蓄电池的检测方法

蓄电池的检测方法
蓄电池的检测方法

蓄电池的标准检查操作规范

编制人:王军

2013年10月

为了规范操作标准,提升维修操作能力,减少违规操作引起的返修、客户抱怨等,特此编制了维修操作规范。规范主要针对常规保养项目及操作频次较高项目,内容主要包括各项目的标准拆装步骤及注意事项。本文以蓄电池的检查为主题,主要介绍了检测所用工具、详细操作步骤及注意事项。

一、所需工具

1、蓄电池检测仪

2、万用表

3、丁字杆

4、一字起

二、操作过程:

第一步:使用蓄电池检测仪进行蓄电池的检查

1、关闭点火开关,打开发动机机舱盖,断开蓄电池负极;

2、如图所示连接蓄电池检测仪;

3、进入检测仪选择界面,将“充电状

4、将“测试选择”选择为“车外”

态选择”选择为“充电后”

5、将“额定系统选择”选择为“使用:

6、按照蓄电池上标出的电池容量的大 EN”;

小,调整“输入额定值”;

7、确认得出检测结果。如果结果为“电池良好”则无需更换,如果结果为“更换电池”则电池需要更换。

第二步:检查蓄电池的漏电电流

1、关闭点火开关,打开发动机机舱盖;

2、将发动机机舱盖锁块进行上锁;

3、确认四门和后备箱都已经关闭,使用遥控器锁车;

4、断开蓄电池负极导线,选取万用表直流10A量程,将万用表连接在蓄电池负极接线端和蓄电池负极导线之间;

5、让蓄电池静止15分钟,读取万用表显示读数,判断漏电电流是否正常。以下为各车型的标准漏电电流:不大于50毫安

第三步:完成4门玻璃升降、天窗升降、EPB等功能的初始化和标定。

三、注意事项:

1、在测量漏电电流时进行用电操作会损坏数字万用表;

2、如果测出漏电电流大于标准值,则可以逐个断开主熔断器盒和熔断器盒的熔断器,同时测量放电电流,检查并维修出现电流降低的熔断器线束和连接器。

蓄电池的检测方法

蓄电池的标准检查操作规范 编制人:王军 2013年10月 为了规范操作标准,提升维修操作能力,减少违规操作引起的返修、客户抱怨等,特此编制了维修操作规范。规范主要针对常规保养项目及操作频次较高项目,内容主要包括各项目的标准拆装步骤及注意事项。本文以蓄电池的检查为主题,主要介绍了检测所用工具、详细操作步骤及注意事项。 一、所需工具 1、蓄电池检测仪 2、万用表 3、丁字杆 4、一字起 二、操作过程: 第一步:使用蓄电池检测仪进行蓄电池的检查 1、关闭点火开关,打开发动机机舱盖,断开蓄电池负极; 2、如图所示连接蓄电池检测仪; 3、进入检测仪选择界面,将“充电状 4、将“测试选择”选择为“车外” 态选择”选择为“充电后”

5、将“额定系统选择”选择为“使用: 6、按照蓄电池上标出的电池容量的大 EN”; 小,调整“输入额定值”; 7、确认得出检测结果。如果结果为“电池良好”则无需更换,如果结果为“更换电池”则电池需要更换。 第二步:检查蓄电池的漏电电流 1、关闭点火开关,打开发动机机舱盖; 2、将发动机机舱盖锁块进行上锁;

3、确认四门和后备箱都已经关闭,使用遥控器锁车; 4、断开蓄电池负极导线,选取万用表直流10A量程,将万用表连接在蓄电池负极接线端和蓄电池负极导线之间; 5、让蓄电池静止15分钟,读取万用表显示读数,判断漏电电流是否正常。以下为各车型的标准漏电电流:不大于50毫安 第三步:完成4门玻璃升降、天窗升降、EPB等功能的初始化和标定。 三、注意事项: 1、在测量漏电电流时进行用电操作会损坏数字万用表; 2、如果测出漏电电流大于标准值,则可以逐个断开主熔断器盒和熔断器盒的熔断器,同时测量放电电流,检查并维修出现电流降低的熔断器线束和连接器。

