正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造
正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造

细节的疲劳研究进展

1 背景

第二次世界大战后,一方面大量被战争毁坏的桥梁急需修复,另一方面建筑材料非常短缺。在此情况下,欧洲的工程师们开始尝试采用一种新型的桥面结构形式——正交异性钢桥面板。它由面板、纵肋和横肋组成,三者互相垂直,通过焊缝连接成一体共同工作。它以自重轻、极限承载力大、施工周期短等优点,成为世界上大、中跨度现代钢桥通常采用的桥面结构形式。从20世纪50年代德国最先使用这种桥面板至今,欧洲已有1000多座各种形式的正交异性钢桥面板桥梁,日本有将近250座正交异性钢桥面板桥梁,北美有100余座正交异性钢桥面板桥梁[1]。

我国正交异性钢桥面板我国正交异性钢桥面板的研究和应用起步较晚,直到20世纪70年代初,才建成第一座钢桥面板桥——潼关黄河铁路桥。改革开放以来,国内正交异性钢桥面板桥呈现出迅猛发展势头。迄今为止,我国已建造的采用正交异性钢桥面板的桥梁有30余座。正在建造的采用正交异性钢桥面板的铁路钢桥有郑州黄河公铁两用桥和京沪高速铁路南京大胜关长江大桥等。

正交异性钢桥面板有其独特的优点,但同时钢桥面板疲劳开裂的事例也在许多国家的钢桥中出现。最早报道的是英国Seven桥,该桥1966年建成通车后,分别于1971年和1977年发现了3种焊接细节的疲劳裂纹。德国的Haseltal和Sinntal桥投入使用后不久,钢桥面板也都出现了疲劳裂纹。此外,法国、日本、美国、荷兰等国也都发现了钢桥面板疲劳开裂事例。钢桥面板在我国使用的时间虽然不长,但是已经在某些桥中发现了钢桥面板疲劳开裂的现象。这些疲劳裂纹严重影响了桥梁的使用寿命,因此,对正交异性桥面板疲劳问题的研究是目前桥梁建设中的关键和热点,各国学者在此领域取得了一系列研究成果。国内在20世纪80年代初,铁道科学研究院等相关单位以西江大桥为研究背景,对公路正交异性钢桥面板参与主桁共同工作时的结构特性进行了较为全面的分析及试验研究[2]。1995年,同济大学童乐为在博士论文中对采用开口肋形式的钢桥面板的疲劳性能进行了较为系统的分析[3]。时至今日,正交异性桥面板的结构形式较当初已经发生很大变化,大量新的研究成果相继涌现。

2 正交异性桥面板设计参数的疲劳研究

2.1 面板

面板的最小厚度一般取决于其在轮载作用下的允许变形,为保证桥面铺装层不产生裂纹,纵肋之间面板的竖向挠曲变形不大于0.4mm。基于上述原

则,面板厚度t d可由Kloeppel公式计算:

式中:a为开口截面纵肋间距或闭口截面纵肋腹板最大间距,mm;p 为轮载面压力,kPa。

同时各国规范根据各自的车辆荷载及桥面铺装层情况,为保证钢桥面板的施

工性和耐久性,对面板厚度作了不同规定。表1列出了Eurocode3、AASHTO和日本道路规范中的相关规定。

在国内,2000年以前建造的正交异性板多采用12mm厚的面板,今天这些桥梁的铺装层几乎都存在一定问题。自从2001年建成的南京二桥采用14mm面板,上面铺装50mm 厚环氧沥青之后,桥面铺装层很少出现问题。在采用50mm 厚的环氧沥青铺装层时,Eurocode3推荐a/t d≤25,Man-Chung Tang推荐a/t d≤24,而国内由于考虑超载问题,近来新建的一些工程多是采用a/t d=21.4,例如西堠门公路桥等。从目前的使用情况来看,这样的匹配能够满足耐久性要求。

表1 Eurocode3、AASHTO和日本道路规范中关于面板厚度规定

2.2 纵肋

正交异性钢桥面板纵肋的截面形式是由早期的开口截面逐渐演变成如今的闭口截面。开口截面纵肋虽然具有形状简单、与横肋及面板的连接构造简单、工厂制造及现场连接比较容易等优点,但每根纵肋与桥面板的连接需要两条角接焊缝,单位面积所用焊缝长度较长,而且其抗扭和抗弯刚度较小,要求布置有较密的横肋,经济性较差。因此,在20世纪60年代后逐渐在车行道范围内改用闭口截面纵肋。闭口截面纵肋与开口截面纵肋相比,具有焊接工作量小,抗弯抗扭刚度大,压屈强度较高等优点。目前正交异性钢桥面板中应用最多的为梯形截面纵肋(U型肋)。

图1梯形截面纵肋示意

典型的梯形截面纵肋截面尺寸的确定主要考虑生产工艺和刚度(抗扭和抗弯)两方面的因素,如图1所示。在生产工艺方面,对于屈服强度σs≤345Mpa的钢材,U型肋通常采用冷弯成型。为避免冷弯塑性变形对韧性的过大影响,欧洲及美国规范规定U型肋内侧半径R≥4t(t为纵肋厚度),日本规范规定U型肋内侧半径R ≥5t。对于屈服强度σs≥420Mpa的钢材,采用热弯成型,以避免冷弯裂纹。在刚度方面,各国规范一般规定纵肋厚度t≥6mm。Eurocode3规定纵肋截面的惯性矩与横肋的间距相关联,要满足图2所示的关系曲线。

图2 纵肋刚度与横肋间距的关系

AASHTO[4]规定闭口肋截面尺寸与面板厚度应该满足:

式中:t r为纵肋腹板的厚度;t d.eff为桥面板有效厚度,考虑面层的加劲效应;a为肋腹的间距较大者;h′为肋腹倾斜部分的长度。日本规范规定纵肋厚度t≥6mm,A取300~320mm,H取240~260mm。Dong-Ho Choi和Yong-Sick Kim指出,在韩国建成的正交异性板桥中,纵肋厚度t取6~8mm,A取300~340mm,B=A-2H /4.5。在国内近期建造的公路正交异性桥面板纵肋多采用8mm板厚,铁路正交异性板桥梁纵肋多采用10mm板厚。闭口截面纵肋通常被焊接成密闭截面,所以无需考虑纵肋内表面的腐蚀问题。

2,3 横肋

横肋(梁)的设计包括间距、腹板厚度和高度三个参数。这些参数不是孤立确定的,需要综合考虑纵肋截面尺寸和面板厚度等。Eurocode3规定横肋间距与纵肋刚度应该满足图2所示的关系,一般取2.5~3.5m,横肋腹板厚度不小于

10mm,纵肋高度与横肋高度之比不大于0.4。Xiaohua H Cheng等人通过系统总结日本规范,认为横肋(梁)厚度应该在8~9mm,高至少600~700mm。Paul A.Tsakopoulos和John W.Fisher通过两个独立的足尺正交异性板模型试验研究认为,可以将横隔板的厚度从8mm增加到13mm。有限元分析表明,这样做不仅会降低面内应力,而且不会显著增大因横隔板扭转而产生的面外应力。此外,文献[5]还建议采用一致厚度的横隔板,并且保持横隔板在所有闭口肋下连续,以便在闭口肋之间提供统一的剪力分配,同时改善面内弯曲作用。国内学者Ghunsheng Wang和Yacheng Feng基于有限元分析结果认为,12mm或者更厚的横肋对于提高纵肋横隔板的连接接头的疲劳性能是比较合适的。

