高中数学奥赛的技巧(上篇)

高中数学奥赛的技巧(上篇)
高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇)

有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。”

奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。

2-7-1 构造

它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。

例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。

证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=…

考虑154个数:

12771277,,,21,21,21a a a a a a +++…,?,

又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+

故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+

这表明,从1i +天到j 天共下了21盘棋。

这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。

例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。

解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+?

,则其面积为

1?= 另方面2()()2sin x y y z ab C

?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

()y x y z xz ++=时,()()x y y z ++取最小值2,如1,1x z y ===时,()()2x y y z ++=。

2-7-2 映射

它的基本形式是RMI 原理。

令R 表示一组原像的关系结构(或原像系统),其中包含着待确定的原像x ,令M 表示一种映射,通过它的作用把原像结构R 被映成映象关系结构R*,其中自然包含着未知原像x 的映象*x 。如果有办法把*x 确定下来,则通过反演即逆映射1I M -=也就相应地把x 确定下来。取对数计算、换元、引进坐标系、设计数学模型,构造发生函数等都体现了这种原理。

建立对应来解题,也属于这一技巧。

例2-129 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,…直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数为 。

解 设甲、乙两队的队员按出场顺序分别为A 1,A 2,…,A 7和B 1,B 2,…B 7。

如果甲方获胜,设i A 获胜的场数是i x ,则07,17i x i ≤≤≤≤而且 1277x x x +++=… (*)容易证明以下两点:在甲方获生时,

(i )不同的比赛过程对应着方程(*)的不同非负整数解;

(ii )方程(*)的不同非负整数解对应着不同的比赛过程,例如,解(2,0,0,1,3,1,0)对应的比赛过程为:A 1胜B 1和B 2,B 3胜A 1,A 2和A 3,A 4胜B 3后负于B 4,A 5胜B 4,B 5和B 6但负于B 7,最后A 6胜B 7结束比赛。

故甲方获胜的不同的比赛过程总数是方程(*)的非负整数解的个数7

13C 。

解二 建立下面的对应;

集合{}127,,A A A …,的任一个7-可重组合对应着一个比赛过程,且这种对应也是一个一一对应。例如前述的比赛过程对应的7-可重组合是{}123456,,,,,A A A A A A 所以甲方获胜的不

同的比赛过程的总数就是集合{}127,,A A A …,的7-可重组合的个数7777113C C +-=。 例2-130 设()n p k 表示n 个元素中有k 个不动点的所有排列的种数。求证0()!n

n

k kp k n ==∑ 证明 设{}12,,,n S a a a =…。对S 的每个排列,将它对应向量12(,,)n e e e …,,其中每个{}0,1i e ∈,当排列中第i 个元素不动时,1i e =,否则为0。于是()n p k 中所计数的任一排列所对应的向量都恰有k 个分量为1,所以!n 个排列所对应的那些向量中取值为1的分量的总

数为1()n

n

k kp k =∑。 另一方面,对于每个i ,1i n ≤≤,使得第i 个元素不动的排列共有(1)!n -个,从而相应的n 维向量中,有(1)!n -个向量的第i 个分量为1。所以,所有向量的取值为1的分量总数(1)!!n n n -=,从而得到1()!n

n k kp k n ==∑

例2-131 在圆周上给定21(3)n n -≥个点,从中任选n 个点染成黑色。试证一定存在两个黑点,使得以它们为端点的两条弧之一的内部,恰好含有n 个给定的点。

证明 若不然,从圆周上任何一个黑点出发,沿任何方向的第1n -个点都是白点,因而,对于每一个黑点,都可得到两个相应的白点。这就定义了一个由所有黑点到白点的对应,因为每个黑点对应于两个白点,故共有2n 个白点(包括重复计数)。又因每个白点至多是两个黑点的对应点,故至少有n 个不同的白点,这与共有21n -个点矛盾,故知命题成立。