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

(整理)蓄电池性能检测装置详细资料

蓄电池性能检测系统锂电池充放电柜SBCT-3030TS 一、概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。 《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池检测方案 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成一个局部电池, 通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。 因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

电池安全性能检测设备

编订:__________________ 审核:__________________ 单位:__________________ 电池安全性能检测设备 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4365-52 电池安全性能检测设备 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、电池挤压试验 1.试验要求: A.将电池放置在挤压设备的两个挤压平面之间,逐渐增加压力至13kN,保持压力1min。 B.圆柱形或方形电池在接受挤压试验时,其纵轴要平行于挤压平面,垂直于挤压方向。方形电池最大面垂直于挤压方向。每只电池只接受一次挤压试验。 2.试验结果:不起火、不爆炸。 二、电池热冲击试验 1.试验要求:将电池放置于热箱中,温度以(5℃±2℃)/min的速率升温至130℃±2℃并保温30min,然后取出,恢复至室温。 2.试验结果:不起火、不爆炸。 三、电池短路试验

1.试验要求: 试验应分别在20℃±5℃和55℃±5℃的环境温度下进行。将接有热电偶的电池(热电偶的触点固定在电池大表面的中心部位)分别置于通风橱和高温箱中(进行55℃±5℃的短路试验的电池应先在高温箱中在55℃±5℃下保持1.5h~2h),短路其正负极,线路总电阻不大于100mΩ。直到电池负载电压小于0.1V,并且电池表面温度恢复至不高于环境温度10℃时,结束试验。每种温度试验3只电池。内部安装可恢复式温度或过流保护装置的电池,可选用阻值不至于使该装置动作的最大负载短路电池正负极。 2.试验结果:不起火、不爆炸,电池的外表面温度不应高于150℃。 四、电池针刺试验 1.试验要求:试验应在20℃±5℃的环境温度下进行,将接有热电偶的电池(热电偶的触点固定在电池大表面上)置于通风橱中,用直径3mm的无蚀锈钢针以20mm/s~40mm/s的速度刺穿电池最大表面的中

蓄电池修复检测方法步骤

蓄电池修复检测方法步骤 蓄电池修复检测方法步骤,蓄电池坏损是可以修复的,就象人病了需要看病一样,如果只是一般的坏损,如硫化,采取适当的方法就可以修复;如果是致命的坏损,如极板铅粉脱落、穿孔、弯曲等,属物理性能丧失,是无法修复的。这就要求在修复蓄电池时,首先要确认蓄电池的损伤程度和原因,对症的进行修复。 (一)电瓶检测 第一步、检查蓄电池外表状态: 检查蓄电池外形是否完好。检查蓄电池外壳是否凸出、漏夜、断隔、电瓶接线端子腐蚀等,如果有这种现象,说明电瓶已经坏死; 第二步、检查蓄电池电压是否正常: ⑴在充电进行时(二个小时后),分三次检测每节单块电瓶的电压,每次间隔20分钟,如果有单块电池的电压超过15V达不到13V的,说明这节电瓶出现问题; ⑵在放电进行时,用万用表分三次测量每节单体电瓶的电压,每次间隔10分钟,如果某单块电瓶的电压下降的比其他几节电瓶快,并且低于10V,加上这节电池放电时间最短,那么这节电池就是问题电池。 ⑶检测单块电瓶的静态电压(浮电)。当电压为零时,有两种可能:一种是电瓶完全断路,电路不通,电压为零;另一种就是电瓶放置时间过长,电压低至1-2V,甚至为零。 第三步、检查蓄电池电解液是否失水、发黑:

检查电解液是否变质或失水。对蓄电池充电3-6个小时后,用手触触摸每节电瓶外壳侧面,如果电瓶发热烫手,这节电池已经坏死;如果只是发热,温度在40度左右,同时充电时充电器一直亮着红灯,说明电池严重失水;另外也可以打开电瓶的盖子,检查失水状态。 电解液是否发黑可以直接判断电池极板的好坏。打开蓄电池上面的盖子,可以看见有六个园孔,检查每个孔内电解液的颜色,如果呈黑色,说明极板铅粉已经脱落,这节电池坏死。