2.4 大断面纵肋

近年来,国外许多学者、工程师开始研究大断面纵肋、大间距横肋和较厚面板的正交异性桥面板。这种桥面板各部件之间的连接焊缝明显减少,从而降低了制造时间,减少了焊接缺陷,有效地提高了钢桥面板的耐久性。相比于传统的正交异性桥面板,这种桥面板一般采用18mm厚的面板、450mm×330mm×(8~9)mm 截面的U肋、横肋间距4~4.5m。美国学者Manchung Tang主张采用一种如图3所示的大截面U肋,采用这种U肋时,面板厚度取18mm,纵肋间距400mm,横隔板间距8000mm。

图3不等厚纵肋断面

为了进一步说明这种纵肋的优点,就一块12m×16m的正交异性板单元进行详细比对,详细数据列于表2。从表中可明显看出大断面纵肋正交异性桥面板在制造上的优势。目前,我国在这方面的研究还很少,随着经济的发展和全寿命设计理念的应用,大断面纵肋的桥面板最终会替代传统的正交异性桥面板。因此,我国应在参考其他国家研究成果的基础上进行试验,加深大断面纵肋正交异性桥面板构造细节方面的研究,尽快达到该领域发展的前沿水平。

3正交异性桥面板构造细节的疲劳研究

3.1 纵肋与面板的纵向连接焊缝

正交异性钢桥面板直接承受轮载作用时,纵肋与面板之间会发生较大的面外变形。由于面板与纵肋的板厚相对较小,面外变形在纵肋与面板的连接焊缝处会引起较高的局部弯曲应力。焊缝频繁承受较大的弯曲拉应力,就会产生疲劳裂纹。

日本Kinuura桥于1978年建成通车,2003年6月对这座桥的南部结构进行检查后发现,纵肋与面板的连接焊缝出现多条裂纹。2006年Zhi gang Xiao等人对这些连接焊缝的疲劳性能进行了研究,对焊接接头的几何形状和裂纹特征进行了详细描述。他们利用线弹性断裂力学理论,假定不同熔透深度的焊接,将常幅应力下疲劳试验获得的数据与基于线弹性断裂力学理论的预测值进行对比,发现熔透区域小于2~3mm时,会导致此处抗疲劳性能较差,出现较多疲劳裂纹。2007年Zhi gang Xiao对这一问题进行进一步研究,利用有限元分析得出在轮载作用下该接头区域的横向应力分布,并以应力结果和线弹性断裂力学理论为基础,得到该接头的设计疲劳强度,同时研究了应力幅的影响因素。分析结果表明,当肋板焊缝

的熔透率为75%时,面板的表面应力远大于肋板处的应力,这说明接头的疲劳强度由扩展到面板厚度的疲劳裂纹决定。有限元分析表明,增加轮载的分布区域或增加面板的厚度可以降低面板的应力幅,从而明显提高接头处的疲劳寿命。这与加拿大学者Connor的研究成果基本一致],他认为纵肋与桥面板连接处的疲劳寿命与角焊缝未熔透区域的大小密切相关,如果未熔透区域较大,则不论面板多厚,都会产生疲劳裂纹。

图4纵肋与面板焊接构造细节

基于这些研究成果,世界各国对纵肋与桥面板的焊接细节均作了相应规定。以Eurocode3为例,其规定除人行道部分纵肋与桥面板可采用图4a所示的角焊缝连接外,车行道处均需采用熔透的坡口角焊缝,具体构造要求如图4b所示。这些规定有效降低了此处疲劳裂纹的发生概率,但是在此处仍然不断发现起源于焊缝根部,沿着板厚方向扩展的疲劳裂纹。日本的S.Inpkuchi和S.Kainuma认为,这类裂纹不容易被肉眼发现,但对交通安全有极大威胁。目前对这类裂纹的研究还不全面,因此,他提出一个新型疲劳试验系统,专门针对根部裂纹开展静载试验和疲劳试验,并且对出现根部裂纹的桥梁进行了现场测试。

3.2 纵肋与横隔板弧形开口处的连接

相关研究表明[6-8],当采用闭口截面纵肋时,纵肋与横肋交叉部位应力传递复杂,如果构造设计不当,极易引发多种疲劳裂纹。为了防止此处疲劳裂纹的产生,各国规范均做出明确规定:除特殊情况外,横肋与纵肋连接时宜采用纵肋贯通横肋的方式;横肋腹板在纵肋与面板焊缝处不开设过焊孔,横肋腹板与面板及纵肋的角焊缝应连续施焊。这些规定有效避免了因横肋开设过焊孔、纵肋被横肋打断而产生的疲劳裂纹,但是横肋弧形缺口处的疲劳裂纹仍时有发生,如图5所示。

图5横肋开口与纵肋连接处疲劳裂纹

Eurocode3指出,此处产生疲劳裂纹主要是由于正交异性桥面板在轮载作用下,一方面纵肋产生变形和下挠,既在纵肋和横梁腹板的连接角焊缝处产生应力,又在横梁腹板处产生弯曲应力;另一方面横梁腹板可能在弧形开口边缘和纵肋变形处产生应力集中。基于以上认识,中国铁道科学研究院(以下简称“铁科院”)张玉玲课题组提出U肋与横隔板尺寸的合理匹配、恰当的弧形切口尺寸、良好的切口几何形状和表面状态是保证此处疲劳性能的关键要素。紧接着该课题组的陶晓燕基于有限元模型分析,对该构造进行了相关优化,得出该构造的合理形式,并建立了肋厚与横隔板弧形缺口尺寸之间的关系。意大利的Donato Abruzzese和Antonio Grimaldi研究表明,弧形缺口形状对开口边缘的应力分布产生重大影响,但是对横隔板、面板和纵肋的竖直和纵向位移影响较小。比利时的Corneel Delesie 和Philippe Van Bogaert提出一种用于计算横隔板开口连接处应力的分析方法,为设计提供了重要参考依据。2008年Jun-Hyeok Chol和Dohwan Kim评估了纵肋与横梁接头处的应力特征和疲劳裂纹行为,分析了采用止裂孔修复裂纹的效果。并对纵肋和横梁接头处进行足尺试验,通过静力和疲劳试验观察该处的疲劳强度和裂纹的扩展。最后将测得的应力分布与有限元结果进行对比分析。试验结果表明,疲劳裂纹起源于纵肋与横梁连接接头的焊趾处和纵肋与面板连接处,并且建议采用止裂孔的方法阻止接头处的疲劳裂纹扩展。为避免该处疲劳裂纹的萌生,各国在试验研究的基础上规定了横肋腹板弧形缺口的构造细节。

铁科院方兴在博士论文中对比了日本道路规范规定的弧形缺口尺寸和欧洲规范规定的最小弧形缺口尺寸,如图6所示。可以看出,两规范给出的弧形缺口差别很小。由此可见,关于横肋弧形缺口设计尺寸问题,两国的认识基本相同。

图6日本规范给出的弧形缺口细节及其与欧洲规范的对比

3.3 钢桥面板的现场横向拼接

由于工厂制造长度的限制,钢桥面板在架设现场需要进行横向拼接。欧洲和日本规范都明确推荐面板采用陶瓷衬垫单面焊双面成型工艺焊接,纵向加劲肋采用高强度螺栓连接。Eurocode3进一步规定横向连接处应该设在纵肋的反弯点附近(位于离横梁0.2l处,l为纵肋的跨度)。与全焊接接头相比,该方案有效避免了U肋嵌补段处的疲劳裂纹;与全栓接相比,桥面铺装层可我国从南京长江二桥开始采用这一连接方式,铁科院曾志斌[9]等在南京长江二桥的相关研究中,通过试验发现,该接头的U形肋圆弧缺口不论是采用50mm还是100mm 都能满足使用要求。他建议在不影响工地施焊时粘贴陶瓷衬垫的情况下,U肋圆弧缺口最好取为50mm。铁科院史永吉[9]综合考虑多种因素,提出此处U肋圆弧缺口最好不大于70mm。虽然全焊接技术是钢桥的发展方向,但是在焊接质量不能很好保证的情