2-7-3 递推

如果前一件事与后一件事存在确定的关系,那么,就可以从某一(几)个初始条件出发逐步递推,得到任一时刻的结果,用递推的方法解题,与数学归纳法(但不用预知结论),无穷递降法相联系,关键是找出前号命题与后号命题之间的递推关系。

用递推的方法计数时要抓好三个环节:

(1)设某一过程为数列()f n ,求出初始值(1),(2)f f 等,取值的个数由第二步递推的需要决定。

(2)找出()f n 与(1)f n -,(2)f n -等之间的递推关系,即建立函数方程。

(3)解函数方程

例2-132 整数1,2,…,n 的排列满足:每个数大于它之前的所有的数或者小于它之前的所有的数。试问有多少个这样的排列?

解 通过建立递推关系来计算。设所求的个数为n a ,则11a =(1)

对1n >,如果n 排在第i 位,则它之后的n i -个数完全确定,只能是,1,n i n i --- (2)

1。而它之前的1i -个数,1,2,n i n i -+-+…,1n -,有1i a -种排法,令1,2,i =…,n 得递推关系。

1211211111(1)2n n n n n n n n a a a a a a a a a a -------=++++=++++=+= (2)

由(1),(2)得 12n n a -=

例2-133 设n 是正整数,n A 表示用2×1矩形覆盖2n ?的方法数;n B 表示由1和2组

成的各项和为n 的数列的个数;且

02421221352112321, 2, 21

m m m m m n m m m m m C C C C n m C C C C C n m +++++++?++++=?=?++++=+??……,证明n n n A B C == 证明 由,n n A B 的定义,容易得到 1112,1,2n n n A A A A A +-=+== 1112,1,2n n n B B B B B +-=+==

又因为121,2C C ==,且当2n m =时,

0242221352113112212122112m m m n n m m m m m m m m m m m C C C C C C C C C C C C C ---++-++-+++=++++++++++=+……

5212132211m m m m m n C C C C -++++++++=…

类似地可证在21n m =+时也有11n n n C C C -++=,从而{}{},n n A B 和{}n C 有相同的递推关系和相同的初始条件,所以n n n A B C ==。

223296,IMO IMO --用无穷递降法求解也用到了这一技巧。

2-7-4 区分

当“数学黑箱”过于复杂时,可以分割为若干个小黑箱逐一破译,即把具有共同性质的部分分为一类,形成数学上很有特色的方法——区分情况或分类,不会正确地分类就谈不上掌握数学。

有时候,也可以把一个问题分阶段排成一些小目标系列,使得一旦证明了前面的情况,便可用来证明后面的情况,称为爬坡式程序。比如,解柯西函数方程就是将整数的情况归结为自然数的情况来解决,再将有理数的情况归结为整数的情况来解决,最后是实数的情况归结为有理数的情况来解决。142IMO -的处理也体现了爬坡式的推理(例2-47)。

区分情况不仅分化了问题的难度,而且分类标准本身又附加了一个已知条件,所以,每一类子问题的解决都大大降低了难度。

例2-134 设凸四边形ABCD 的面积为1,求证在它的边上(包括顶点)或内部可以找出4个点,使得以其中任意三点为顶点所构成的4个三角形的面积均大于1/4。

证明 作二级分类

1.当四边形ABCD 为平行四边形时,

1124

ABC ABD ACD BCD S S S S ????====> A ,B ,C ,D 即为所求,命题成立。

2.当四边形ABCD 不是平行四边形时,则至少有一组对边不平行,设AD 与BC 不平行,且直线AD 与直线BC 相交于E ,又设D 到AB 的距离不超过C 到AB 的距离,过D 作AB 的平行线交BC 于F ,然后分两种情况讨论。