蓄电池容量测试操作说明

1准备工作: 1.1工具准备 1.2资料准备 检修票,通信电源蓄电池组维护测试记录表(半年), 1.3注意事项 放电仪的选用: 注意蓄电池放电仪型号选用,48V蓄电池放电仪(型号:IDCE-4815CT)只能用48V蓄电池测试,UPS蓄电池放电仪(型号:IDCE-6006CT)只能用于UPS蓄电池测试。切勿混用。 2操作步骤: 2.1手续办理: 2.1.1信息确认: 把测试事宜及内容告知管理处相关人员,了解测试站点近期市电供电情况,是否存在市电供电异常,确认测试站点当日及第二日市电供电正常,才进行测试,否则,不得进行测试。

2.1.2资料报备: (1)填写检修申请票,并由管理处相关人员签字确认,完成维护报备工作; (2)通知网管中心,测试前将测试内容和涉及的设备向网管中心值班人员报备。 2.2检查记录: 2.2.1设备检查 (1)设备检查记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及开关电源的其它设置参数,检查蓄电池组的现有容量是否100%。 (2)检查所有的电池端子是否处于拧紧状态 (3)检查电池是否有漏液、酸雾等异常。 2.2.2仪器检查 按照设备清单清点配件是否齐全, 面板介绍 2.3开机与参数设置 2.3.1开机 UPS电源系统:

1)断开待测电池组断路器(注意:严禁两个断路器同时断开),如下图: 2)接交流电源,打开仪表上的市电开关,正常开机 40V蓄电池: 1)断开开关电源柜内的待测电池组熔断丝(注意:两组熔断丝严禁同时断开) 2)把正负极电缆接入仪器正负极接口,另一端与蓄电池正负极相连,然后先打开仪表 市电开关,再合上F1空开,仪表正常开机。(拆下的电池线铜鼻子做好绝缘保护)

蓄电池的检测

蓄电池de检测方案 一、检测目的 由于汽车上的需要,我们购买到了一台蓄电池。但出于对蓄电池质量、安全等方面的考虑,特对其进行检测。并制定出一套完整的检测方案。并选择其几项重要的性能指标进行检测。 二、检测要求 符合以下三个标准: ①GB/T2828.1-2003 按接收质量限(AQL)检索的逐批检验抽样计划 ②ZBT35001 电器硬设备基本技术条件 ③ZBT36009 电器接线柱标记 三、蓄电池的性能指标 ①蓄电池的电压 ②蓄电池的容量 ③蓄电池的使用寿命 ④蓄电池的效率 ⑤蓄电池的自放电 ⑥蓄电池的放电深度与荷电态 ⑦蓄电池内阻的检测 ⑧蓄电池的串联与并联 四、蓄电池的检测项目 ①蓄电池的外观检测 ②蓄电池的主要性能指标检测 ③蓄电池的好坏检测 五、检测具体的方法 1、蓄电池的外观检测:

检查产品的标志和标识,其内容包括生产厂家、规格型号、商标、正负极。如果上述内容缺漏,这项检测即为不格。外观检查中应特别小心所标内容与实际不符的情况。外观检查还应该考核蓄电池外壳质量。确保外壳硬度、注液孔等指标。 2、蓄电池的电压检测: 方法一:如图所示,蓄电池的输出电压为12V,利用万用表进行检测。先把万用表打到20V档,让后红棒头与黑棒头分别接到蓄电池的正极和负极。根据万用表显示出的电压判断蓄电池的电压是否正常。但这种测量不准确!因为测量内无负载,所以测量的不一定是蓄电池的实际电压。 方法二:用蓄电池检测仪测量蓄电池接线柱间的断路电压时,如果检测出来的电压等于或大于12.5V时,这是说明蓄电池正常。但是如果电压低于12.5V,则说明蓄电池存在问题或欠压。 3、蓄电池容量检测: 测试需要的准备: 1、测试必要的工具准备 测试所需工具包括:绝缘手套、万用表、测温仪、钳形直流表、蓄电池内阻仪、棘轮扳手、测试记录表、警示标示、防护眼镜、手电筒、PH试纸。 2、环境检查 机房环境检查:机房应该凉爽、干燥,机房内的通风和制冷设备需运行正常,温湿度监控设备运行正常。 UPS设备检查:协调UPS厂家技术人员对设备参数进行确认,根据电池方提供的数据设置UPS参数,其中包括:放电截止电压、均充限流、均充时间限制、均浮充电压的设置。 3、电池检查 电池外观检查:检查外观是否清洁,有无液体或污渍,如有液体或污渍可借助PH试纸帮助判断,并做好设备间的清洁工作帮助对故障点的判断。 4、人员准备 方法一:传统容量测试法。将蓄电池接上假负载,并接上电压表与电流表。调整负载大小使得放电电流保持在一个定值,当蓄电池的端电压到达放电终止电压时放电测试结束。然后根据测出的放电时间和放电电流来计算其容量。 方法二:电源监控控制测试法。此方案利用电源本身的监控,实现对蓄电池在设定时间,设定放电电流(满负荷)的放电,通过放电后电池组的参量变化,来初步估算蓄电池的容量。电源监控控制测试法不需另外增加其它电池容量检测设备。 方法三:曲线比较法。利用蓄电池容量检测设备对蓄电池进行几分钟的放电后再充电,将此过程中记录的数据绘制成曲线,对比该型号蓄电池的特性曲线数据库,进而分析蓄电池的剩余容量。曲线比较方法的特点: (1)用测试后所得的曲线可以比较直观的分析蓄电池的状态; (2)测试蓄电池时,需要该型号的容量分析数据库,制作此数据库需要一定的时间; (3)如负载太小,小于10小时放电率的电流或负载电流波动太大,需连接智能负载。 方法四:交流检测法。交流检测法特点: (1)不改变电源系统的任何工作状态;

蓄电池的检测与修复的技巧

蓄电池的检测与修复的技巧 对铅酸蓄电池进行维护,首先大体了解铅酸蓄电池的结构和原理是非常必要的。铅酸密封蓄电池由正、负极板、隔板和电解液、电池槽及连接条(或铅零件)、接线端子和排气阀等组成。 一、电池的主要部件 1、极板是蓄电池的核心部件,是蓄电池的“心脏”,分为正极板、负极板。 2、隔板的作用是隔离正、负极板,防止短路,可称为“第三电极”。它作为电解液的载体,能够吸收大量电解液,起到离子良好扩散(离子导电)的作用。对密封免维护蓄电池而言,隔板还作为正极板产生氧气到达负极板的“通道”,使其顺利地建立氧循环,减少水损失。采用超细玻璃纤维,是隔板式蓄电池实现免维护的关键所在。 3、电解液主要由纯水与硫酸组成,配以一些添加剂混合而成。 主要作用:一是参与电化学反应,是蓄电池的活性物质之一;二是起导电作用,蓄电池使用时通过电解液中离子的转移,起到导电作用,使化学反应得以顺利进行。 4、安全阀是蓄电池关键部件之一,位于蓄电池顶部,它有四个作用: (1)安全作用,即当蓄电池使用过程中内部产生的气体气压达到安全阀压力,开阀将压力释放,防止产生电池变形、破裂等发生。 (2)密封作用,当蓄电池内压低于安全阀的闭阀压力时安全阀关闭,防止内部气体酸雾往外泄露,同时也防止空气进入电池造成不良影响。 (3)确保蓄电池正常内压,促使蓄电池内氧气复合,减少失水。 (4)防爆作用,某些安全阀装有防酸发、防暴片。如松下蓄电池。 安全阀结构类型较多,主要有帽式、伞状、片状等。其中常见的是帽式筏,它是由弹性较好的胶皮制作成帽式。结构简单,使用故障率也低,所以广泛采用,如松下、海宝、超微、天能、巨恒等电池。 二、维修经验及原理 (一)、修复原理: 修复方法有电子法、化学法和物理法。化学法是用含有“活性剂”化学成分的特殊电解液(一般为半透明液体)注入铅酸蓄电池内,靠化学反应消除硫酸铅结晶,促使蓄电池内电流畅通