况下,钢桥面板的横向连接还是应采用栓焊混合接头,尽量避免使用嵌补段构造。结论

1)面板厚度一般选取14~16mm,采用50mm厚的环氧沥青铺装层时,Eurocode3规定a/t≤25,结合我国国情,推荐采用a/t=21.4。纵肋刚度与横肋间距要合理匹配,可适当增加横隔板厚度至12mm。

2)随着经济的发展和全寿命设计理念的应用,大断面纵肋的桥面板最终会替代传统的正交异性桥面板,我国应在参考其他国家研究成果的基础上进行试验,加深大断面纵肋正交异性桥面板构造细节方面的研究,尽快达到该领域发展的前沿水平。

3)纵肋与面板的连接焊缝应在确保75%熔透深度的基础上,增加面板厚度至16mm,以防止此处根部裂纹出现。

4)纵肋与横肋弧形缺口尺寸要综合考虑横隔板厚度、纵肋刚度等因素,并且弧形缺口制造工艺要求较高,在制造过程中要尽量避免人为缺陷(造成应力集中)。欧洲和日本在这方面已经取得比较成熟的成果,值得我国借鉴。

5)虽然全焊接技术是钢桥的发展方向,但在焊接质量不能很好保证的情况下,钢桥面板的横向连接还是应采用栓焊混合接头,U 肋圆弧缺口最好不大于70mm,尽量避免使用嵌补段构造。

参考文献

[1][日]小西一郎.钢桥:第一分册[M].北京:人民铁道出版社,1980.

[2]大桥工程局桥梁科学研究所.公路正交异性板板桁组合钢桥模型试验报告

(初稿)[R].武汉:1982.

[3]童乐为.正交异性桥面板的疲劳研究[D].上海:同济大学,1995.

[4]AASHTO.LRFD Bridge Design Specification[S].

[5]张玉玲,辛学忠,刘晓光.对正交异性钢桥面板构造抗疲劳设计方法的分析

[J].钢结构,2009,24(5):33-37.

[6]陶晓燕.大跨度钢桥关键构造细节研究[R].北京:中国铁道科学研

究院,2008.

[7]Connor R J, Fisher W J. Results of Field Measurements on the Williamsburg

Bridge Orthotropic Deck-Final Report[R] .Bethlehem ,P A:Lehigh University,,2001.

[8]方兴.全焊钢桥一些关键连接及构造问题的研究[D].北京:中国铁道科

学研究院,2007.

[9]曾志斌.南京长江二桥钢箱梁关键技术的研究[R].北京:中国铁道科学

研究院,2000.

正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造 细节的疲劳研究进展 1 背景 第二次世界大战后,一方面大量被战争毁坏的桥梁急需修复,另一方面建筑材料非常短缺。在此情况下,欧洲的工程师们开始尝试采用一种新型的桥面结构形式——正交异性钢桥面板。它由面板、纵肋和横肋组成,三者互相垂直,通过焊缝连接成一体共同工作。它以自重轻、极限承载力大、施工周期短等优点,成为世界上大、中跨度现代钢桥通常采用的桥面结构形式。从20世纪50年代德国最先使用这种桥面板至今,欧洲已有1000多座各种形式的正交异性钢桥面板桥梁,日本有将近250座正交异性钢桥面板桥梁,北美有100余座正交异性钢桥面板桥梁[1]。 我国正交异性钢桥面板我国正交异性钢桥面板的研究和应用起步较晚,直到20世纪70年代初,才建成第一座钢桥面板桥——潼关黄河铁路桥。改革开放以来,国内正交异性钢桥面板桥呈现出迅猛发展势头。迄今为止,我国已建造的采用正交异性钢桥面板的桥梁有30余座。正在建造的采用正交异性钢桥面板的铁路钢桥有郑州黄河公铁两用桥和京沪高速铁路南京大胜关长江大桥等。 正交异性钢桥面板有其独特的优点,但同时钢桥面板疲劳开裂的事例也在许多国家的钢桥中出现。最早报道的是英国Seven桥,该桥1966年建成通车后,分别于1971年和1977年发现了3种焊接细节的疲劳裂纹。德国的Haseltal和Sinntal桥投入使用后不久,钢桥面板也都出现了疲劳裂纹。此外,法国、日本、美国、荷兰等国也都发现了钢桥面板疲劳开裂事例。钢桥面板在我国使用的时间虽然不长,但是已经在某些桥中发现了钢桥面板疲劳开裂的现象。这些疲劳裂纹严重影响了桥梁的使用寿命,因此,对正交异性桥面板疲劳问题的研究是目前桥梁建设中的关键和热点,各国学者在此领域取得了一系列研究成果。国内在20世纪80年代初,铁道科学研究院等相关单位以西江大桥为研究背景,对公路正交异性钢桥面板参与主桁共同工作时的结构特性进行了较为全面的分析及试验研究[2]。1995年,同济大学童乐为在博士论文中对采用开口肋形式的钢桥面板的疲劳性能进行了较为系统的分析[3]。时至今日,正交异性桥面板的结构形式较当初已经发生很大变化,大量新的研究成果相继涌现。 2 正交异性桥面板设计参数的疲劳研究 2.1 面板 面板的最小厚度一般取决于其在轮载作用下的允许变形,为保证桥面铺装层不产生裂纹,纵肋之间面板的竖向挠曲变形不大于0.4mm。基于上述原 则,面板厚度t d可由Kloeppel公式计算: 式中:a为开口截面纵肋间距或闭口截面纵肋腹板最大间距,mm;p 为轮载面压力,kPa。 同时各国规范根据各自的车辆荷载及桥面铺装层情况,为保证钢桥面板的施

T型简支梁桥的构造与设计

3.2 装配式钢筋混凝土简支梁桥的构造与设计 装配式钢筋混凝土简支梁桥受力明确,构造简单,施工方便,便于工业化生产,可节省大量的模板和支架,降低劳动强度,缩短工期,因此在小跨径桥梁中,尤其是标准跨径为13~25m 的桥梁,成为应用最多的桥型。 3.2.1 横截面设计 梁桥的横截面设计主要是确定横截面的布置形式,包括主梁截面形式、主梁间距、截面各部尺寸等,它与立面布置、建筑高度、施工方法、美观要求及经济用料等因素有关。 1.横截面形式 装配式钢筋混凝土简支梁桥横截面最基本的类型为T 形。我国目前用得最多的装配式简支梁桥是图3.15a 所示的T 形梁桥。T 形梁的翼板构成桥梁的行车道板,直接承受车辆和人群荷载的作用,又是主梁的受压翼缘。它的优点是:外形简单,制造方便,肋内配筋可做成刚劲的钢筋骨架,主梁之间借助横隔梁连接,整体性较好,接头也较方便。但构件的截面形 状不稳定,运输和安装较麻烦;横向接头正好位于桥面板的跨中,对板的受力不利。装配式钢筋混凝土T 梁的常用跨径约为 7.5~25m。 图3.15 装配式简支梁桥的横截面 d )b ) c ) a )箱形截面梁由于受拉区混凝土不参与工作,多余的底板徒然增大了自重,所以一般不适用于钢筋混凝土简支梁桥。 下面即重点介绍装配式钢筋混凝土T 形梁桥的构造和设计,图3.16即为该类桥梁上部构造的典型概貌。