(1)如图2-52,12DF AB ≤

,此时可作△EAB 的中位线PQ 、QG ,则 111222

AGQP EAB ABCD S S S =>=Y V 即A 、G 、Q 、P 为所求。

(2)如图2-53,12DF AB >

,此时可在CD 与CF 上分别取P 、Q ,使12

PQ AB =。过Q9或P )作QG ∥AP 交AB 于G 。为证12APQG S >Y ,连AP 交BE 于M ,过A 作AH ∥BC 交CD 延长线于H 。有PCM PAH PAD S S S ???=>

MAB PCM ABCP PAD ABCO ABCD S S S S S A ???=+>+=

得 111222

APQG MAB ABCD S S S ?=>=Y 故A 、P 、Q 、G 为所求,

这实际上已证明了一个更强的命题:面积为1的凸四边形一定能嵌入一个面积大于1/2的平行四边形。

例2-135 对内角分别为为30°、60°、90°的三角形的顶点和各边四等分点共12个点,染以红色或蓝色,则必存在同色的三点,以它们为顶点的三角形与原三角形相似。

证明 设△ABC 中,∠C=90°,∠B=60°,∠C=30°,点A 1,A 2,A 3;B 1,B 2,B 3;C 1,C 2,C 3分别是边AB 、BC 、CA 的四等分点,下面作三级分类。

1.点A 、B 、C 同色时,结论显然成立。

2.点A 、B 、C 异色时,记A 为红色,写作A (红),其余各点染色记号类同。

(1)A (红),B (红),C (蓝)时,由△ABC~△B 1BA~△C 3B 1C~△C 3AA 3~△A 2A 3B 1~△AA 2C 2~△C 2B 2C~△A 2AB 2知,若结论不成立,则有

B 1(蓝)→

C 3(红)→A 3(蓝)→A 2(红)→C 2(蓝)→B 2(红)→A (蓝)。

这与A (红)矛盾。

(2)A (红),B (蓝),C (红)时,由△ABC~△B 1AC~△A 3BB 1~△AC 3A 3~△C 2C 3B 1~△C 2B 2C~△A 2BB 2~△AA 2C 2知,若结论不成立,则有B 1(蓝)→A 3(红)→C 3(蓝)→C 2(红)→B 2(蓝)→A 2(红)→A (蓝)这与A (红)矛盾。

(3)A (红),B (蓝),C (蓝)时,又分两种情况:

(3)1当B 1(红)时,由△ABC~△B 2B 1A~△B 2C 2C~△AA 2C 2~△A 2BB 2知,若结论不成立,则有B 2(蓝)→C 2(红)→A 2(蓝)→B (红)。这与B (蓝)矛盾。图(2-56)

(3)2当B 1(蓝)时,由△ABC~△C 3B 1C~△C 3AA 3~△A 3BB 1知,若结论不成立,则有

C 3(红)→A 3(蓝)→B (红)与B (蓝)矛盾。(图2-57)

2-7-5 染色

染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,其特点是知识点少,逻辑性强,技巧性强;同时,染色作为一种解题手段也在数学竞赛中广泛使用。下面是一些熟知的结果。

1.在(点)二染色的直线上存在相距1或2的同色两点。

2.在(点)二染色的直线上存在成等差数列的同色三点。

3.在(点)二染色的平面上存在边长为1形)。

4.设T 1,T 2是两个三角形,T 1有一边长1,T 2恒可找到一个全等于T 1或T 2的单色三角形。

5.在(点)三染色的平面上,必有相距为1的两点同色。

6.在(点)三染色的平面上,必存在一个斜边为1的直角三角形,它的三个顶点是全同色的或是全不同色的。

7.在(边)染色的六阶完全图中必有单三角形(三边同色)。

8.在(边)染色的六阶完全图中至少有两个单色三角形。

例2-136 有一个3×7棋盘。用黑、白两种颜色去染棋盘上的方格,每个方格只染一种颜色。证明不论怎样染色,棋盘上的方格组成的矩形中总有这样的矩形,其边与棋盘相应的边平行,而4个角上的方格颜色相同。

