版-B)》(桂林市市政综合设计院)。 2、《市政排水管道工程及附属设施》(06MS201)。 3、《埋地聚乙烯排水管管道工程技术规程》(CECS164:2004)。 4、《钢结构施工计算手册》(中国建筑工业出版社)。 5、《简明施工计算手册》(中国建筑工业出版社)。 三、施工方案简述 1、钢板桩支护布置 钢板桩采用拉森ISP-Ⅳ型钢板桩,其长度为12米/根,每个施工段50m需260根钢板桩。根据施工段一般稳定水位154.0m和目前水位情况,取施工水位为154.00m。根据管沟开挖深度(),钢板桩支护设置1道型钢圈梁和支撑。以K14+100左侧排污管道钢板

桩支护为例,桩顶标高为157.83m,桩底标高为148.83m,依次穿越松散耕土→粉质粘土层。 2、钢板桩结构尺寸及截面参数 拉森ISP-Ⅳ型钢板桩计算参数如下表所示: 四、计算假设 1、根据设计图纸中地勘资料提供的土层描述,本计算中土层参数按经验取值如下(K14+100钢板桩支护处): 则计算取值:γ=18 KN/m3 ,φ=150,c=10 KPa 。 2、支护计算水位按154.00m考虑。 3、计算时按照支护周边均为土体进行计算,不考虑空隙水压力及土体浮容重,同时不扣减由土体粘聚力与钢板桩之间产生的摩擦力。 五、钢板桩围堰计算 1、内力计算

桩基计算书

独立桩承台设计(J2a-5) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 1 设计资料 1.1 已知条件 承台参数(2 桩承台第 1 种) 承台底标高: -1.200(m) 承台的混凝土强度等级: C30 承台钢筋级别: HRB400 配筋计算a s: 150(mm) 承台尺寸参数 e11(mm)875e12(mm)875 A'(mm)500H(mm)1200 桩参数 桩基重要性系数: 1.0 桩类型: 混凝土预制桩 承载力性状: 端承摩擦桩 桩长: 10.000(m) 是否方桩: 否 桩直径: 500(mm) 桩的混凝土强度等级: C80 单桩极限承载力标准值: 3500.000(kN) 桩端阻力比: 0.400 均匀分布侧阻力比: 0.400 是否按复合桩基计算: 否 桩基沉降计算经验系数: 1.000 压缩层深度应力比: 20.00% 柱参数 柱宽: 500(mm) 柱高: 500(mm) 柱子转角: 0.000(度) 柱的混凝土强度等级: C30 柱上荷载设计值 弯矩M x: 50.000(kN.m) 弯矩M y: 50.000(kN.m) 轴力N : 3500.000(kN) 剪力V x: 15.000(kN) 剪力V y: 15.000(kN) 是否为地震荷载组合: 否 基础与覆土的平均容重: 0.000(kN/m3) 荷载综合分项系数: 1.20 1.2 计算内容 (1) 桩基竖向承载力计算 (2) 承台计算(受弯、冲切、剪计算及局部受压计算) 2. 计算过程及计算结果 2.1 桩基竖向承载力验算 (1) 桩基竖向承载力特征值R计算 根据《桩基规范》5.2.2及5.2.3 = R a Q uk K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 3500.000(kN) 单桩竖向承载力特征值 R a = 1750.000(kN) (2) 桩基竖向承载力验算 根据《桩基规范》5.1.1 式5.1.1-1计算轴心荷载作用下桩顶全反力,式5.1.1-2计算偏心荷载作用下桩顶全反力在轴心荷载作用下,桩顶全反力 N k = 1458.333(kN) 按《桩基规范》5.2.1(不考虑地震作用) 式5.2.1-1 (γ0N k≤1.00R) 验算 (γ0N k=1458.333kN) ≤ (1.00R=1750.000kN) 满足. 在偏心荷载作用下,按《桩基规范》5.2.1(不考虑地震作用) 式5.2.1-2 (γ0N kmax≤1.20R) 计算桩号 1 : (γ0N1k=1425.952kN) ≤ (1.20R=2100.000kN) 满足。 桩号 2 : (γ0N2k=1490.714kN) ≤ (1.20R=2100.000kN) 满足。 (γ0N kmax=1490.714kN) ≤ (1.20R=2100.000kN) 满足. 2.2 承台受力计算 (1) 各桩净反力(kN) 根据《桩基规范》5.1.1 式5.1.1-2计算桩顶净反力(G=0.0kN) 桩号01 净反力: 1711.143(kN) 桩号02 净反力: 1788.857(kN) 最大桩净反力 : 1788.857(kN) (2) 受弯计算 根据《桩基规范》5.9.2第1款,计算承台柱边截面弯矩 柱边左侧承台弯矩 : 1069.464(kN.m) 柱边右侧承台弯矩 : 1118.036(kN.m) 柱边上侧承台弯矩 : 0.000(kN.m) 柱边下侧承台弯矩 : 0.000(kN.m) 承台控制弯矩 M x : 0.000(kN.m) M y : 1118.036(kN.m) 根据《混凝土规范》附录G G.0.2,按深受弯构件计算承台计算配筋 ≤ M f y A s z 取按板单筋和深受弯计算配筋的最大值 承台X方向计算配筋A sx : 3768(mm2) 承台Y方向计算配筋A sy : 按构造筋 (3) 柱对承台的冲切 不需要验算 (4) 桩对承台的冲切 桩号 1 不需要验算 桩号 2 不需要验算