图3.16装配式T形简支梁桥概貌 2.主梁布置 对于一定的跨径和桥面宽度(包括行车道和人行道)的桥梁,确定出适当的主梁间距(或片数),是构造布置中首先需要解决的重要课题。应从材料用量经济,尽可能减少预制工作量,考虑构件的吊装重量及保证翼板的刚度等方面综合考虑确定。显然,主梁间距越大,主梁的片数就越少,预制工作量就少,但构件的吊装重量增大,使运输和架设工作趋于复杂,同时桥面板的跨径增大,悬臂翼缘板端部较大的挠度对引起桥面接缝处纵向裂缝的可能性也增大。 根据建桥经验,装配式钢筋混凝土T形简支梁桥的主梁间距一般在1.5~2.3m之间。《公路桥涵设计图》(JT/GQS 025—84)中所采用的主梁间距为2.2m,预制宽度为1.6m,吊装后接缝宽度为0.6m,当前采用较多。 3.主梁细部尺寸 (1)主梁梁肋尺寸 主梁的合理高度与主梁的跨径、活载的大小等有关。经济分析表明,梁高与跨径之比(俗称高跨比)的经济范围大约在1/11~1/18,跨径大的取用偏小的比值。我国标准设计为10m、13m、16m和20m四种跨径,其梁高分别为0.8~0.9m, 0.9~1.0m, 1.0~1.1m,1.1~1.3m。主梁高度受限制时,高跨比就要适当减小,致使钢筋用量增加,增加造价。 主梁梁肋的宽度,应满足主拉应力强度和抗剪强度要求,以及不致使捣固混凝土发生困难。梁肋宽度多采用160~240mm,一般不应小于140mm,且不小于梁肋高度的1/15。 钢筋混凝土简支梁一般沿跨径方向做成等截面的形式,以便于预制施工。 (2)主梁翼板尺寸 一般装配式主梁翼板的宽度视主梁间距而定,在实际预制时,翼板的宽度应比主梁间距小2cm,以便在安装过程中易于调整T梁的位置和制作上的误差。 在中小跨径的钢筋混凝土简支T形梁中,翼板的厚度主要满足桥面板承受车辆局部荷载

预应力混凝土简支梁桥毕业设计

目录 第一章 1.1 选题背景.................................................... - 3 - 1.2 工程概况................................................... - 3 - 1.2.1 概况.................................................. - 3 - 1.2.2 自然条件情况.......................................... - 3 - 1.3 技术指标和技术依据.......................................... - 4 - 1.3.1 技术指标.............................................. - 4 - 1.3.2 技术依据............................................... - 4 - 本设计主要依据为现行技术规范和标准:......................... - 4 - 1.4 结构形式.................................................... - 4 - 1.5主要材料..................................................... - 5 - 第 2 章上部结构设计................................................ - 6 - 2.1设计资料..................................................... - 7 - 2.2构造形式及尺寸选定........................................... - 7 - 2.3空心板毛截面几何特性计算..................................... - 7 - 2.3.1 毛截面面积A ........................................... - 7 - 2.3.2 毛截面重心位置......................................... - 9 - 2.3.3 空心板毛截面对其重心轴的惯性矩I....................... - 9 - 2.4作用效应计算................................................ - 10 - 2.4.1 永久作用效应计算...................................... - 10 - 2.4.2 可变作用效应计算.......................... 错误!未定义书签。 2.5 作用效应组合............................................... - 12 - 2.6 预应力钢束的估算及布置..................................... - 23 - 2.6.1 预应力钢筋数量的估算.................................. - 23 - 2.6.2 预应力钢筋的布置...................................... - 23 - 2.7 普通钢筋数量的估算及布置................................... - 26 - 2.8 主梁几何特性计算........................................... - 26 - ............................ - 30 - 2.9.1 预应力钢筋张拉控制应力 con 2.9.2 钢束应力损失......................................... - 30 - 2.10 承载能力(强度)极限状态的验算........................... - 30 - 2.10.1 跨中截面正截面抗剪承载力计算........................ - 36 - 2.10.2 斜截面抗剪承载力计算.................... 错误!未定义书签。 2.10.3 斜截面抗弯承载力.................................... - 36 - 2.11 正常使用极限状态验算..................................... - 40 - 2.11.1 抗裂性验算........................................... - 40 - 2.12 主梁变形验算............................................. - 41 - 2.12.1 荷载短期效应作用下主梁挠度验算...................... - 43 - 2.12.3 预拱度的设置............................ 错误!未定义书签。 2.13 持久状况应力验算......................................... - 44 - 2.1 3.1 短暂状况的正应力验算................................ - 45 - 2.1 3.2 持久状况的正应力验算................................ - 45 - 2.1 3.3 持久状况下混凝土主应力验算.............. 错误!未定义书签。

正交异性板简支钢梁桥建模(algor,ansys)

现代钢桥设计与计算理论参考材料 正交异性板简支梁桥空间模型计算孙秀贵孟续东陈艳秋唐毅周刚郑凯锋 西南交通大学

第一篇正交异性板简支钢梁桥ALGOR建模计算一、打开aglor软件和设定基本操作说明 将桌面上或相应目录中的algor的图标双击打开程序。 选择新建>FEM模型,分析类型选择>线性材料模型的静应力,点击新建,如下图。 弹出“另存为”对话框,确定文件名以及文件的保存路径,最后点击保存。

二、设置单位体系 在主菜单中选择工具>单位 在“unit system”对话框中选择“Metric mks(SI)”; 进行同样操作,更改“unit system”对话框,选择“Custom”; 在“length”对话框中选择“mm”,其他对话框保持不变; 点击“ok”按钮。 三、建立材料库 主菜单>工具>管理材料库 选择“Create New Library”,输入自定义材料库文件的保存路径和名称,单击保存按钮。 再点击确定按钮。

根据本模型需要,建立两种材料:1、钢材;2、混凝土。 右击自定义的材料库,选择“Add New Material” “Material name”对话框中输入材料名称“steel”; “Material model”对话框中选择标准; 在单位体系对话框中选择米制,米千克秒(SI); 更改单位体系,为自定义,长度对话框中选择“毫米(mm)”,单击“ok”按钮。

进行上述相同操作,增加材料“concrete”自定义材料。建立两种材料后,如下图所示: 分别对新建的两种材料输入材料特性: concrete(采用C40混凝土): 质量密度(N/mm^3/g):2.548e-9 弹性模量(N/mm^2):3.25e+4 泊松比:0.2; 剪切弹性模量(N/mm^2):1..3e+4 线膨胀系数:1.0e-5 Steel: 质量密度(N/mm^3/g):7.85e-9