证明 称满足条件的矩形为单色矩形。由于棋盘上的3×7=21个方格只染两种颜色,必有11个同色,不妨设同为黑色。现设第i 列上有(03)i i d d ≤≤个黑色方格,一方面,总黑格数为7

111i i x d ==≥∑;另一方面,在第i 列上首尾两端都是黑格的矩形有1(1)2i i d d -个,总计 777722221111

1111()[()](7)14(11711)327147i i i i i i i i t d d d d x x =====-≥-=-≥-?=∑∑∑∑ 若题中的结论不成立,则上述t 个矩形两两不同,将它们投影到第一列,那么第1列就存

在t 个首尾两端都是黑格的矩形,但第1列最多有233C =个这样的矩形,有1337

t ≥≥矛盾,故命题成立。

例2-137 在边二染色的K 5中没有单色三角形的充要条件是它可分解为一红一蓝两个圈,每个圈恰由5条边组成。

证明 由图2-58可见,充分性是显然的。

考虑必要性,在K 5中每点恰引出4条线段,如果从其中某点A 1能引出三条同色线段A 1A 1,A 1A 3,A 1A 4,记为同红,则考虑△A 2A 3A 4,若当中有红边i j A A (24i j ≤≤≤),则存在红色三角形1i j A A A 是同蓝色三角形,均无与单色三角形矛盾。所以,从每点引出的四条线段中恰有两条红色两条蓝色,整个图中恰有5条红边、5条蓝边。

现只看红边,它们组成一个每点度数都是2的偶图,可以构成一个或几个圈,但是每个圈至少有3条边,故5条红边只能构成一个圈,同理5条蓝边也构成一个圈。

例2-138 求最小正整数n ,使在任何n 个无理数中,总有3个数,其中每两数之和都仍为无理数。

解 取4

个无理数,显然不满足要求,故5n ≥。 设,,,,a b c d e 是5个无理数,视它们为5个点,若两数之和为有理数,则在相应两点间连一条红边,否则连一条蓝边。这就得到一个二染色5k 。只须证图中有蓝色三角形,分两步:

(1)无红色三角形。若不然,顶点所对应的3个数中,两两之和均为有理数,不妨设

,,a b b c c a +++都是有理数,有1[()()()]2

a a

b b

c c a =+-+++ 但无理数≠有理数,故5k 中无红色三角形。

(2)有同色三角形,若不然,由上例知,5k 中有一个红圈,顶点所对应的5个数中,两两之和均为有理数,设,,,,a b b c c d d e e a +++++为有理数,则

1[()()()()()]2

a a

b b

c c

d d

e e a =+-++--+++ 但无理数≠有理数,故5k 中无5条边组成的红圈,从而有同色三角形。

这时,同色三角形必为蓝色三角形,其顶点所对应的3个无理数,两两之和仍为无理数。 综上所述,最小的正整数n=5

2-7-6 极端

某些数学问题中所出现的各个元素的地位是不平衡的,其中的某个极端元素或某个元素的极端状态往往具有优先于其它元素的特殊性质,而这又恰好为解题提供了突破口,从极端元素入手,进而简捷地解决问题,这就是通常所说的“极端原理”。

使用这一技巧时,常常借用自然数集的最小数原理,并与反正法相结合。

例2-139 设S 为平面上的一个有限点集(点数≥5),其中若干点染上红色,其余的点染上蓝色,设任何3个及3个以上的同色的点不共线。求证存在一个三角形,使得

(1)它的3个顶点涂有相同颜色;

(2)这三角形至少有一边上不包含另一种颜色的点。

证明 对于任意的五点涂上红色蓝色,则必有三点同色,结论(1)成立。

若结论(2)不成立,可取顶点同色的三角形中面积最小的一个,因为只有有限个三角形,这是可以做到的,记为△ABC ,由于此三角形的每一边上都有异色点,记为A 1,B 1,C 1,则△A 1B 1C 1也是同色三角形,且面积小于△ABC 的面积,这与△ABC 面积的最小性矛盾。故(2)成立。

