@@纤维素酶水解机理及影响因素

@@纤维素酶水解机理及影响因素
@@纤维素酶水解机理及影响因素

收稿日期:2007-04-13

作者简介:黄翊(1980-),男,广东广州人,助理工程师,现从事石油化工设计工作。

纤维素酶水解机理及影响因素

黄翊

(广东省石油化工设计院,广东广州 510130)

摘要:对纤维素酶水解的机理进行了阐述,并初步探讨了各类因素对水解的影响。关键词:纤维素酶;水解

中图分类号:Q55 文献标识码:A 文章编号:1008-021X (2007)05-0029-03

The HydrolysisM echan ics of Cellulose and I nfluenc i n g Factor

HUAN G Yi

(Guangdong Petr oche m ical Engineering Design I nstitute,Guangzhou 510130,China )

Abstract :This text expound the hydr olysis mechanics of cellul ose,and p reli m inary discuss s ome influencing fact ors on hydr olyzati on .Key words :cellulase;hydr olyzati on

纤维素是自然界中最丰富的可再生资源之一,如将其以工业规模转化成葡萄糖的技术开发成功,那么纤维素资源便可成为人类食粮、动物饲料、发酵工业原料以及能源的新来源。但目前有效利用纤维素生物量的主要障碍是纤维素酶的酶解效率低,与淀粉酶比较相差2个数量级以上,进而导致纤维素酶解过程中纤维素酶的成本过高,约占纤维素糖化工艺的40%以上,从而严重阻碍了纤维素酶在纤维素糖化中的广泛应用。酶的固定化技术为提高纤维素酶的使用效率,降低成本,提供了可能性。因为固定化酶比游离酶具有较好的稳定性,并且可以重复使用和回收,又便于连续化操作,因而可以大大降低成本。1 反应机理

1.1 纤维素酶的作用机制及理化性质

纤维素酶是降解纤维素生成葡萄糖的一组酶的总称。目前普遍认为:完全降解纤维素至少需要有3种功能不同但又互补的纤维素酶的3类组分:EG (内切葡聚糖酶)、CBH (外切葡聚糖纤维二糖水解

酶)和CB (纤维二糖酶或β-葡萄糖苷酶),在它们的协同作用下才能将纤维素水解至葡萄糖。纤维素的降解过程,首先是纤维素酶分子吸附到纤维素表面,然后,EG 在葡聚糖链的随机位点水解底物,产生寡聚糖;CBH 从葡聚糖链的非还原端进行水解,主要产物为纤维二糖;而CB 可水解纤维素二糖为葡

萄糖。需要这三类酶的"协同"才能完成对纤维素的降解。其中对结晶区的作用必须有EG 和CBH,对无定形区则仅EG 组分就可以。

纤维素酶分子由催化结构域(catalytic domain,CD )、纤维素结合结构域(cellul ose -binding domain,CBD )和一个连接桥(linker )三部分组成。不同来源

的纤维素酶分子其特征和催化的活性不尽相同。酶分子都被糖基化,糖基化与蛋白质之间以共价键或解离的络合状态存在。酶分子糖基化的程度决定了酶的多形性和相对分子质量的差别。近年来,纤维素酶分子结构与功能的研究取得了一定的进展。不同来源内、外切酶的CD 晶体结构分析结果表明:纤维素酶遵循溶菌酶的作用机制;真菌和细菌来源的纤维素酶的CBD 的三维结构也得到了解析。真菌和细菌产生的纤维素酶分子差别很大,但它们的催化区在一级结构上氨基酸数量和二维结构上的大小却基本一致,但它们的连接桥和CBD 却存在明显的差异。真菌纤维素酶的连接桥一般富含Glu,Ser 和Thr,而细菌纤维素酶的连接桥则完全是由Pr o -Thr

这样的重复顺序组成。另一方面,真菌的CBD 由33~36个氨基酸残基组成,且具有高度的同源;而细菌纤维素酶的CBD 由100~110个氨基酸组成,同源性也较低。在高级结构的分子形状上,真菌纤维素酶的CD 、连接桥和CBD 呈直线连接,CD 与CBD 间为180°,而细菌纤维素酶的连接桥CD 与CBD 之

间呈135°。有限酶切时,真菌纤维素酶只具有一个

酶切位点,在靠近CD 与连接桥边结区,酶切时可将CBD 与连接桥一并切去,而细菌的外切酶具有两个

酶切位点,有限酶切时,可将CBD 和连接桥分别切去。真菌的外切酶的CBD 的结构形状呈“楔型”,一面亲水,另一面疏水;结构中芳香族氨基酸只有3个Tyr,它们位于平坦的亲水面,执行吸附纤维素的功能;细菌外切酶的CBD 很大,且包含很多芳香族氨基酸,它们中的Tr p54和Tr p72暴露于蛋白分子表面,执行吸附功能。真菌纤维素酶合成后分泌到胞外,它们对纤维素的降解通过内、外切酶之间的协同作用,枯草杆菌、假单孢杆菌、纤维单孢菌可产生胞外内切纤维素酶,而无外切纤维素酶的形成。高

温厌氧纤菌一般形成“纤维素酶小体”(cellul os ome )并在胞壁上形成一个外凸的“小刺”来降解底物。

通常,细菌纤维素酶的降解效率低于真菌。现代基

因克隆技术使纤维素酶系中的单组分酶的分离变得容易,通过基因测序可预推酶蛋白中的功能区及其二级和三级结构[1]

。20世纪80年代至今已有上百种纤维素酶基因被克隆测序,发现氨基酸序列同源性,不只局限于相同来源的同类酶之间,相近种属如细菌、放线细菌、真菌及高等植物的不同类型酶之间,也存在不同程度的同源性。

目前,纤维素酶分解纤维素的分子机制以及结构尚待进一步阐明,将来,以生物化学理论作为依据,采用蛋白质工程方法、构建具有可完全降解结晶纤维素的纤维素酶分子,同时结合底物预处理等技术使其能在生物反应器中高效和重复使用,以提高纤维素酶生物催化活性的效率,应是纤维素酶得以应用的重要途径。