钱冬生--关于正交异性钢桥面板的疲劳

关于正交异性钢桥面板的疲劳 ——对英国在加固其塞文桥渡时所作研究的评介 钱冬生3 提 要 对英国塞文桥渡正交异性板构造的疲劳裂纹产生的原因、所作试验及对其疲劳寿命计算作了介绍,并进行了探讨。 关键词 英国 塞文桥渡 钢正交异性板 疲劳 3教授,610031,西南交通大学 1 塞文桥渡的原结构 塞文桥渡包含:中跨988m 的塞文悬索桥,中跨 234.7m 的瓦埃斜拉桥,跨度61.7~64.0m 的连续梁(引桥)。其钢梁为全部采用正交异性钢桥面板的单室单箱截面梁。 钢正交异性板桥面是在第二次世界大战之后于50年代初期出现的。开始时纵肋用开口截面,在60年代逐渐改为闭口截面。由于制造工艺使闭口纵肋长度受到限制,其设计长度以相邻两横梁之间的距离来决定。在塞文桥渡,此长度为4.572m (悬索桥范围内)和4.267m (其余部分)。纵梁两端抵住横梁,用角焊缝作连接(横梁实质上由横肋及横隔板组成,将箱梁的部分顶板和底板 当作横梁的翼缘使用;横梁高度与箱梁高度相同。)。按照悬索桥的设计说明,强度和刚度都不控制加劲 梁。因此,钢材厚度主要按制造和安装要求决定。面板厚度为11.5mm ,纵肋厚度为6.4mm ,角焊缝焊脚为6mm 。图1为英国TRRL (T ran spo rt and Road R esearch L abo rato ry ,运输和道路研究试验所)所用试件的截面,其中(a )完全按塞文桥渡各钢梁的尺寸办理,(b )表示改进方案,将纵肋截面从梯形改为V 形; 在纵 图1 TRRL 试件截面 肋同横梁相遇处,在横梁开孔,让纵肋穿过。 还需指出:塞文悬索桥在压低造价方面有些过火。它省去储梁场地,省去运梁驳船;只是需要在梁段端头敞口处,用一厚5mm 的横隔板充当“封头板”,使梁段变成浮体;既可在水上储存,又可用拖船直接将它推顶到桥位。这样一来,封头板上端便同梯形纵肋下缘相焊,而这一焊接构造就使纵肋在运营中开裂。2 英国桥规BS 5400第10篇 英国B S 5400第10篇是1980年公布的。其译本见文献[1],对其主要部分、特别是其从文献[3]制订焊接构造分级的经过,见文献[2]。 此规范的优点,在于讲明基本原理,那就是凭借荷载频值谱来推算验算点的应力频值谱,再用M iner 的线性积伤规则,将应力频值谱换算成常幅加载的应力,借以同验算点的疲劳抗力相比,若前者不大于后者,则验算就是通过。文献[1]p 182的插页内的表11,或文献[2]p 84的插页内的图3-11,都是该规范的典型营业车荷载。而文献[1]p 181的图10-17则是迹线分布频数图,这就是说,当某验算点的应力在横桥方向的影响线很短而纵标变化剧烈时,需要将横向影响线按100mm 宽度划分成10多份,按这图所给分布频数推算各份之内的车数,再按影响线纵标推算相应的应力,从而推出应力频值谱。文献[4]p 1所介绍的疲劳检算方法,就指出了要使用文献[1]的表11和图10-17。 关于验算点的疲劳抗力,文献[1]在第10篇附录H 用表17a 、b 、c 的图和文字说明了各种构造按疲劳抗力所进行的分级,包含A 、B 、C 、D 、E 、F 、F 2和G 以及W ,而附录A 则用S 2N 关系(致伤应力脉—加载次数)表达不同分级构造对疲劳的抗力。由文献[2]所介绍的制订这项构造分级的经过可知:所用作依据的疲劳试验的试件,一般是承受轴向力的小试件。因此,在这一规范正文第5.4条(见文献[1]p 115)明确指出:表17中的各分级不适用于公路桥正交异性钢桥面板的焊接构造。 8 桥梁建设 1996年第2期

粉房湾长江大桥正交异性桥面板单元制作及变形控制

2012年6月上第41卷第366期施工技术 CONSTRUCTION TECHNOLOGY 11 粉房湾长江大桥正交异性桥面板 单元制作及变形控制 沈念龙,李朝兵,丁瑞平,汪雪风 (中建钢构江苏有限公司,江苏 靖江 214532) [摘要]结合重庆粉房湾长江大桥钢结构工程实例,针对本工程特点与难点,详细介绍了桥面板的制作要点以及变形控制, 包括钢板校正、U 形肋拼装、焊接变形控制,板块摆放及约束,焊接顺序和方向,焊接校正方法及操作步骤。通过对正交异性桥面板单元制作及变形控制技术的研究,并应用于粉房湾长江大桥钢结构工程中,取得了良好的效果。 [关键词]桥梁工程;斜拉桥;正交异性桥面板;变形控制;焊接[中图分类号]TU758.11;U443.31 [文献标识码]A [文章编号]1002-8498(2012)11-0011-02 Unit Making and Deformation Control of Orthotropic Bridge Deck for Powder Room Bay Yangtze River Bridge Shen Nianlong ,Li Chaobing ,Ding Ruiping ,Wang Xuefeng (China Construction Steel Structure Jiangsu Co.,Ltd.,Jingjiang ,Jiangsu 214532,China ) Abstract :Combined with steel structure engineering of Powder Room Bay Yangtze River Bridge in Chongqing , based on the engineering characteristics and difficulties ,the authors introduce main points of making for bridge deck ,including plate correction ,U-rib assembling ,welding deformation control ,plate displaying and constraining ,welding sequence and direction ,the method of welding correction ,operation steps.Through study on unit making and deformation control of orthotropic bridge deck ,and application in steel structure engineering of Powder Room Bay Yangtze River Bridge ,good effect is obtained.Key words :bridges ;cable stayed bridges ;orthotropic bridge decks ;deformation control ;welding [收稿日期]2012-04-12 [基金项目]中建三局课题(CSCEC3B-2011-23) [作者简介]沈念龙,中建钢构江苏有限公司助理工程师,江苏省靖 江市江阴-靖江工业园区联心路二圩 214532,电话:(0523)84693721,E-mail :nianlong03@163.com 1 工程概况 重庆粉房湾长江大桥为主跨(216.5+464+216.5)m 双塔双索面半漂浮体系斜拉桥。主桥全长为897m ,由464m 中跨和两侧对称布置的216.5m 边跨组成,在距离梁端60.50m 的位置处设置2个永久辅助墩,大桥设置辅助墩后,结构体系可进一步分为(60.5+156+464+156+60.5)m 5跨连续钢桁架梁斜拉桥。采用上、下层布置方式,公路在上层,铁路在下层。主桥设计基准年限为100年。总用钢量为2.3万t 。 正交异性桥面板是重庆粉房湾长江大桥主要桥面结构,也是许多钢箱梁及钢桁架桥梁中常见的桥面结构,其制作质量的好坏往往反映其钢桥的制作工艺水平。 本文以重庆粉房湾长江大桥正交异性桥面板单元的制作为例,主要从钢板校正、U 形肋拼装、焊接变形控制等方面对带肋桥面板的制作进行探讨。2 桥面板制作要点 1)制作桥面板的钢板在下料前都需要经过预处理, 以达到钢板整平、临时防腐和消除钢板轧制残余应力的目的,为下料和制作提供条件。 2)在专用画线平台上画出板块单元纵、横基线及U 形肋或板条肋位置线。 3)在专用门式组装胎型上组装板单元。4)在船形专用翻转反变形胎架上依照确定的焊接工艺施焊U 形肋及板条肋,并按标准进行外观检查和内部探伤。3变形控制 3.1 板块摆放及约束 为了控制焊接变形,板块的焊接制作专用的焊接反变形胎架,根据不同的板块宽度、厚度,横向设置不同的反变形量, 板块置于胎架上后周边用丝杠

装配式预应力混凝土简支梁桥的构造与设计

3.3 装配式预应力混凝土简支梁桥的构造与设计 装配式钢筋混凝土简支梁桥,常用的经济合理跨径在20m 以下。跨径增大时,不但钢材耗量大,而且混凝土开裂现象也往往比较严重,影响结构的耐久性。为了提高简支梁的跨越能力,可采用预应力混凝土结构。目前,世界上预应力混凝土简支梁的最大跨径已达76m。但是,根据建桥实践,当跨径超过50m 后,不但结构笨重,施工困难,经济性也较差。因此,我国桥规明确指出:预应力混凝土简支梁桥的标准跨径不宜大于50m。 3.3.1 横截面设计 1.横截面形式 装配式预应力混凝土简支梁桥的横截面类型基本上与钢筋混凝土梁桥类似,通常也做成T 形、I 形,但为了方便布置预应力束筋和满足锚头布置的需要,下部一般都设有马蹄或加宽的下缘(见图3.15b、c)。有时为了提高单梁的抗扭刚度并减小截面尺寸,也采用箱形(见图 3.15d)。 图3.26 横向分段装配式梁 由于采用预应力筋施加预压力, 可以提供方便的接头形式,为了使装 配式梁的预制块件进一步减小尺寸和 重量,还可做成横向也分段预制的串 联梁(如图3.26)。但由于串联梁施工 麻烦,构件预制精度要求高,在国内 使用较少。 2.主梁布置 经济分析表明,对于跨径较大的预应力混凝土简支梁桥,当吊装重量不受限制时,采用较大的主梁间距比较合理,一般可采用1.8~2.5m。 3.截面尺寸 (1)截面效率指标 为了合理设计预应力混凝土梁的截面尺寸,首先分析其截面的受力特点。截面特征如图3.27所示: 在预加力阶段和运营阶段,预应力混凝土梁截面承受双向 弯矩。在预加力阶段,施加了偏心预加力,在预加力和自 重弯矩的共同作用下,合力相当作用于截面的下核点 (截面上缘应力为零)(如图3.28a);在运营阶段,若计及预 应力损失△,截面内合力为y N 1g M y N y N y y y N N N ??=′, 则在结构附 加重力(桥面铺装、人行道、栏杆)弯矩和汽车与人群荷 图3.27 界面特征 2g M 图3.27截面特征 载弯矩作用下,合力将从下核点移至上核点(截面下缘应力为零) ,即移动了p M y N ′