例2-140 已知实数列{}1n k a ∞

=具有下列性质:存在自然数n ,满足120n a a a +++=… 及,1,2n k k a a k +==…

求证存在自然数N ,使当0,1,2,k =…时,总有

0N K i i N a +=≥∑

证明 构造和式 12(1,2,,j j S a a a j n =+++=……)

依题设知

121212n j j j j j n j j j n j S S a a a S a a a a a a ++++++=++++=++++++++………

12()j n j S a a a S =++++=…

这表明,和数列的各项中只取有限个不同的值:S 1,S 2,…,S n ,其中必有最小数,记作(1)n S m n ≤≤,取N=m+1,则

112110N N N k m m m k m k m a a a a a a S S +++++++++++=+++=-≥……

2-7-7 对称

对称性分析就是将数学的对称美与题目的条件或结论相结合,再凭借知识经验与审美直觉,从而确定解题的总体思想或入手方向。其实质是美的启示、没的追求在解题过程中成为一股宏观指导的力量。著名物理学家杨振宁曾高度评价对称性方法:“当我们默默考虑一下这中间所包含的数学推理的优美性和它的美丽完整性,并以此对比它的复杂的、深入的物理成果,我们就不能不深深感到对对称定律的力量的钦佩”。

例2-141 设12,,n a a a …,为正数,它们的和等于1,试证必有下不等式成立:

222211212231112

n n n n n a a a a a a a a a a a a --++++≥++++… 证明 设左边为2222112122311

n n n n n a a a a x a a a a a a a a --=++++++++… 出于对称性的考虑,再引进2222321122311

n n n n a a a a y a a a a a a a a -=++++++++ 有2222222223111212231n n n n n n i

a a a a a a a a x y a a a a a a a a -------=++++++++… 122311()()()()0n n n a a a a a a a a -=-+-++-+-=…

又由 22

2i j

i j i j a a a a a a ++≥+ 得2222222311212231

11()()22n n a a a a a a x x y a a a a a a +++=+=++++++ 122311[()()()]4

n a a a a a a ≥++++++… 1211()22

n a a a =+++=… 121n a a a n

====…时,可取等号。 还可用平均值不等式、柯西不等式直接证明。

例2-142 在[0,1]上给定函数2y x =(图2-59),则t 点在什么位置时,面积12S S +有最大值和最小值。

解 在[0,1]中作曲线2y x =关于直线12

x =的对称曲线与之相交于P 点,由对称性,可将S 2移至左上角,阴影部分即S 1+S 2(图2-60)。移动t 点,相当于MN 上下平移,当MN 经过P 点,即12

t =时,阴影面积(S 1+S 2)最小(图2-61);当1t =时,阴影面积为最大(图2-62)。 下文中,例3-2的处理,是不落俗套进行对称性分析的一个好例子,例3-18体现了对图

形对称性的洞察。

(推荐)高中数学奥赛辅导

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ?? ?≥-==-). 2(),1(11 n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2 )(2 11++++==-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++= n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{ n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学竞赛系列辅导材料 集合

集合(一) 内容综述: 本讲先介绍了以下一些重要的概念:集合、子集、两集合相等、真子集、并集、交集、相对补集,然后介绍了著名的容斥原理,接着介绍了以下几个定律:零律、分配律、排中律、吸收律、补交转换律、德·摩根律。 然后通过6道例题分析了一部分集合题目的解题方法与技巧,同学们应在熟悉以上定义、定理、定律的基础上仔细分析例题材解法,争取可以独立解决训练题。 要点讲解: §1.基本理论 除了课内知识外,我们补充以下知识 相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 容斥原理:以表示集合A中元素的数目,我们有 ,其中为n个集合称为A的阶。 n阶集合的全部子集数目为。 A,B,C为三个集合,就有下面的定律。 (1)分配律 (2)零律