1.2 Sol -gel 法包埋生物分子基本过程

S ol -gel 法包埋生物分子的基本过程可参见图1

图1 Sol -gel 法包埋生物分子过程示意图

首先,前驱体在催化剂作用下发生水解形成均一的溶胶溶液,此时加入生物分子,随着凝胶网络结构的形成和固化,生物分子被逐步包埋于凝胶孔中。

Sol -gel 法是物理包埋过程,凝胶网络是围绕

生物分子逐渐形成的,对生物分子尺寸无特殊要求;温和的反应条件和凝胶的非晶态结构都有利于保持生物分子的结构完整性和表面微观结构的各向同性;常用的基质材料Si O 2比有机聚合物具有更好的化学和热稳定性,且坚固、抗磨,不易变形。另外,

Sol -gel 中含有足够多的间隙水(interstitial water ),可以为生物分子提供与水溶液环境相同的微环境,从而保持生物分子的反应活性[2]

。Sol -gel 包埋生物分子(如酶)用于实际反应(如酶促反应)时,反应效果不仅取决于生物分子的活性,还与凝胶网络微观结构密切相关

[3]

。作为催化剂的酶是被束缚在

固体中的,底物分子必须扩散到含酶的凝胶表面和内部才能与酶接触并发生反应,同样,生成的产物也要不断扩散出凝胶。因此反应效果还取决于底物和

产物在溶液和基质间的分配以及底物到达酶处和产物离开基质的扩散阻力。Sol -gel 法在基质结构设计和裁剪方面具有巨大的优势。通过调节反应条件,Sol -gel 法形成的基质孔大小可被控制在适宜的尺寸,既可将生物分子牢固地束缚在凝胶网络中,又便于底物和产物的扩散以及底物与生物分子间的反应。但目前这一方面的研究大多还只停留在工艺水平,缺乏定量的理论指导。

针对传统Sol -gel 过程在生物分子包埋方法的缺陷,人们提出了如下改进措施:①采用超声波促进前驱体的溶解,提高多组分体系的均一分散度和凝胶化速度而无须再外加醇作共溶剂;②在水解后的溶胶中加缓冲溶液调节pH 值,同时稀释水解过程中产生的醇,创造更适宜生物分子的包埋环境;③在低温下老化。

通过这些改进,至今已有许多种类的酶和其他蛋白质被包埋于Sol -gel 法形成的基质中,如葡萄糖氧化酶、铜锌超氧化物歧化酶、细胞色素C 、肌红

蛋白、血红蛋白、过氧化氢酶、脂肪酶、大豆过氧化酶、脲酶等,研究表明包埋生物分子的活性得到了很大提高,一般可达到未包埋时的30%~100%,甚至超过了相同条件下在溶液中的活性。

2 分析讨论

由以上机理及性质可知,酶分子容易受外界环境影响,进而影响水解效果,从这种变化关系我们可以总结出酶法水解的影响因素。

2.1 预处理对酶解的影响

预处理不同程度上引起了结晶度的下降,一般地说,结晶区难以被纤维素酶破坏、降解。纤维素结晶度的下降有利于纤维素酶的水解。预处理条件下纤维素植物的可溶木质素含量提高,溶出的木质素含量越高,说明天然植物纤维中木质素减少越多,木质素分布在植物细胞壁的胞间层,由于木质素的破坏、溶出,便会破坏天然植物纤维的结构,有利于纤维素酶的水解作用。预处理后其结晶度下降、可溶木质索含量较高,纤维形态变化较大,因而推测植物纤维的结晶度、木质素含量及纤维结构形态均一定程度上影响着纤维素酶对纤维素的作用。

2.2 纤维素结构对酶解影响

纤维素是由许多D-葡萄糖残基以β-1,4糖苷键联结而成的多糖。它的聚合度范围非常宽。纤维素链之间存在着氢键,通过氢键的缔合作用,形成纤维束,分子密度大的区域,成平行排列,形成结晶区;分子密度小的区域,分子间隙大,定向差,形成无定形区;同时又被木质素和半纤维素包围着,形成一种很牢固的结构,所以完整的纤维素高度不溶于水,难于被降解。而且,不同原料纤维结构的复杂程度也不一样。据文献报道,纤维素底物对酶解的敏感度受其结构的影响很大,包括纤维中木质素的含量、比表面积、结晶度及聚合度。因此要提高酶解效率,必须破坏木质素和半纤维素的结合层,改变纤维素的晶体结构。

2.3 酶和酶用量对酶解的影响

纤维素酶是一种复合酶,不同微生物合成的纤维素酶在组成上有显著的差异,对纤维素的酶解能力也不大相同。关于纤维素酶生产菌主要有细菌,放线菌和丝状真菌等,但对纤维素作用较强的菌株多是木霉属(Trichoder ma)、曲霉属(A s pergillus)、青霉属(Penicilliu m)、Pellienlalia属和枝顶孢霉属(Acre moniu m)的菌株,特别是绿色木霉(Trichoder mauirde)及其近缘菌株。由里氏木霉(Trichoder mareesei)产生的纤维素霉目前应用最广,该酶系中通常含有高活力的内切型及外切型β-葡聚糖酶,但纤维二糖酶活力很低,而许多曲霉属菌种如黑曲霉(A s pergillusniger)等能产生高活力的纤维二糖酶,酶解时常将里氏木霉与黑曲霉产生的酶制剂按一定比例配合使用,能起到更好效果。纤维素酶用量对酶解也有影响,在一定酶浓度范围内,随着酶量的增加,纤维素酶解率增大。文献报道,用纤维素酶对麦草进行酶解,在5g底物中,酶用量100mg 之前,酶解速率增加较快,100mg之后,增加缓慢,说明一定量的纤维素在一定条件下,纤维素分子能和酶分子结合的结合点数有限,当这些结合点全部被纤维素酶分子占据后,再增加纤维素酶用量,起不到酶解作用;另一方面从经济角度考虑,酶用量也要尽可能的少。在一定酶用量下,要进一步提高酶解效率,应从提高底物对酶的亲和性以及改良酶系组成等方面深入研究。