水中钢板桩围堰计算及施工应用

水中钢板桩围堰计算及施工应用 摘要:介绍临海大桥主塔横系梁钢板桩围堰设计计算和应用,供同类型桥梁施工借鉴。 关键词:潮汐地区;水中钢板桩围堰;设计计算;应用 1、概况 1.1工程概况 临海大桥位于浙江省临海市区中心,横跨灵江,是临海市江南分区与老城区的交通要道。桥梁总长度746m,其中主桥306m,北引桥216m,南引桥224m。主桥采用(36+110+160)m预应力砼独塔单索面斜拉桥,桥面宽31.2m。 主塔基础位于灵江江心,采用分离式承台钻孔桩基础,两承台之间设横系梁连接。横系梁按预应力构件设计,施加预应力用以平衡倾斜塔柱的水平推力,系梁为矩形截面,宽度为6.0m,高度为3. 0m,长31.532m。 1.2水文地质情况 桥址段灵江为典型半日潮,既受洪水控制,又受潮水控制。5年一遇最高水位为+5.0m。横系梁顶面标高+1.8m,河床顶面标高-2.5m,地质报告中河床顶面以下约11m为淤泥质粘土。 2、钢板桩围堰结构 钢板桩围堰沿横系梁两侧设置,两端与承台钢套箱连接,围堰长31.532m,宽10.6m,钢板桩长15m。钢板桩围堰顶面标高设置为+5.5m,高出最高施工水位0.5m。钢板桩施工完成并抛填

片石挤淤至-2.5m左右后,然后浇筑50cm封底混凝土。围堰内设置一层水平支撑梁和支撑柱,支撑梁采用2I40,支撑柱采用直径2 2.5cm、壁厚5mm的钢管。考虑到横系梁施工和施工后支撑拆除方便,支撑尽量设置在横系梁顶面以上。 3、设计计算 3.1设计说明 3.1.1计算水位取+2.5m;钢板桩采用IV 型拉森桩,重量75kg/m,每1米宽截面模量W=2037cm3,允许应力为[σ]=180 Mpa 。 3.1.2土质按地质报告提供参数。 3.2钢板桩入土深度验算 钢板桩围堰结构如图所示,围堰内抽水后水头差为7.5m,由此引起的水渗流,其最短流程为紧靠板桩的2h,故在此流程中,水对土粒渗透的力,其方向应是垂直向上。对于较薄且面积较大的封底混凝土,按不考虑封底混凝土作用时的涌流问题近似进行计算比较偏于安全。现近似地以此流程的渗流来检算坑底的涌流问题,要求垂直向上的渗透力不超过土在水中的密度,故安全条件如公式所示:式中:-安全系数;-水力梯度; -分别为水的密度及土在水中的密度,; ,其中G 为土粒的比重;n 为土的孔隙率以小数计。 土层按淤泥质粘土,查地质报告中G=1.7、n=0.590,h= 7m,安全系数取1.4。