(3)排中律 (4)吸收律 (5)补交转换律 (6)德·摩根律的相对形式 例题分析: 例1:对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例 如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。那么,对于n=7。求所有子集的“交替和”的总和。 分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数 目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替 和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。那么,我们也就很容易解决这个问题了。 解:集合{1,2,3,4,5,6,7}的子集中,除去{7}外还有个非空子集合,把这个非空子集两两结组后分别计算每一组中“交替和”之和,结组原则是设 这是把结合为一组,显然,每组中,“交替和”之和应为7,共有组.所以,所有“交替和”之和应该为 。

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,?, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?= 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛 奥数学林匹克竞竞~竞称奥数。年和年~竞竞竞始在列格勒宁和莫斯科竞竞中竞竞~学数学19341935 并冠以数学奥林匹克的名~称年在布加勒斯特竞竞第一届国数学奥竞竞竞竞林匹克。竞竞竞竞国数学奥1959 林匹克作竞一竞竞性竞事~由竞国国数学教育竞家命竞。 我的高中竞竞分三竞,每年国数学月中旬的全竞竞~次年一月的国;冬令竞,~次年三10CMO月竞始的家国集竞竞的竞竞竞拔。与 “全高中竞竞国数学”;竞竞于年,~承竞方式初中竞竞相同~每年与月竞行~分竞一竞和198110二竞~在竞竞竞竞中取得竞成竞的全竞异国名生有竞格加由中主竞的“学参国数学会中林国数学奥90 匹克;,竞全中生冬令竞”;每年元月,。国学数学CMO 全竞竞分竞一竞、加竞国数学(即称俗的“二竞”)。各省自己竞竞的“初竞”、个份“初竞”、“竞竞”等等~都不是正式的全竞竞名及程序。国称一竞 全高中竞竞的一竞竞竞大竞~完全按照全日制中《大竞》中所竞定的要求国数学学数学教学教学 和容~高考所竞定的知竞范竞和方法~在方法的要求上略有提高~其中率和内即概微竞分初步 不考。 二竞 平面何几 基本要求,掌握初中竞竞大竞所定的所有容。确内

竞充要求,面竞和周竞方法。 几个重要定理,梅涅竞斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极竞,到三角形三竞点距之和最小的点离——竞竞点。到三角形三竞点距的离平方 和最小的点重心。三角形到三竞距之竞最大的点重心。——内离—— 几何不等式。 竞竞的等周竞竞。了解下述定理, 在周竞一定的竞形的集合中~正竞形的面竞最大。n n 在周竞一定的竞竞竞曲竞的集合中~竞的面竞最大。 在面竞一定的竞形的集合中~正竞形的周竞最小。nn 在面竞一定的竞竞竞曲竞的集合中~竞的周竞最小。 几运何中的竞,反射、平移、旋竞。 竞数方法、向量方法。* 平面凸集、凸包及竞用。 代数 在一竞大竞的基竞上外要求的容,另内 周期函数与周期~竞竞竞竞的函的竞像。数三倍角公式~三角形的一些竞竞的恒等式~三角不 等式。 第二竞竞法。竞竞~一竞、二竞竞竞~数学特征方程法。 函迭代~求数次迭代~竞竞的函方程数。n** 个竞元的平均不等式~柯西不等式~排序不等式及竞用。n 竞的指形式~数数欧拉公式~美弗定理棣~竞位根~竞位根的竞用。竞排列~有重竞的排列竞合。竞竞的与竞合恒等式。

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

高中数学奥赛辅导讲课稿

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ???≥-==-).2(),1(11n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2)(211++++= =-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 )1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++=n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

【高二数学的解题的方法介绍】高二数学题库

高二网权威发布高二数学的解题的方法介绍,更多高二数学的解题的方法介绍相关信息请访问高二网。 【导语】掌握正确有效的解题方法会让学生在解题的时候可以节省很多的时间,下面大范文网将为大家带来高中数学的解题的方法介绍,希望能够帮助到大家。 高中数学的解题的方法 确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方

相关文档
最新文档