磷酸铁锂电池测试方法

低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

镉电极在铅酸蓄电池性能检测中的应用

镉电极在铅酸蓄电池性能检测中的应用 我们知道,任何一种金属晶体都含有金属离子和自由电子,当金属插入该金属离子的溶液中,由于金属受到电解液溶质,溶剂离子及分子的作用,会出现下列情况:一种情况是组成金属晶格的金属离子脱离金属表面进入溶液中,由于金属离子离开金属表面造成金属表面剩有多余电子而使金属在该溶液中带有负电荷,另一种情况是由于金属离子的溶解度不大,而溶液中的金属阳离子向金属表面沉积使金属表面因阳离子过剩而带正电荷。这样一来,无论那种情况,都会因金属所带的电荷,使得金属与溶液分界处形成“双电层”。 如果金属带负电荷,则溶液中金属附近的阳离子会被金属吸引而集聚在它的附近.而阴离子则由于金属的排斥,在金属附近溶液中的浓度较低。这样,金属附近的溶液—中所带的电荷与金属本身所带的电荷与金属本身所带的电荷恰好相反,这就形成了“双电层”,由于金属与溶液的分界面上“双电层”的存在。则在金属与溶液的分界面上产生一定的电势差,这个电势差的太小与金属及溶液的性质有关。 金属在电解质溶液中形成的“双电层”产生的电势差就是该金属在该溶液中的电极电位。 金属插在溶液中,在同一时间内,有的金属离子从金属表面进入溶液中;有:曲存在于溶液中的金属离子沉积到金属表面上去,当金属离子进入溶液中的速度与溶液中的离子沉积到金属上去的速度相等时,这时的电极电位称为平衡电极电位。 目前,人们尚没有方法直接测量单个电极与溶液之间的电位差,也就是绝对电极电位。这是因为测量时使用电位差计,需要把电位差计测量端的一根导线接到电极上,而把另一根导线插入溶液中,但插入溶液中的导体本身又构成了一个电极,它与我们所测量跑电极组成了一个电池;实际电位差计测出的是这个电池两极的电位差也即电池电动势,而不是被测电极与溶液间的电位差。 因此,在实际中我们可以指定某一电极的电位为零,称为参比电极或标准电极,用参比电极与所测量的电极组成一个电池,用电位差计的负端接作为零点的参比电极,正端接被测量电极,当被测量电极的电位比参比电极高时,相对电极电位为正值,当被测量电极的电位低于参比电极电位时,则相对电极电位为负值。 同一个电极用不同的参比电极来测量,测得的电极电位不同,因此,一般电极电位应注明是相对于哪种参比电极测得的。例如,相对于镉电极铅负极的电极电位=0.1 V,相对于硫酸亚汞电极铅负极的电极电位=-0.101 V,而相对于镉电极硫酸亚汞电极电位=1.11 V。它们之间的关系为:? Pb(相对于Hg2S04电极)=?Pb(相对于Cd电极)-? Hg2S04(相对于Cd电极)=0.1-1.1=-1.01 V。 为了有一个统一的标准,国际上惯常使用标准氢电极作为参比电极,规定在任何温度下标准氢电极的平衡电极电位都为零,由于标准氢电极的精度很高,且制造结构复杂,溶液纯度要求很严,因此不便于实际应用,通常都是根据实际情况选用其它的参比电极进行测量,然后再利用已知的(统一测量完的)参比电极与氢标电极的电极电位再换算成氢标电极电位。 平时我们从标准电极电位表中查得某电极在某溶液中的电极电位有以下几个条件: 1、该电极电位是与标准氢电极电位的相对值。 2、标准电极电位是指标准状态下即各物质浓度为1M,101.33 KPa压力的状态下测得值。 3、该电极电位是平衡电极电位。 所以我们以往知道的铅蓄电池中铅的标准电极电位为-0.358 V,二氧化铅的标准电极电位为+1.69 V,都是符合上述三个条件下的数值。 在实际测量中,要求选用的参比电极电位要稳定,重现性要好,并且参比电极的电解液最好能与被测电极的电解液一致。在铅酸蓄电池电极电位测量中最好用硫酸亚汞电极,即(Hg、Hg2S04·H2S04),它的精度很高,但制作和使用比较麻烦,所以在一般试验室常采用镉电极(Cd、CdS04·H2S04)来测量铅蓄电地充放电时正负极的电位。其应用很方便,但准确性较低,误差可达十几毫伏以上。 参比电极的工作面积一般都不大,因此.有很小的电流通过,它的电位就会发生波动,在测量时,参比电极与被测电极之间存在龟位差会有电流经过测量仪表构成回路,测量电压表的内阻越大,经过的电流越小,对电位测量造成的误差越小,所以,在测量铅蓄电池的膈电压时要求电压表的阻抗在每伏1 000Ω以上。 在铅蓄电池的充放电过程中,常采用镉电极来测量正负极电位变化情况,通过测量结果可以判断极板是否工作正常。 金属镉(Cd),密度为8.65,溶点约为388℃,镉电极用纯金属镉制成,新制的镉电极在使用前应浸泡在密度为1.10的稀硫酸溶液中3昼夜以上,否则因极化作用而量值不准,当镉电极不使用时,也必须把它浸在稀