单壁钢围堰计算书

单壁钢围堰计算书 一、计算依据 1、xxxxxx施工设计图; 2、《钢结构设计规范》(GB50017-2003); 3、水利水电工程钢闸门设计规范(SL74-95) 4、《钢结构计算手册》 二、工程概况 本设计主要为xxxx大桥水中墩系梁施工用钢围堰,该项目共计12个水中墩,其中9#、12#—19#墩因系梁底标高较低,采用单壁钢围堰施工。现场调查,施工最高水位为414米,根据各墩位系梁标高,确定 三、主要技术参数 1、现场调查,施工最高水位为414米; 2、Q235钢[σ]=140Mp,[σw]=145Mp,[τ]=85Mp 3、钢弹性模量Es=2.1×105MPa; 四、围堰构造 围堰采用单壁钢围堰,面板为8mm厚钢板,竖向背楞采用8号槽钢,间距400mm,竖向设置三道围檩,围檩使用I32b,对应围檩设置三道内支撑,每道支撑为4根φ140x5.5mm钢管。封底混凝土厚 1.5米,采用C20混凝土,采用水下多点灌注的方式。 五、计算过程 (一)面板计算

面板按支撑在围檩上的连续加筋板计算,横向取3.2米宽一条(一块板),竖向取全长7.9米,荷载为静水压力荷载。简图如下: 正面图 侧面图

荷载为静水压力,按水深7.6米考虑(水面标高414米,围堰底标高406.9米),则q=7.6x10=76KN/m2。 3、计算结果 按上述图示与荷载,计算结果如下: (1)面板变形: (2)面板应力:

通过以上两图,可以看到面板最大变形为 2.35mm,最大应力77Mpa,满足要求。 结论:面板采用8mm厚钢板刚度与强度满足要求。 (二)竖向背楞计算 1、计算简图 竖向背楞简化为支撑在围檩上的连续梁,计算简图如下: 2、计算荷载 荷载主要为静水压力,Q=76KN/m2,竖肋间距400mm,荷载q=76/100x400=30.4N/mm 3、计算结果 根据上述图示及荷载,计算竖向背楞的结果如下: (1)下部0-3.7米内单元(采用2[8截面] Mmax=6.9105KNxm Qmax=85.379KN [8的几何特性为:

钢板桩围堰设计

根据钢板桩围堰的实际受力状况建立力学模型。通过理论计算确定钢板桩围堰的实际受力,并通过实际施工情况验证该方法的可行性。比规范中采用的经验算法具有更高的精确性和安全性,能够更好的满足工程施工需要。 关键词:钢板桩围堰;设计;施工 目前,对于钢板桩围堰的设计主要是沿用《公路桥涵施工手册》和教科书中的经验算法。由于经验算法带有很大的近似性,并不一定能够真实反映钢板桩围堰的实际受力状况,有时会出现较大的偏差,给围堰的使用带来很多不安全因素。笔者在洪泽苏北灌溉总渠大桥施工中,为避免出现较大的变形,在对钢板桩围堰设计时采用了理论算法。经实践检验,理论算法能够较为精确的反映围堰的实际受力状况,对于合理设置内支撑和减小封底厚度起到 了重要的保证作用。 下面就钢板桩围堰的设计与施工做详细论述: 1 已知条件 1.1 承台尺寸:10.3m(横桥向)×6.4m(纵桥向) ×2.5m(高度),底部设计有10.7×6.8m×1.0m的封底砼。 1.2 承台及河床高程 承台顶面设计高程为h=5.0m,河床底高程为5.5m,河床淤集深度约为30cm。 1.3 水位情况 正常水位:h常=10.8m(此时水深5.3m),最高水位hmax =11.5m(水深6.0m),围堰设计时按最高水位考虑。 1.4 水流速度 因该桥位于水电站下游,水流较为湍急。设计时速V=1.0 m/s,不考虑流速沿水深方向的变化,则动水压力为: P=10KHV2×B×D/2g=53.2KN 式中:P-每延米板桩壁上的动水压力的总值(KN); H-水深(米); V-水流速度(1.0m/s); g-重力加速度(9.8m/s2); B-钢板桩围堰的计算宽度,B=10m; D-水的密度(10KN/m3); K-系数,(槽形钢板桩围堰K=1.8~2.0,此处取1.8)。(参照《公路施工手册》,假定此力平均作用于钢板桩围堰的迎水面一侧。) 1.5 河床水文地质条件 河床土质良好,多为粘土、亚粘土,局部有亚砂土,承载力较强。围堰基底至河床部分土质为粘土(层厚约2m)、亚砂土(硬塑状态,很湿,层间无承压水,层厚约为1m)。 2 拟定方案 结合河床地质情况及施工要求,拟采用日本产钢板桩进行围堰施工,长度为15m,宽度为40cm,厚度为18cm。 围堰顶面标高拟定为12.5m,高出最高水位1.0m。围堰设计图3,所有内围囹均采用56b工字钢制作,节点采用焊接(施工中严格执行钢结构施工规范)。为确保整个围囹的刚度和稳定性,对每层中间一道工字钢上面加焊型钢并将上下四道工字刚用25#槽钢焊接连接。在施工期间安排专人值班以防吊物 碰撞。