2.4 温度和pH值对酶解的影响

大部分纤维素酶的活性受其环境的温度和pH 值的影响。在最合适的pH值下,酶反应具有最大速度,高于或低于此值,反应速度下降。纤维素酶的最适pH值一般在4.5~5.5范围内。温度也是影响纤维素酶解的重要因素,一般纤维素酶的最适温度范围是40~60℃,所以酶法水解时,不同的酶,不同的反应条件,要选择相应的最适pH值和最适温度。

2.5 抑制剂和活化剂对酶解的影响

纤维素酶可由酶促反应的产物和类似底物的某些物质引起竞争性抑制,比如纤维二糖,葡萄糖和甲基纤维素通常是纤维素酶的竞争性抑制剂;植物体内的某些酚、单宁和花色素也是其天然的抑制剂;卤化物、重金属、去垢剂和染料等也能使其失活。特别是酶解过程中,产生的纤维二糖和葡萄糖,对整个反应形成明显反馈抑制,使得酶解效率不高。为了消除这种反馈抑制,国内外展开了大量研究,提出了许多酶解新工艺。人们在研究过程中还发现许多物质对纤维素酶具有激活作用,如Mg2+、CoCl

2

、Ca2+、Ca3(P O4)2和中性盐类等能使纤维素酶活化,并且在酶作用条件改变后,一些物质可在抑制剂和活化剂之间转换。

3 结论

酶的生物活性受外界环境影响较大,如温度、pH值、预处理、添加剂等。纤维素酶解的研究,虽然至今只有十几年的历史,但取得的成绩却是令人鼓

(下转第44页)

用企业"荣誉称号。

多年来,红日阿康公司着力实施生产、流通、消费者三赢的经营策略,在全国各地选择那些有实力、经营有方、信誉好的客户与之联合,结成战略伙伴关系,增强厂商双方的合作信心。截至目前,公司生产的复合肥已覆盖除西藏和台湾以外的所有省份,市场份额在国内同行业保持领先水平。

经过多年的建设和发展,公司目前已拥有配套完整的生产装置,硫酸、磷酸、合成氨等主要复合肥生产原料实现了自给自足,并且管理严格,工艺先进,竞争优势明显。主导品牌艳阳天获得"中国名牌"、"国家免检"、"复合肥市场用户满意首选品牌"等多项荣誉称号。2006年,公司综合实力在中国化工企业的排名上升了100位,产品市场占有率、售后回访满意率等均居全国同行业前列。

2007年,红日阿康公司将投资1.89亿元用于发展建设磷石膏、醇氨扩能改造、高氮多彩缓释肥料、盐酸净化、硫酸低位热能回收利用和有机质生物肥料6大项目,新项目的建设将大大提高公司的市场竞争力,新产品的开发,也将为广大经销商增添新的利润增长点。

(山东红日阿康公司 李从容)东明石化将加大重点开发建设项目力度

今、明两年内,东明石化将持续加大固定资产投资力度,计划投资30亿元,进一步扩大原油一次加工能力,解决原料运输瓶颈,抓好离子膜等化工项目的建设,促进公司全面、持续、快速、健康发展。

为加大对原装置扩能改造力度,确保东明石化达到600万t加工能力,东明石化计划今、明两年内对100万t/a重交沥青装置、150万t/a常减压装置扩能改造,到08年底,使原油一次加工能力达到600万t/a,同时对15万t/a催化装置、25万t/a催化裂解装置、60万t催化装置以及罐区、循环水场等公用工程进行配套扩能改造。

解决原料运输瓶颈,打造"原油、成品物流大动脉"。东明-日照输油管道项目是东明石化的战略性项目,该项目建成后,将形成"进口原油-码头-中转库-管道输送-内直加工-成品铁路外运"一条完整的原油、产品物流运输体系。该管道总长约446k m,年输送能力为1000万t,该项目投产后年可实现管输收入4.6亿元,利润1.26亿元。目前,立项报批工作已全面展开,计划8月份完成,预计下半年可进入建设阶段。

加快发展步伐,积极实施化工转型。15万t/a 离子膜烧碱项目是东明石化氯碱化工、实施化工转型的标志性工程。目前,该项目已进入人员培训、工程打桩阶段,计划7月份达到开工条件,完成一期工程建设,达到6万t生产能力。同时东明石化计划明年6月份完成二期工程建设,形成15万t/a生产能力。

其它如新建设60万t催化裂解装置、甲醇项目等正在做进一步考察论证,起草可行性分析报告,预计在不久的将来,各项工程将按预定计划全面进入建设阶段。

(东明石化集团 乔付刚)

(上接第31页)

舞的。随着人们对纤维素酶研究工作的深入,纤维素酶必将在食品、饲料、环境保护、能源和资源开发等各个领域中发挥越来越大的作用。如何加大对纤维素酶研究和开发的科技投入和经费投入,改变目前规模小,工艺、设备落后,菌种酶活低、生产成本高、生产技术水平低下的现状。尽快采用各种行之有效的高新技术,发展具有中国自己知识产权的新酶种、新产品、新剂型,满足市场的需求,是当务之急。纤维素酶作为大有发展前途的新兴产业之一,前景光明,大有希望。

参考文献

[1]H ideki Baba.Devel opment of bi oconversi on of cellul osic wastes[J].M ic mb Technol,1993,(11):18~26.

[2]Dave B C,Dunn B,Valentinej S,et al.s ol-gel encap sulati on methods f orbi osens ors[J].Analytical Che m istry, 1994,66(22):1120A~1127A.

[3]Bhatia R B,B rinker C J.Aqueous s ol-gel pr ocess f or p r otein encapsulati on[J].Che m Mater,2000,(12):2434~2441.

纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究 摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理; 0引言 纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。 1 纤维素酶的性质 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。 纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。 2 纤维素酶的作用原理 (1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。 (2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。 (3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。 (4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

纤维素酶的应用

纤维素酶的应用 1 在动物饲料中的应用 纤维素酶的应用开始于上世纪80年代早期,首先应用于动物饲料中。它的营养作用机理主要在于以下几个方面。 1)毁植物细胞壁,释放胞内养分。植物细胞内的营养物质由植物细胞壁包裹,植物细胞壁主要由纤维素、半纤维素和果胶组成。纤维素酶可在半纤维素酶、果胶酶等协同作用下破坏细胞壁,使细胞内容物释放出来以利于进一步降解提高吸收率,同时也增加了非淀粉多糖的消化进而改善了高纤维饲料的利用率。 2)补充动物内源酶的不足,剌激内源酶的分泌。虽然草食动物能通过体内的微生物合成部分纤维素酶,但酶量有限,使粗纤维的消化吸收受到一定限制,而补充纤维素酶制剂则可明显提高对纤维素的利用率。对鸡、猪等单胃动物而言,其体内缺乏内源性纤维素酶,补充纤维素酶可以弥补这一缺陷,提高对纤维素的消化利用能力。同时,添加纤维素酶后,动物消化道酶系的组成、酶分泌量及活性可以得到改善,并改善消化道环境,增加酸度,激活胃蛋白酶。因此,畜禽日粮中添加纤维素酶对幼龄动物及病态和应激状态下的成年畜禽尤为重要,因为此时动物消化酶分泌量明显下降,添加纤维素酶效果会更为显著。 3)缓解或消除饲料抗营养因子的影响。果胶、半纤维素、β- 葡聚糖及戊聚糖能部分溶解于水中并产生粘性,增加了动物胃肠道内容物的粘度,对内源酶来说是一个屏障,降低了营养物质的消化吸收。而补充纤维素酶后,能在半纤维素酶、果胶酶、β- 葡聚糖酶等的协同下将纤维素、半纤维素、果胶、戊聚糖等大分子物质降解为单糖和寡糖,从而降低粘稠度,促进内源酶的扩散,增加养分的消化吸收。 4)促进小肠对营养物质的吸收。纤维素酶具有维持小肠绒毛形态完整,促进营养物质吸收的功能。 在实际生产中通常将纤维素酶与半纤维素酶、果胶酶、β- 葡聚糖酶等组成复合酶制剂用于

盐类水解影响因素的教案

第三节盐类的水解 第二课时影响盐类水解的主要因素 榆中一中化学组卢静 一、教学目标 1.知识与技能:掌握盐类水解的影响因素(内因、外因) 2.过程与方法:通过问题探究方法,总结归纳影响盐类水解的因素 3.情感态度与价值观:树立理论联系实际的思想,学会用辩证的观点看问题 二、教学重难点 1.教学重点:影响盐类水解的因素(外因) 2.教学难点:影响盐类水解的因素(外因) 三、教学方法问题探究、实验探究、讨论、归纳等方法 四、教学过程 【复习】 1、盐类水解的规律: 2、下列盐溶液的酸碱性,(1)NaNO3 (2)NaHCO3 (3)Na2SIO3 (4)NH4Cl (5) AlCl3 【导入】影响化学反应速率的因素有哪些?影响化学平衡移动的因素又有哪些呢?那么,这些因素是不是也影响盐类的水解平衡呢? 【问题探究1】通过上述盐溶液的酸碱性判断它们pH大小顺序来探究一下的几个问题: (1)上述三种盐溶液的碱性不同,说明什么? (2)强碱弱酸盐溶液的碱性强弱与对应弱酸有何关系? (3)思考影响盐类水解的主要因素是什么? 【小结1】 【板书】影响盐类水解的因素 1.内因(主要):盐本身的性质(越弱越水解) 【练习1】现有相同物质的量浓度的三种钠盐NaX、NaY、NaZ的溶液,测得它们的PH分别为7、8、9,请将他们对应的酸(HX、HY、HZ)按酸性由强到弱的顺序排列,并说明理由

【小结2】 【板书】2.外因: 【活动探究】通过探究促进或抑制FeCl3水解的条件,了解影响盐类水解的因素。【小结3】盐类水解是中和反应的逆反应(吸热反应) 【板书】2.外因:(1)温度:升温促进水解 (2)加水:越稀越有利于水解 (3)加酸 【小结4】【板书】(4)加易水解的盐:同类抑制,异类促进 【课堂反馈】 1.下列物质的水溶液在加热时pH变小的是 ( )。 2.A. 氯化铁 B. 氯化钠 C. 盐酸 D. 碳酸钠 【作业】课时作业本 五、板书设计影响盐类水解的因素 1. 内因(主要):盐本身的性质(越弱越水解) 2. 外因: (1)浓度:越稀越水解 (2)温度:升温促进水解 (3)外加酸碱 (4)加易水解的盐(同类抑制,异类促进) 六、教学反思

酶的作用机理 模型

酶 山东省青岛市城阳第一高级中学高二(二)班 作者姓名:孙一丹王辉韩德琛 指导教师:杨永丰 摘要:大千世界,无奇不有,最奇莫过于生命:而生命,则是一大群化学反应的有机结合体。在这不计其数的反应中,酶,作为其中极重要的一员,无时无刻不控 制影响着生命体的新陈代谢。下面我们将探索神奇的酶世界。本文中将介绍一 种我们自主设想的模型——“带孔的橡皮球”,浅释酶的催化原理。 注:本文中图片均为借助画图板工具手工绘制。 关键词:酶催化原理酶工程 酶的神奇 氧分子是很挑食的,如果不同时给它四个电子,它就不吃。似乎这么慷慨大方的只有碱金属,要不然,谁愿意在常温下给那么多电子啊。但在生物体内却大不相同。是什么能让有机物在体内安静的与氧分子化合?是酶。纤维素是由D-葡萄糖以β1,4-糖苷键连接而成的,如果靠氢离子来分解,需要稀酸加压或浓酸才能催化,而一些以纤维素为碳源的细菌真菌,则可以通过纤维素酶在温和的条件下来分解它们,从而得到养分。 一且生物的几乎所有的生命活动都离不开酶,正是因为有酶协调有序参与才使生命新陈代谢有条不紊地进行着。 酶为什么有这么强大的功能? 下面我们来探讨这个问题。 关于酶 酶是一种高效的生物催化剂,其化学本质是蛋白质。当然也有少数酶是RNA,叫做核酶。所以要认清酶的真面目,首先要搞明白蛋白质的化学情况。 一、蛋白质档案 蛋白质的基本组成单位是氨基酸。在500余种天然氨基酸中,只有20种参与构成了绝大多数的蛋白质。由于除了甘氨酸之外的氨基酸都含有手性碳原子,所以氨基酸有L和D之分。构成生物体的氨基酸基本是L型。 根据其侧链集团的性质,这20种氨基酸可分为酸性氨基酸、碱性氨基酸和非极性氨基酸。 由氨基酸互相脱水缩合而形成的聚酰胺肽长链,叫做肽链。肽链的羧基端称为C-端,氨基端称为N-端。蛋白质是有一条或多条肽链构成的,有的还携有辅酶或辅基、金属离子。 蛋白质是有其构成层次的。1951年丹麦生物化学家Linderstrom-Lang第一次提出蛋白质的一、二、三级结构概念,1958年美国晶体学家Bernal提出蛋白质的四级结构概念。后经国际生物化学与分子生物学协会(IUBMB)的生化命名委员会采纳并作出定义。 一级结构是指蛋白质肽链中氨基酸的种类和排列顺序。如:

纤维素酶的介绍 应用 前景

纤维素酶的生产方法及在食品行业的应用 纤维素酶的生产方法及在食品行业的应用 纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。 纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。 纤维素酶的来源 纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。 目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichoder mavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。 现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。 纤维素酶的生产方法 目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。 固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产

厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。 液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。 纤维素酶的应用 制酒 在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出 酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。 将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,

@@纤维素酶水解机理及影响因素

收稿日期:2007-04-13 作者简介:黄翊(1980-),男,广东广州人,助理工程师,现从事石油化工设计工作。 纤维素酶水解机理及影响因素 黄翊 (广东省石油化工设计院,广东广州 510130) 摘要:对纤维素酶水解的机理进行了阐述,并初步探讨了各类因素对水解的影响。关键词:纤维素酶;水解 中图分类号:Q55 文献标识码:A 文章编号:1008-021X (2007)05-0029-03 The HydrolysisM echan ics of Cellulose and I nfluenc i n g Factor HUAN G Yi (Guangdong Petr oche m ical Engineering Design I nstitute,Guangzhou 510130,China ) Abstract :This text expound the hydr olysis mechanics of cellul ose,and p reli m inary discuss s ome influencing fact ors on hydr olyzati on .Key words :cellulase;hydr olyzati on 纤维素是自然界中最丰富的可再生资源之一,如将其以工业规模转化成葡萄糖的技术开发成功,那么纤维素资源便可成为人类食粮、动物饲料、发酵工业原料以及能源的新来源。但目前有效利用纤维素生物量的主要障碍是纤维素酶的酶解效率低,与淀粉酶比较相差2个数量级以上,进而导致纤维素酶解过程中纤维素酶的成本过高,约占纤维素糖化工艺的40%以上,从而严重阻碍了纤维素酶在纤维素糖化中的广泛应用。酶的固定化技术为提高纤维素酶的使用效率,降低成本,提供了可能性。因为固定化酶比游离酶具有较好的稳定性,并且可以重复使用和回收,又便于连续化操作,因而可以大大降低成本。1 反应机理 1.1 纤维素酶的作用机制及理化性质 纤维素酶是降解纤维素生成葡萄糖的一组酶的总称。目前普遍认为:完全降解纤维素至少需要有3种功能不同但又互补的纤维素酶的3类组分:EG (内切葡聚糖酶)、CBH (外切葡聚糖纤维二糖水解 酶)和CB (纤维二糖酶或β-葡萄糖苷酶),在它们的协同作用下才能将纤维素水解至葡萄糖。纤维素的降解过程,首先是纤维素酶分子吸附到纤维素表面,然后,EG 在葡聚糖链的随机位点水解底物,产生寡聚糖;CBH 从葡聚糖链的非还原端进行水解,主要产物为纤维二糖;而CB 可水解纤维素二糖为葡 萄糖。需要这三类酶的"协同"才能完成对纤维素的降解。其中对结晶区的作用必须有EG 和CBH,对无定形区则仅EG 组分就可以。 纤维素酶分子由催化结构域(catalytic domain,CD )、纤维素结合结构域(cellul ose -binding domain,CBD )和一个连接桥(linker )三部分组成。不同来源 的纤维素酶分子其特征和催化的活性不尽相同。酶分子都被糖基化,糖基化与蛋白质之间以共价键或解离的络合状态存在。酶分子糖基化的程度决定了酶的多形性和相对分子质量的差别。近年来,纤维素酶分子结构与功能的研究取得了一定的进展。不同来源内、外切酶的CD 晶体结构分析结果表明:纤维素酶遵循溶菌酶的作用机制;真菌和细菌来源的纤维素酶的CBD 的三维结构也得到了解析。真菌和细菌产生的纤维素酶分子差别很大,但它们的催化区在一级结构上氨基酸数量和二维结构上的大小却基本一致,但它们的连接桥和CBD 却存在明显的差异。真菌纤维素酶的连接桥一般富含Glu,Ser 和Thr,而细菌纤维素酶的连接桥则完全是由Pr o -Thr 这样的重复顺序组成。另一方面,真菌的CBD 由33~36个氨基酸残基组成,且具有高度的同源;而细菌纤维素酶的CBD 由100~110个氨基酸组成,同源性也较低。在高级结构的分子形状上,真菌纤维素酶的CD 、连接桥和CBD 呈直线连接,CD 与CBD 间为180°,而细菌纤维素酶的连接桥CD 与CBD 之