电池性能及测试

锂电池性能与测试 1. 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 2. 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 3. 电池的可靠性项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 4. 电池的安全性测试项目有哪些? 1. 内部短路测试 2. 持续充电测试 3. 过充电 4. 大电流充电 5. 强迫放电 6. 坠落测试 7. 从高处坠落测试 8. 穿透实验 9. 平面压碎实验 10. 切割实验 11. 低气压内搁置测试 12. 热虐实验 13. 浸水实验 14. 灼烧实验 15. 高压实验 16. 烘烤实验 17. 电子炉实验 5. 什么是电池的额定容量? 指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20+ 5。c环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示而对于锂离子电池,则规定在常温,恒流(1C)恒压(4.2V)控制的充电条件下,充电3 h再以0.2C放电至2.75V时,所放出的电量为其额定容量电池容量,电池容量的单位有Ah,mAh(1Ah=1000mAh). 6. 什么是电池的放电残余容量? 对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量 7. 什么是电池的标称电压;开路电压;中点电压;终止电压? 电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。 开路电压指在外电路断开时,电池两个极端间的电位差; 终点电压指电池放电实验中,规定的结束放电的截止电压; 中点电压指放到50%容量时,电池的电压主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标 8. 电池常见的充电方式有哪几种? 镍镉和镍氢电池的充电方式: 1. 恒流充电:整个充电过程个中充电电流为一定值,这种方法最常见。 2. 恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小。