钢桥正交异形桥面板

跨度46.8m公路正交异性板桥面简支钢梁桥(ANSYS板单元模型计算分析) 西南交通大学桥梁工程系 2012年6月

目录 第1章计算资料 (1) 1.1 计算内容 (1) 1.2 设计要求 (1) 第2章桥面板单元模型建立 (2) 2.1 结构计算模型 (2) 2.2 结构边界条件 (5) 2.3 构件截面尺寸 (6) 2.4 结构计算模型参数汇总 (6) 第3章横载作用下的应力及竖向变形 (8) 3.1 顶板的应力和竖向变形 (8) 3.2 U肋的应力及竖向变形 (10) 3.3 横梁腹板的应力和竖向变形 (12) 3.4 横梁翼缘的应力和竖向变形 (14) 3.5 主梁腹板的应力和竖向变形 (16) 3.6 主梁翼缘的应力和竖向变形 (18) 第4章恒载和跨中最不利活载作用下的应力及变形 (20) 4.1 车辆荷载 (20) 4.2 顶板的应力和竖向变形 (22) 4.3 U肋的应力和竖向变形 (25) 4.4 横梁腹板的应力和竖向变形 (29) 4.5 横梁翼缘的应力和竖向变形 (34) 4.6 主梁腹板的应力和竖向变形 (37) 4.7 主梁翼缘的应力和竖向变形 (40) 第5章荷载组合作用下的结构应力 (44) 5.1 概述 (44) 5.2 计算工况 (44) 5.3 U肋最大拉应力 (45) 5.4 U肋最大压应力 (47) 5.5 顶板最大压应力 (49) 5.6 顶板最大拉应力 (50) 5.7 端横梁最大拉应力和剪应力 (51) 5.8 端横梁最大压应力 (54) 5.9 跨中横梁最大拉应力 (55) 5.10 跨中横梁最大压应力 (57) 5.11 主梁下翼缘最大拉应力 (59) 5.12 主梁腹板最大剪应力 (61) 第6章设计总结 (63) 6.1 恒载作用下全桥各构件内力汇总 (63) 6.2 恒载和跨中最不利活载作用下全桥各构件内力汇总 (63) 6.3 恒载和车辆荷载作用下最不利内力汇总 (64) 6.4 结构验算 (64) 6.5 总结 (64)

混凝土简支体系梁桥的构造与设计

第三章混凝土简支体系梁桥的构造与设计 习题 一、填空题: 1、装配式板的横向连接方法有和两种;装配式主梁的连接接头可采用,,。 2、设置横隔梁的作用:。 3、桥上荷载横向分布的规律与结构横向刚度关系密切,横向联结刚度越大,荷载横向分布作用越,各主梁的负担也越。 二、名词解释: 1、截面效率指标 2、组合梁桥 三、简答题: 1、装配式梁桥设计中块件划分应遵循哪些原则? 2、后张法预应力混凝土T形梁中,为防止锚具附近混凝土开裂,可采取哪些构造措施? 答案 一、填空题: 1、装配式板的横向连接方法有企口混凝土铰接和钢板连接两种;装配式主梁的连接接头可采用焊接接头,螺栓接头,扣环接头。 2、设置横隔梁的作用:保证各根主梁相互连接成整体,共同受力。 3、桥上荷载横向分布的规律与结构横向刚度关系密切,横向联结刚度越大,荷载横向分布作用越显著,各主梁的负担也越均匀。 二、名词解释: 1、截面效率指标:截面核心距与截面高度的比值。 2、组合梁桥:它是首先利用纵向水平缝将桥梁的梁肋部分与桥面板分割开来,桥面板再利用纵横向的竖缝划分成平面内呈矩形的预制板,这样就使单梁的整体截面变成板与肋的组合截面。 三、简答题: 1、装配式梁桥设计中块件划分应遵循哪些原则? 答:(1)根据建桥现场实际可能的预制、运输和起重等条件,确定拼装单元的最大尺寸和重量。 (2)块件的划分应满足受力要求、拼装接头应尽量设置在内力较小处。 (3)拼装接头的数量要少。 (4)构件要便于预制运输。 (5)构件的形状和尺寸应力求标准化、增强互换性,构件的种类应力求减少。

2、后张法预应力混凝土T形梁中,为防止锚具附近混凝土开裂,可采取哪些构造措施? 答:1)、加强钢筋网(约为10×10cm) 2)、厚度不小于16mm的钢垫板 3)、φ8的螺旋筋 另外,在布置预应力筋时,应尽量依据分散均匀的原则。

李乔说桥-13:正交异性钢桥面板

李乔说桥-13:正交异性钢桥面板 1让人爱、让人恨的桥面板形式对正交异性钢桥面板,大家都很熟悉,这是钢桥尤其是大跨度钢桥结构中采用最多的一种桥面板结构形式,也是现代钢桥结构重要的标志性成果之一。但这种桥面结构同时也是钢桥领域里最令人头痛的结构之一,可以说是既“让人爱”又“让人恨”的一种桥面结构形式。让人爱,是因为这种结构具有众多的优点,如重量轻、承载力高、适用性强等,是目前为止仍然不能用其他形式桥面板取代的主要结构形式。而让人恨,则是因为它服役几十年以来,不断地出现令人头痛的疲劳开裂和桥面铺装破坏问题,而且成为了一个出现概率很高的普遍性病害、至今也没有公认的既经济又有效的解决措施的病害。 一般的正交异性钢桥面板指在桥面的面板下面采用纵横加 劲肋加强的构造形式,而目前应用最为广泛的正交异性钢桥面板是采用U形纵向加劲肋的构造形式。如图1所示,它由面板(顶板)、U形纵向加劲肋以及横向加劲肋或横隔板组成。目前世界各国已建成的采用正交异性钢桥面板的各类桥梁已超过1500座,我国正在运营和在建中的该类型桥梁数量已达200余座。(a)大跨度钢箱梁斜拉桥(b) 采用正交异性钢桥面板的钢箱梁横断面(c) 正交异性钢桥面板构造示意图及疲劳开裂统计图1 大跨度钢桥及正交异性钢桥面板