高中化学专题3溶液中的离子反应3.3盐类的水解第1课时影响盐类水解的因素教案苏教版选修4

第三单元盐类的水解 第2课时影响盐类水解的因素 (1)三维目标 知识与技能目标 1.理解温度等外界条件对盐类水解反应的影响、水解平衡移动的分析。 2.了解水解原理的应用。 过程与方法目标 1.通过各类盐的水解规律分析、各类盐水解后对溶液酸碱性的影响的分析,掌握判断盐类溶液酸碱性的规律和方法。 2.通过对盐类水解的微观分析,提高用微观规律分析宏观现象的能力。 3.通过盐类水解原理的应用,提高运用弱酸和弱碱的电离、水的电离和盐类水解等基本原理解决实际问题的能力。 情感态度价值观目标 1.通过对盐类水解的规律的总结,体会事物变化的那种丰富多彩的内在美。 2.通过盐类水解中丰富多样的实验现象、多姿多彩的变化规律,培养学生学习化学的兴趣。(2)教学重点 影响盐类水解因素。 (3)教学难点 盐类水解规律的应用。 (4)教学建议 盐类的水解涉及的知识面广,综合性较强,是前面已学过的电解质的电离、水的电离平衡和水的离子积,以及平衡移动原理等知识的综合应用。盐类的水解是本章教材的教学重点和难点。盐类水解的应用,是在学习盐类水解的本质及规律的基础上,研究盐类水解达到平衡后,如何改变温度、浓度等外界条件,克服盐类水解的不利影响,使盐类水解向有利的方向移动。 本节是盐类水解理论知识的迁移应用,培养学生应用理论知识解决实际问题的能力。本节重点是盐类水解的几点应用,关键是应用盐类水解平衡解决问题。通过学习,使学生加深对盐类水解理论知识的认识,同时提高学生的动手实验能力,培养科学的探究方法,培养一丝不苟的科学态度。

运用“诱思探究”思想的教学规律:善诱则通,善思则得;诱思交融,众志成城。盐类水解的应用是盐类水解知识的迁移运用。在设计这节课的时候,以问题为主线,以思维为主攻,以实验探究为手段,课前分好探究小组,每四人为一组,把本节课用到的实验仪器及药品按组准备好,课堂上综合调动学生动手做、动脑思、动笔写、动口议、动耳听、动眼看、动情读,组织学生分组讨论,分组实验,充分实现学生的主体地位,整节课让学生动起来,在轻松、愉快、合作、探究的氛围中自主获得知识,锻炼能力。 新课导入设计 导入一 一、(课件投影)创设情境,回忆规律 请回答下列问题: 1、影响盐类水解的因素有哪些? 2、盐类水解的规律有哪些? 3、写出下列物质水解反应的离子方程式,并指出溶液的酸碱性。 CH3COONa、Na2CO3、AlCl3 (设计意图:以复习的形式提出问题,唤起学生对以往知识的回忆,为顺利完成学习任务而奠定理论基础。) (简要实录:学生以小组为单位踊跃发言,并派代表上讲台把第3题的答案写在黑板上。)二、运用理论,归纳应用 (一)(课件投影)判断下列盐溶液的酸碱性 1、NaHCO3 2、KCl 3、Cu(NO3)2 4、KClO 5、NaF (设计意图:通过简单实例判断盐溶液的酸碱性,使学生理解盐类水解的实质,实现知识从感性认识到理性认识的螺旋式上升。) (简要实录:学生热烈讨论,相互表达,运用盐类水解规律顺利得出结论。) 导入二 【引言】我们已经知道盐溶液不一定是中性溶液,其原因是由于盐类的水解。本节课的内容是复习水解实质、规律及相关知识在解决实际问题中的应用。 【学生活动】回忆思考有关盐类水解的概念及其规律。 【投影演示】(1)少量CH3COONa固体投入盛有无水乙醇的培养皿,滴加几滴酚酞,然后再加入少量水。(2)少量镁粉投入盛有NH4Cl水溶液的培养皿。

年产300吨纤维素酶工厂的初步设计

年产300吨纤维素酶工厂的初步设计

摘要 纤维素是年产量巨大的可再生性资源,地球上每年光合作用生成的上亿吨生物质中,纤维素占了近一半。目前,自然界中纤维素只有一小部分得到了利用,绝大多数纤维素不仅被白白浪费,而且还会造成环境污染。利用这一年产量巨大的可再生性资源将其转化为人类急需的能源、食物和化工原料,对于人类社会的可持续性发展具有非常重要的意义。 本设计采用目前认为是最好的产纤维素酶的菌种里氏木霉作为发酵菌种,液体深层发酵过程中采用变温发酵的方法分别控制菌种的生长和产酶,提取过程中采用超滤、层析等,提高产品的收率。最后采用喷雾干燥做成固态的酶制剂。 本设计的主要内容有:工厂总平面布置、全厂工艺流程设计、工艺计算、设备的计算与选型、成本核算;另外,完成设计图纸8张,有工厂总平面布置图、工艺流程图(3张)、发酵罐设计图、种子罐设计图、发酵车间设备布置图(平面图和立面图)。根据全厂工艺设计和计算结果可以看出,该设计能够达到工业生产的要求。 关键词:纤维素酶;液体深层发酵;里氏木霉

目录 1 绪论1 1.1纤维素酶简介1 1.2纤维素酶的研究状况 1 1.2.1国外研究概况 (2) 1.2.2国内研究概况 (3) 1.3 纤维素酶的应用 4 1.3.1 纤维素酶在果实和蔬菜加工上的应用 (4) 1.3.2 纤维素酶在酱油酿造上的应用 (4) 1.3.3 纤维素酶在酒精发酵中的应用 (5) 1.3.4纤维素酶在饲料上的应用 (5) 1.3.5在麻棉混纺织物后整理中的应用 (6) 1.3.6其它 (6) 1.4纤维素酶的发展前景 6 1.5纤维素酶的生产6 1.5.1固体发酵生产纤维素酶 (6) 1.5.2液体深层发酵生产纤维素酶 (7) 1.5.3固定化酶和细胞 (9) 1.6目前国内的有关情况 9 1.6.1国内的需求情况 (9) 1.6.2主要技术指标 (9) 1.6.3国内几大生产厂家 (10) 1.7本设计的目的和内容 10 1.7.1本设计的目的 (10) 1.7.2本设计的主要内容 (10) 2 全厂工艺流程及论证12 2.1无菌空气工艺论证12 2.1.1无菌空气制备系统工段工艺论证 (12) 2.2发酵工段工艺论证13 2.2.1发酵工艺流程 (13) 2.2.2菌种选取 (13) 2.2.3培养基 (14) 2.2.4生产方法 (14) 2.2.5发酵过程的控制 (14) 2.3后提取工段工艺论证 15 2.3.1后提取工艺流程 (15) 2.3.2提取方法论证 (15) 3 纤维素酶的工艺计算18