充电电池容量测试仪实现方案

充电电池容量测试仪实现方案 电池容量是衡量电池质量的重要指标。充电电池的容量测试有很多的方法。可以依据电池的放电曲线,进行短时间放电,从而粗略得出电池容量。这种方法最大的优点是快速,但是充电电池的放电曲线并不具有普遍性,很多劣质电池放电初期电压也很平稳,一旦进入中后期,电压下降非常迅速,所以采用这种方法得出的结论将非常不准确的。 最可靠最准确无误的还是以标准电流放电,全程测量实际放电时间的方式。不同的放电电流,充电电池最终能够释放出的电量是不同的,有一定的差距。蓄电池的容量标注都是有统一标准的。目前使用最多的是10小时率放电容量与20小时率放电容量两种。10小时率放电容量就是电池以恒定电流放电,至电量耗尽放电时间能够维持10个小时左右,这个电流就被称作10小时率电流(衡量电量用尽的标准,不能以电池放电端电压降低到零为准。电池过度放电,会导致电池容量减少,无法恢复,乃至提早损坏、完全失效。所以每种电池放电终止电压都有严格的规定,这个可以查阅相关资料。 过度放电与过度充电是造成充电电池不能达到使用年限、提前报废的主要原因)。实时放电的测量方法最大的缺点就是费时费力,因为耗时久这样测量精度也很容易受到各种外部因素的影响。测量过程中如果用10小时率电流持续放电时间至少都要在5个小时以上,作这样长时间的测试更需要足够的耐心与精力以及充裕的时间。科技的发展是非常迅速,今天单片机已经非常普及了。通过单片机程序控制对放电时间,深度进行自动化控制,就很容易精准测出电池的实际容量,实现整个过程的自动控制。模拟实际放电测量容量的方法虽然对能源有一点浪费,但是对于1A、2A以下的小容量充电电池还是完全可行的,对大容量电池进行抽样检查也是很有必要。 下面介绍的电池容量测试仪采用89S51作为控制芯片,图1就是硬件的电路原理图。 图1 硬件的电路原理图 这个电池容量测试仪由放电电路、单片机控制计时两个完全独立部分组合而成。单片机部分制作费时费力,而且市面上单片机已很普及,没必要亲手制作,随便找一片51单片机实验板就可以了。放电电路则是比较简单的,仅由四五只元件构成。单片机部分主要负责对放电时间计时,最终得到一组可靠的数据,用于电池性能的考量。 这种放电电路的实质就是一模拟可控硅。当我们将待测电池接入电路相应位置时,点按启动键,如果电池尚有余量,则电池两端放电电压将维持在设定值以上,三极管VT1就会瞬间饱和,电池通过电阻R2进行放电。这种电路有可靠精确陡峭的开关特性,VT1绝对工作于饱和截止两种状态之下。通过可调电阻对开关电路临界值(即充电电池放电终止电压)进行调节设定,便可适应于各种不同类型充电电池的全程保护放电。由于个人的应用不需要非常精准的测试结果,所以实际测试中电池模拟放电原则上还是以快些为好,只需要得到一个大致的电池容量。为了较快完成电池测试过程,这里的电路设计采用两小时率电流进行放电。通过对各种电池测量结果的横向比较,容量的差异还是显而易见的,以此作为衡量电池优劣的标准,就已经足够了。这里以1000mAH、1.2V规格镍氢电池测试为例,放电电流500mA就需要采用2Ω的放电电阻,电池终止放电电压应控制在1V以上。放电终止电压通过可调电阻R1来调节设定。普通可调电阻精度较差,且容易产生漂移,会导致设定好的终止电压随时间推移以及使用环境变化产生较大的波动。为了保证放电终止电压的精准且易于设定,R1可以使用3296系列精密可调电位器。3296多圈可调精密电位器的可调范围一般在50T,所以每圈的调节范围为2%,每转动一度,阻值变化大约0.005%,所以很容易调节获得一个精确、稳定的阻值。 终止电压的设定必须在实际放电过程中进行,负载电阻R2阻值变动,已经设定的终止电压也

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

电池电量检测方法及原理 pdf

FUEL GAUGE 电池电量检测方法及原理锂电池具有高存储能量、寿命长、重量轻和无记忆效应等优点,已经在现行便携式设备中得到了广泛的使用,尤其是在手机、多媒体播放器、GPS终端等消费类电子设备中。这些设备不但单纯地只是支持单一的通讯功能,还支持流媒体播放和高速的无线发送和接收等等功能。随着越来越多功能的加入且要获得更长单次充电的使用时间,便携式设备中锂电池的容量也不断地增大,以智能手机为例,主流的电池容量已经800mAH增长到现在1500mAH,并且还有继续增长的趋势。 随着大容量电池的使用,如果设备能够精确的了解电池的电量,不仅能够很好地保护了电池,防止其过放电,同时也能够让用户精确地知道剩余电量来估算所能使用的时间,及时地保存重要数据。因此,在PMP和GPS中,电量计不断加入到设备中,并且电量计也在智能手机中得到了应用,尤其是在一些Windows Mobile操作系统的智能手机中,如图1所示,电池电量的显示已由原来的柱状图变为了数字显示。 本文介绍和比较三种种不同电量计的实现方法,并且以意法半导体的STC3100电池监控IC为例,在其Demo实现了1%精度的电池精度计量。 (a)柱状图电量显示(b)数字精确电量显示 图1 Windows Mobile 手机中电量计量 1,电量计的实现方法和分类。 据统计,现行设备中有三种电量计,分别是: 直接电池电压监控方法,也就是说,电池电量的估计是通过简单地监控电池的电压得来的,尽管该方法精度较低和缺乏对电池的有效保护,但其简单易行,所以在现行的设备中得到最广泛的应用。然而锂电池本身特有的放电特性,如图2所示。不难从中发现,电池的电量与其电压不是一个线性的关系,这种非线性导致电压直接检测方法的不准确性,电量测量精度超过20%。电池电量只能用分段式显示,,如图1.a所示,无法用数字显示精确的电池电量。手机用户经常发现,在手机显示还有两格电的时候,电池的电量下降得非常快,也就是因为这时候电池已经进入Phase3。 图2 锂电池放电曲线