2 两大病害最早在大跨度钢桥上发现正交异性钢桥面板疲 劳开裂的是英国Severn桥,该桥开通运营仅5年即发现其 正交异性钢桥面板出现疲劳裂纹。此后,正交异性钢桥面板结构在包括欧洲、美国、日本及我国等世界范围内相继出现了大量的疲劳开裂案例。例如国内某大桥通车数年后即发现大量疲劳裂缝,经过维修加固,再经过几年的运营,又出现了更多的疲劳开裂。这种现象在很多类似结构的桥面板中出现,给桥梁的安全和耐久性带来巨大影响。由于桥面铺装的存在,这种发生在桥面板上的裂缝在开裂初期不容易被发现,一旦发现就已经贯穿顶板了。而且这种裂缝较难修复加固,多数情况下必须中断交通并拆除桥面铺装才能进行。 根据日本对东京2条代表性高速公路中约7000个闭口纵肋正交异性钢桥面板的疲劳病害进行的统计分析结果,主要疲劳裂纹类型及其构成如图1(c)所示。图中带圆圈的编号表示疲劳开裂的部位及类型,圆饼图表示各类型开裂所占的比例。由图可见,占比例最大的为②、③、④类,分别为纵向U肋与横隔板、竖向加劲肋与纵腹板以及纵向U肋与顶板的焊缝开裂。其中的第③类开裂对应的构造现在基本不再采用,所以目前出现最多的是②、④两类。 除了钢桥面板开裂以外,这种结构带来的另一个通病是桥面铺装过早损坏(图2),并成为每座同类桥面板结构的大桥设计时让人颇为纠结的问题。从我国90年代修建的此类结构

预应力混凝土简支梁桥、连续梁桥和刚架桥的设计构造特点和对比分析

预应力混凝土简支梁桥、连续梁桥和刚架桥的设计构造特点和对比分析 A、装配式预应力混凝土简支梁桥的构造与设计 装配式钢筋混凝土简支梁桥,常用的经济合理跨径在20m 以下。跨径增大时,不但钢材耗量大,而且混凝土开裂现象也往往比较严重,影响结构的耐久性。为了提高简支梁的跨越能力,可采用预应力混凝土结构。目前,世界上预应力混凝土简支梁的最大跨径已达76m 。但是,根据建桥实践,当跨径超过50m 后,不但结构笨重,施工困难,经济性也较差。因此,我国桥规明确指出:预应力混凝土简支梁桥的标准跨径不宜大于50m 。 一、横截面设计 1.横截面形式装配式预应力混凝土简支梁桥的横截面类型基本上与钢筋混凝土梁桥类似,通常也做成T 形、I 形,但为了方便布置预应力束筋和满足锚头布置的需要,下部一般都设有马蹄或加宽的下缘。有时为了提高单梁的抗扭刚度并减小截面尺寸,也采用箱形。由于采用预应力筋施加预压力,可以提供方便的接头形式,为了使装配式梁的预制块件进一步减小尺寸和重量还可做成横向也分段预制的串联梁。但由于串联梁施工麻烦,构件预制精度要求高,在国内使用较少。 2.主梁布置 经济分析表明,对于跨径较大的预应力混凝土简支梁桥,当吊装重量 不受限制时,采用 较大的主梁间距比较合理,一般可采用1.8?2.5m。

3.截面尺寸 (1)截面效率指标为了合理设计预应力混凝土梁的截面尺寸,首先分析其截面的受力特点。在预加力阶段和运营阶段,预应力混凝土梁截面承受双向弯矩。在预加力阶段,施加了偏心预加力,在预加力和自重弯矩的共同作用下,合力相当作用于截面的下核点(截面上缘应力为零)(2)主梁高度预应力混凝土简支梁桥的主梁高度取决于采用的汽车荷载等级、主梁间距及建筑高度等因素,可在较大范围内变化。对于常用的等截面简支梁,其高跨比的取值范围在1/15 ?1/25 ,一般随跨径增大而取较小值,随梁数减少而取较大值,对预应力混凝土T 形梁一般可取1/16 ?1/18 左右。当桥梁建筑高度不受限制时,采用较大的梁高显然是较经济的,因为加高腹板使混凝土用量增加不多,而节省预应力筋数量较多。 ⑶其他细部尺寸在预应力混凝土梁中,由于混凝土所受预应力和预应力束筋弯起,能抵消荷载剪力的作 用,肋中的主拉应力较小,肋宽一般都由构造和施工要求决定,但不小于160mm 。标准设计中肋宽为140 ?160mm 。T 梁上翼缘的厚度按钢筋混凝土梁桥同样的原则来确定。为了减小翼板和梁肋连接处的局部应力集中和便于脱模,在该处一般还设置折线形承托或圆角,此时承托的加厚部分应计算在内。 T 梁下缘的马蹄尺寸应满足预加力阶段的强度要求,同时,从截面效率指标P分析,马蹄应当是越宽而矮越经济。马蹄的具体形状要根据预应力束筋的数量和排列方式确定,同时还应考虑施工方便和力筋弯起的要求。具体尺寸建议如下:

正交异性板钢桥面(3.14)2

正交异性板钢桥面结构应用技术工艺的探讨 The structural characteristics and manufacturing craft of steel box girder with an orthotropic steel bridge deck 叶翔叶觉明 ( Ye Xiang Ye Jue-ming ) 中铁大桥局武汉桥梁科学研究院武汉 430034 ( Bridge Science Research Institute, Major Bridge Engineering Bureau of China Railways, Wuhan 430034) 摘要: 正交异性钢桥面板是钢结构桥梁的重要结构件,正交异性钢桥面板由钢板、U肋和横隔板组成。以钢箱梁正交异性钢桥面板为例,介绍正交异性钢桥面板结构特点和组拼、 焊接和工地连接工艺特点,探讨在目前焊接和组装工艺条件下,延长正交异性钢桥面板 使用寿命的加工技术和工艺。 abstract: The orthotropic steel bridge deck is important structural of the steel structure bridge, the orthotropic steel bridge deck made is composed by the steel plate、 the U-shaped stiffener and the cross spacer . Taking the steel box girder deck plate as research object, the orthotropic steel bridge deck unique feature and craft characteristic for assembling、welding and site connection of the plate elements was deal with。 under the condition of the current welding and assembling workmanship, technology and technique to prolong the service life of orthotropic steel bridge deck was researched and discussed. 关键词: 正交异性钢桥面板板单元横隔板 U肋焊接工艺焊接残余应力 Key word: orthotropic steel bridge deck plate element cross spacer U-shaped stiffener welding technology Weld residual stress 对于大跨度悬索桥和斜拉桥,钢箱梁是非常有利的结构形式。钢箱梁以面板、底板、腹板、纵横隔板及加劲结构件为主要构成。其中面板钢板一般刚度较小,在轮载作用下易发生较大的变形,因此需要一定的钢板厚度,同时在面板上安装纵肋和垂直于纵肋的横隔板加劲,这是一种典型的正交异性桥面板。钢桥面板结构在桥梁上是不可能更换的,如果产生缺陷或裂纹扩展后修补又比较困难,需要从结构和实用焊接加工技术工艺等方面予以重视,延长桥面板的安全使用寿命。 1.正交异性桥面板结构和制造加工特点

桥梁工程简支梁课程设计

《桥梁工程》课程设计任务书 一、设计题目 1.钢筋混凝土简支梁桥上部结构设计 二、设计基本资料 1.标准跨径(计算跨径):20m(19.5m)、25m(24.5m)、30m(29.5m)。 2.桥面净空:①净-0.5m(栏杆)+8m(车道)+0.5m(栏杆)、②净-8.5+2×1.0m(人行道)、③净-9.25+2×1.0m(人行道)+2×0.5m(栏杆)。 3.设计荷载:①公路-I级,人群3.5KN/m2;②公路-Ⅱ级,人群3.0KN/m2。 4.截面形式:空心板、T型截面、箱型截面。 5. 结构重要性系数:1.0。 6.材料:①钢筋:主筋采用Ⅲ级钢筋(HRB400),其他钢筋采用Ⅱ级钢筋(HRB335);②混凝土:C40。 7.材料容重:水泥砼24 KN/m3,钢筋砼25 KN/m3,沥青砼21 KN/m3 三、设计内容 1. 荷载横向分布系数计算 2.主梁的设计计算(恒载、活载及人群) 3.行车道板的设计计算(悬臂板、铰接悬臂板、单向板) 4.横隔梁设计计算 5.桥面铺装设计 四、要求完成的设计图及计算书 1.钢筋混凝土简支梁桥上部结构设计(可手工制图或CAD出图) 2.桥面构造横截面图(可手工制图或CAD出图) 3.荷载横向分布系数计算书 4.主梁内力计算书