纤维素酶的水解机制和作用条件

纤维素酶的水解机制和作用条件 纤维素酶对大家来说已经不陌生,现在已经广泛应用在工业生产过程中,纤维素酶在植物提取和饲料中的功能是其他产品所无法替代的。然而纤维素酶在其发展过程中经历了漫长的过程,随着越来越多的生物学家对其进行研究,纤维素酶的水解过程才逐渐被人们掌握。下面详细介绍纤维素酶的研究过程和其水解机制。 1 纤维素酶的研究过程 在自然界中,绝大多数的纤维素是由微生物通过分泌纤维素酶来进行降解的。早在l850年,Mifscherlich己经观察到微生物分解纤维素现象。但纤维素酶的研究则是从1906年Seilliere在蜗牛消化液中发现了分解天然纤维素的酶,以后才逐渐开始的。1912年 Pringsheim 从耐热性纤维素细菌中分离出纤维素酶。1933年Grassman分辨出了一种真菌纤维素酶的两个组分。1954年,美国陆军 Natick实验室开始研究军用纤维素材料微生物降解的防护问题,后来发现纤维素经微生物降解后,可产生经济、丰富的生产原料,并且有望解决自然界不断产生的固体废物问题,于是纤维素酶得到了广泛的关注。 2 纤维素酶的水解机制 关于纤维素酶水解的机制至今仍无完全统一的认识,目前普遍接受的理论主要为协同理论。该理论认为,纤维素的酶水解过程是由C1酶、Cx酶、β-葡萄糖苷酶系统作用的结果,水解过程为:先是Cx酶作用于纤维素分子非结晶区内部的β-1, 4糖苷键,形成短链的β-寡聚糖;C1酶作用于β-寡聚糖分子的非还原末端,以二糖为单位进行切割产生纤维二糖;接着,部分降解的纤维素进一步由C1酶和 Cx酶协同作用,分解生成纤维二糖、纤维三糖等低聚糖;最后由β-葡萄糖苷酶作用分解为葡萄糖。纤维二糖对CBH和EG有强烈抑制作用,β-葡萄糖苷酶 BG将纤维二糖和纤维三糖水解为葡萄糖,从反应混合物中除去抑制。

纤维素酶在织物整理中的应用

第25卷第3期2004年6月 纺织学报 Joumalof7rextileResearch V01.25。No.3 Jun.,2004 ?综合述评? 纤维素酶在织物整理中的应用 周秀梅夏黎明 (浙江大学材料与化学工程学院,杭州,310027) 摘要:综述了纤维紊酶在牛仔布仿旧、纺织品生物抛光中的应用,指出目前纤维素酶生物整理中存在的问题及发展前景。 关键词:纤维素酶棉纺织物生物抛光 中图分类号:Ts195.6文献标识码:A文章编号:0253.972l(2004)03.0114.02 酶用于纺织行业的历史悠久,最初是应用于退浆。近年来,利用纤维素酶在纺织品加工中的应用日益广泛。目前,国内外纺织行业已将这一生物整理技术广泛应用于工业生产中。 1纤维素酶的作用原理【1j 纤维素酶是水解纤维素、生成葡萄糖的一组酶的总称。它主要包括3类性质不同的酶:内切型.B.葡聚糖酶、外切型.p.葡聚糖酶和p一葡萄糖苷酶。 在纤维素降解过程中,首先由内切酶作用于微纤维的非结晶区,使其露出许多末端供外切酶作用,产生纤维二糖,最后由8.葡萄糖苷酶作用将其分解成葡萄糖。作为纺织工业用纤维素酶,它不需要将棉纤维素分解成葡萄糖,而只要破坏棉纤维束分子间的氢键,松散棉纤维柬的结构,或者部分降解纤维素分子长链,即可达到工艺要求。 2纤维索酶在纺织品生物整理中的应用心’3】纤维素酶作为一种高效生物催化剂,因其具有可降解性及对织物能产生可控的整理而广泛应用于纺织行业。其中,牛仔布的仿旧整理及纺织品的生物抛光是纤维素酶最成功的应用。 2.1牛仔布的仿旧整理 蓝色牛仔服在近些年来越来越受到人们的青睐。在20世纪70年代后期及80年代初期,工业上主要采用浮石洗工艺去除纤维表面的染料,以达到霜白效果。 采用纤维素酶洗涤不仅能对纤维表层进行可控的“刻蚀”,使织物产生不均匀的褪色,而且对织物内部纤维的强力不会过度损伤。纤维素酶的使用一方面有利于保护环境;另一方面,处理后的织物手感细腻、柔软、耐用性增强,因而纤维素酶洗工艺已广泛取代了传统的石磨水洗。2.2纺织品的生物抛光 为了防止及除去织物表面的毛球,运用纤维素酶对织物进行生物抛光显得格外必要。 用纤维素酶处理在织物表面改性方面开辟出了新领域。在酶洗过程中,因纤维素酶分子比水分子要大1千倍以上,不能透入棉纤维的内部。所以只有接近纤维素纤维表面的D.1,4.葡萄糖苷键受到影响。织物表面的纤细纤维在生物降解和机械力作用的影响下脱落,得到了平滑的纤维表面。织物经纤维素酶处理后,大大降低了起毛起球的趋势;而且手感柔软,悬垂性好;吸水性也得到了改善。 3存在的问题和拟采取的措施Hq] 纤维素酶生物整理已成为织物后整理的一种新颖的高科技纺织技术。但是从技术上看,目前还存在不少问题,需进一步探讨解决。 3.1返沾色 纤维素酶洗过程中从织物表面去除的靛蓝染料,会再次沉积到服装背面、内袋以及织物白色部分,给出较浅的蓝色背景。这种现象被称为返沾色。据资料显示,纤维素酶蛋白的性质是影响靛蓝返沾色的真正原因,而纤维素酶洗过程中的pH值只是间接地影响返沾色的程度。 为了有效地减少返沾色,获得所希望得到的色泽对比度,可采取以下措施:1)为了减轻纤维素酶蛋白在纤维素表面的吸附状态,可以考虑将纤维素酶的cBD(纤维素酶的结合区域)和酶的活性核分离,以达到减少返沾色的目的。2)因专一的单组分酶比多组分酶系具有较低的返沾包,故可分离纯化多组分酶。3)加入一定量的靛蓝染料分散剂,来减少返沾色程度。如SandoclearIDS,具有形成胶束的能力,能溶解靛蓝染料,从而促进返沾色的去除。4)加入靛蓝染料分解酶——漆酶,再配合特定的介质 万方数据