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

蓄电池容量检测方法

传统的蓄电池容量检测方法是进行整组核对性放电,即把蓄电池组连接到负载箱,然后进行放电,一直放到截止电压(没电)为止,来验证蓄电池的容量,但是这种方法有很多隐患和缺点: a、 电时间长,风险大,电池组须脱离系统,蓄电池组所存储的化学能全部以热能形式消耗掉,既浪费了电能又费时费力,效率低。 b、 行核对性放电试验,必须具备一定条件,首先,尽可能在市电基本保障的条件下进行;其次,必须有备用电池组 。 c、 目前,核对放电只能测试整组电池容量,不能测试每一节单体电池容量,以容量最低的一节作为整组容量,而其他部分电池由于放电深度不够,其劣化或落后程度还不能完全充分暴露出来。 d、 损蓄电池的容量。由于蓄电池的内部化学反应不是完全可逆的。全深度循环放电的次数是有限的,所以,不适宜对铅酸蓄电池频繁进行深放电。但是间隔时间过长,两次核对之间的蓄电池的状态是不确定的。蓄电池的容量下降到80%以下后,蓄电池便进入急剧的衰退状况,衰退期很短,可能在一次核对放电后几个月就失效,而在剩下的时间内电池组已存在极大的事故隐患。 内阻测试的原理: 通过大量的试验得出:蓄电池的内阻值随蓄电池容量的降低而升高,也就是说,当蓄电池不断的老化,容量在不断的降低时,蓄电池的内阻会不断加大。通过这个试验结果,我们可以得出,通过对比整组蓄电池的内阻值或跟踪单体电池的内阻变化程度,可以找出整组中落后的电池,通过跟踪单体电池的内阻变化程度,可以了解蓄电池的老化程度,达到维护蓄电池的目的。 对于VRLA蓄电池来说,如果内部电阻比基准值(平均值)增加20%以上,蓄电池性能则会下降到一个级低的水平。这个值也是IEEE STD建议立即采取纠正措施(放电试验或更换)的标准。IBEX1000则根据这个建议基准将报警值设定为20%。 相应的,VRLA蓄电池容量下降到80%以下时,蓄电池的老化程度就像在图形中的△T一样,该时间是无法预测的,同时容量衰减的速度会越来越块,而内阻值的增加也会越来越快。因此我们建议,及时更换蓄电池,以提高贵公司蓄电池系统的可靠性。 至今为止,实际应用的判别蓄电池健康状态的方法只用IEEE推荐的标准,因此我们建议,当蓄电池的内阻值增加20%以上,应考虑对此单元电池采取纠正或更换措施. 现在蓄电池的使用已经非常普遍,对蓄电池进行准确快速地检测及维护也日益迫切。国内外大量实践证明,电压与容量无必然相关性,电压只是反映电池的表面参数。国际电工IEEE-1188-1996为蓄电池维护制订了“定期测试蓄电池内阻预测蓄电池寿命”的标准。中国信息产业部邮电产品质量检验中心也提出了蓄电池内阻的相关规范(见YD/T799-2002)。蓄电池内阻已被公认是判断蓄电池容量状况的决定性参数。 内阻与容量的相关性是:当电池的内阻大于初始值(基值)的25%时,电池将无

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

相关文档
最新文档