5.行车道板内力计算书 6.横隔梁内力计算书 五、参考文献 1.《桥梁工程》(第3版),邵旭东、金晓勤主编,2012,武汉理工出版社。 2.《梁桥》(公路设计手册),2005,人民交通出版社。 3.《桥梁计算示例集》(砼简支梁(板)桥),易建国主编,2002,人民交通出版社。 4.中华人民共和国行业标准.《公路工程技术标准》(JTG B01-2003).北京:人民交通出版社,2004。 5.中华人民共和国行业标准.《公路桥涵设计通用规范》(JTG D60-2004)含条文说明.北京:人民交通出版社,2004。 6.中华人民共和国行业标准.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。 六、课程设计学时 1.学时安排:1周(第9周)。 七、附注 1.课程设计可2人一组。 2.设计标准跨径、净宽、设计荷载和截面形式可随机组合,但每组不准重合。 设计基本资料 1.标准跨径(计算跨径):20m(19.5m) 2.桥面净空:①净-0.5m(栏杆)+8m(车道)+0.5m(栏杆) 3.设计荷载:公路-Ⅱ级,人群3.0KN/m2。 4.截面形式:T型截面 5. 结构重要性系数:1.0。 6.材料:①钢筋:主筋采用Ⅲ级钢筋(HRB400),其他钢筋采用Ⅱ级钢筋(HRB335);②混凝土:C40。 7.材料容重:水泥砼24 KN/m3,钢筋砼25 KN/m3,沥青砼21 KN/m3

正交异性板和箱形结构运用于桥梁的历史

正交异性板和箱形结构运用于桥梁的历史(三) 发布时间:2008-04-25 作者:钱冬生 摘要:介绍了正交异性板和箱形结构运用于桥梁的历史。 4 、英国的塞文桥——它在1966 年的胜利建成,与在1991 年的整修完竣 塞文桥在1966 年的建成,是当时桥梁界的一大盛事。它总长约3km ;包括: Wye 斜拉桥(主跨234.7m )、引桥(跨度61.7~ 64.0m 连续钢箱紧)和正桥(主跨988m 的悬索桥)。它的悬索桥第一次使用流线形的扁钢箱加劲梁,这是由风洞试验认识到它的实用价值的(阻力系数小、对风致振动的反应较优),其加劲梁钢面板厚11.50mm ,纵肋为闭口的梯形,肋厚6.4mm ,肋的高度228mm ,纵肋的中心距为610mm ,纵肋跨度(横肋中距)用到4.57m 。横肋板厚 6.4mm ,高度为3m (从桥面板到箱底板,它实际上就是横隔板)。这加劲梁又第一次使用全焊钢结构,因耽心它在振动时的阻尼系数要比铆接结构为小(注:对桥面辅装的阻尼作用当时还缺乏认识),不利于抑制振动,乃将其吊索从竖置改为呈V 字形的斜置,因为,斜置吊索当桥振动时所受的拉力有脉动,这一脉动将使其钢绞线时松时紧,由此而对振动产生阻尼。对于塔柱,它又第一次采用了矩形单箱式;而且对于柱的工地水平接头,不是用拼接板及高强栓作连接,而是靠承压传力,并用20 根φ 50mm 高强栓在竖向将上下拉紧(用以抵抗施工荷载);这使每塔用钢量仅是1200t 。对于塔顶主鞍,又第一次采用了全焊式。[8] :127~139 在施工方面,也是非常俭省。加劲梁的制造,是分为88 个节段,每个节段再分为若干板件;将板件在工厂预制完成后,运到一造船厂的滑道附近,在滑道上进行节段的拼装;在滑道长度方面只需其能保留三个节段,每当向上再拼装一个新节段时,就先将最下一个节段

正交异性板

正交异性板 正交异性版即正交异性钢桥面板,是用纵横向互相垂直的加劲肋(纵肋和横肋)连同桥面盖板所组成的共同承受车轮荷载的结构。这种结构由于其刚度在互相垂直的二个方向上有所不同,造成构造上的各向异性。 细部构造 对于大跨度悬索桥和斜拉桥,钢箱梁自重约为PC箱梁自重的1/5,1/6.5。正交异性钢板结构桥面板的自重约为钢筋混凝土桥面板或预制预应力混凝土桥面板自重的1/2,1/3。所以,受自重影响很大的大跨度桥梁,正交异性板铜箱梁是非常有利的结构形式。 通常在钢桥面板上铺装沥青混凝土铺装层,其主要作用是保护钢桥面板和有利于车辆的行走性。近代正交异性钢桥面板的构造细节如图回所示,由钢面板纵助和横肋组成,且互相垂直。钢面板厚度一般为12mm,纵肋通常为U形肋或球扁钢肋 或板式助,U形肋板厚一般为6mm或8mm,横梁间距一般为3.4,4.5m,两横梁之间设一横肋。 制造时,全桥分成若干节段在工厂组拼,吊装后在桥上进行节段间的工地连接。通常所有纵向角焊缝(纵向肋和纵隔板等)贯通,横隔板与纵向焊缝、纵肋下翼缘相交处切割成弧形缺口与其避开。 分析方法 正交异性板除作为桥面外,还是主梁截面的组成部份,它既是纵横梁的上翼缘,又是主梁的上翼缘。传统的分析方法是把它分成三个结构体系加以研究,即: (1)主梁体系:由盖板和纵肋组成主梁的上翼缘,是主梁的一部份。 (2)桥面体系:由纵肋、横梁和盖板组成,盖板成为纵肋和横梁的共同上翼缘。 (3)盖板体系:仅指盖板,它被视为支承在纵肋和横梁上的各向同性连续板。

计算方法 解析法是将正交异性钢桥面板结构作为弹性支承连续正交异性板分析的较为成熟的经典计算方法。根据所取的计算模型不同,解析法计算又可分为以下几种: (1)把板从肋的中间分开,并归并到纵横肋上去,构成格子梁体系。它的缺点是未能考虑板的剪切刚度。 (2)把纵横梁分摊到板上,也就是将板化成一种理想的正交异性板。当荷载作用在横肋上时,这种方法是较好的,但当荷载作用在两横肋中间时,此法的精度就差了。 (3)对法2的改进,即将作用有荷载的那个节间单独处理,令节间的横向抗弯刚度等于盖板的抗弯刚度,其余节间解同法2 (4)Pelikan-Esslinger法。此法是将纵肋均分摊到盖板上,而将横肋作为刚性支承,求解后再将横肋的弹性支承计入。 随着计算机技术的发展,正交异性板的求解又有了很多新的数值法。目前较有成效的是有限差分法、有限条法和有限单元法。疲劳问题 钢桥面板作为主梁的上翼缘,同时又直接承受车辆的轮载作用。如上所述,钢桥面板是由面板、纵肋和横助三种薄板件焊接而成,在焊缝交叉处设弧形缺口,其构造细节很复杂。当车辆通过时,轮载在各部件上产生的应力,以及在各部件交叉处产生的局部应力和变形也非常复杂,所以钢桥面板的疲劳问题是设计考虑的重点之一。自1966年英国Severn桥(悬索桥)采用扁平钢箱梁以来,钢桥面板陆续出现许多疲劳裂纹,主要产生的部位有纵助与面板之间的肋角焊缝、纵横肋交叉的弧形缺口处,U形肋钢衬垫板对接焊缝处等,其中梁段之间钢桥面板工地接头是抗疲劳最薄弱的部位。 由于钢桥面板不可能更换,产生裂纹后修补又比较困难,50年来(通过一系列的试验研究和有限元分析,以及实

相关文档
最新文档