钢板桩围堰设计与计算

船台及驳岸施工围堰设计与计算 1、工程概况 浙江舟山市六横岛位于舟山群岛的南部海域,在虾峙门国际航道 的西南侧,是舟山市的第三大岛,为舟山市重点扶持的三大岛之一, 占地约106。8 平方公里。厂址区域四周由穿山半岛和舟山群岛所环 抱,形成一个近封闭水域。本工程位于厂内八号、九号码头之间。 工程范围: 1. 船台二座:船台长250m,宽45m,水下段长60m,滑道坡度1:20,滑道底标高-3 。00m,顶标高12。40m; 2. 陆域独立吊车道: 600T 龙门起重机轨道一组:2x437m; 150T 门机轨道三组:6x303m; 3. 直立驳岸约230m。 为了确保船台及驳岸的干地施工,须在外海侧顺堤设围堰,从而 确保工程进度。本工程工作量大,施工时间相对较紧,施工工期:2008 年1 月1 日~6 月30 日,共 6 个月。 2、自然条件 2.1 水文资料 设计水位: 设计高水位:2.14m

设计低水位:-2.60m 下水水位:1.50m 2.2 地质资料 场地内地质构造活动较稳定,未见新构造运动及活动断裂,不存 在液化土层,故属基本稳定区。根据工程地质勘察报告,场地地层自 上而下分为:① 1 层杂色填土,为新近人工回填而成;① 2 层淤泥、② 1 层灰色淤泥质粉质粘土、④层粘土为软弱场地土;③1 层暗绿~灰黄色粉质粘土、⑤ 1 浅黄~灰绿色粉质粘土及⑤ 2 层粉质粘土夹砂砾、碎石为中硬场地土,⑥层强风化晶屑凝灰岩、⑦层中等风化晶屑凝灰岩为 坚硬场地土。 由于拟建场地20.0m 深度范围内无饱和砂性土及粉土存在,本场 地为不液化场地。场地内分布有较厚的软弱土。该区域由于拟建场地 周围无污染源存在,对钢结构具中等腐蚀性。 本次设计钢板桩插入② 1 层灰色淤泥质粉质粘土土层中,淤泥质粉质粘土的物力力学性质指标为:含水率42.6%,比重 2.74,重度3,固快粘聚力13.34kPa、内摩察角 12.5。17.4kN/m 其余参数详见地质勘探报告。 3、围堰方案比选 围堰是用于围护水工建筑施工场地的临时挡水建筑物。围堰具有不同于一般建筑物的施工和运行特点。其合理的结构应是断面简单、构筑和拆除方便,满足稳定、防冲蚀、防渗漏的要求。既不可以永久建筑物对待,又不可掉以轻心、马虎从事。

相关文档
最新文档