羧甲基纤维素酶测定原理

纤维素酶活力的测定 一、目的 学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。 二、原理 纤维素酶是一种多组分酶,包括C1 酶、CX 酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX 酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm 波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 三、实验材料、主要仪器和试剂 1.实验材料 (1)纤维素酶制剂 500mg (2)新华定量滤纸 50mg / 份× 4 (3)脱脂棉花 50mg / 份× 4 (4)羧甲基纤维素钠(CMC) 510mg (5)水杨酸苷 500mg 2.主要仪器 (1)722 型或其他型号的可见分光光度计 (2)恒温水浴2 台 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)万分之一分析天平 (7)恒温干燥箱 (8)冰箱 (9)试管架 (10)胶头滴管 (11)具塞刻度试管20mL×24 (12)移液管或加液器0.5 mL×3;2mL×7 (13)容量瓶100 mL×6;1000 mL×3 (14)量筒50 mL×2;100 mL×1;500 mL×1 (15)烧杯100 mL×6;500mL×3;1 000 mL×1 3.试剂(均为分析纯)

(1)浓度为1mg/mL 的葡萄糖标准液 将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL 小烧杯中,用少量蒸馏水溶解后,移入100mL 容量瓶中用蒸馏水定容至100mL,充分混匀。4℃冰箱中保存(可用12~15 天)。(2)3,5-二硝基水杨酸(DNS)溶液 准确称取DNS 6.3g 于500mL 大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液262mL,再加到500mL 含有185g 酒石酸钾钠(C4H4O6KNa · 4H2O,MW=282.22)的热水溶液中,再加5g结晶酚(C6H5OH,MW=94.11)和5g无水亚硫酸钠(Na2SO3,MW=126.04),搅拌溶解,冷却后移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。贮于棕色瓶中,室温放置一周后使用。 (3)0.05 mol/L pH4.5 的柠檬酸缓冲液A 液(0.1 mol/L 柠檬酸溶液):准确称取C6H8O7 · H2O (MW=210.14)21.014g 于500mL大烧杯中,用少量蒸馏水溶解后,移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。4℃冰箱中保存备用。

【文献综述】纤维素酶的概述

文献综述 生物工程 纤维素酶的概述 【摘要】纤维素作为地球上分布广,含量丰富的碳水化合物,它的降解是自然界碳素循环的中心环节。纤维素的利用和转化对于解决目前世界能源危机,粮食短缺、环境污染等问题具有十分重要的意义。本文就纤维素酶的应用进行一个简要的概述。 【关键词】纤维素酶;纤维素酶的实际应用:应用前景 1. 纤维素的概况 1.2 纤维素酶的分类 纤维素酶的组成比较复杂,通常所说的碱性纤维素酶是具有3~10 种或更多组分构成的多组分酶。根据其作用方式一般又可将纤维素酶分为3 类: 外切β- 1, 4-葡聚糖苷酶( 简称CBH) 、内切β-1, 4- 葡聚糖苷酶( 简称EG)和β- 1, 4- 葡萄糖苷酶( 简称BG) [1]。在这3 种酶的协同作用下,纤维素最终被分解成葡萄糖。到目前为止, 还没有能够在碱性条件下分解天然纤维素的纤维素酶。碱性纤维素酶是一种单组分或多组分的酶, 只具有内切β- 1, 4- 葡聚糖苷酶( 又称CMC酶) 的活性, 有的还与中性CMC 酶组分共存[2]。 1.3 纤维素酶的作用机理 纤维素酶在提高纤维素、半纤维素分解的同时, 可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质, 有利于动物胃肠道的消化吸收[3]。同时, 纤维素酶制剂可激活内源酶的分泌, 补充内源酶的不足, 并对内源酶进行调整, 保证动物正常的消化吸收功能, 起到防病、促生长的作用, 消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液, 增加消化物的粘度, 对内源酶造成障碍, 而添加纤维素酶可降低粘度, 增加内源酶的扩散, 提高酶与养分接触面积, 促进饲料的良好消化。而纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物, 在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物, 从而使消化道内的消化作用得以顺利进行[4]。也就是说纤维素酶除直接降解纤维素, 促进其分解为易被动物所消化吸收的低分子化合物外, 还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化[5] 2. 纤维素酶的一些历史及研究成果 在吴琳,景晓辉,黄俊生[3]的产纤维素酶菌株的分离,筛选和酶活性测定中,他们利用“采样—培养—分离单菌落—初筛—复筛—测OD值”的方法筛选出分解纤维素能力较强的菌株。[结果]经反复培养和划线分离从80份样品中初选出35株具有分解纤维素能力的菌株。其中10株由白转绿,长势较

盐类的水解的影响因素学案

第二节盐类的水解 第三课时影响盐类水解的因素 【学习目标】 1、能运用平衡移动原理分析盐类水解平衡的移动。 2、记住各种条件对盐类水解平衡的影响结果 【自学指导】要求:看课本P85—P86内容,思考下列问题。 1、阅读探究实验1,根据所学预测溶液颜色变化,并思考其中的原理,填写课本表格。 2、仔细观察活动探究课本实验2的现象,并思考其中的原理,填写课本表格。 3、运用平衡移动原理研究活动探究3,认真分析各个条件对水解平衡的影响结果。(如有疑问,可举手问老师,也可同桌小声讨论。3min后比赛,看谁能够快速做对检测题.)【检测】1、填写课本P86实验表格。 2、填写表格。分析CH3COONa溶液的水解平衡。写出水解的离子方程式 改变条件移动方向[H+]变化[OH-]变化[CH3COO—] 变 化 [CH3COOH]变 化 水解程度 加热 加醋酸钠固体 加水稀释 加入浓盐酸 加入浓NaOH 【总结】影响盐类水解因素 【自学指导】要求:看课本P84页最后一段。填下方(1.内因)并完成练习题1和2. 1、内因:主要因素是,组成盐的酸根对应的酸越(或阳 离子对应的碱越),水解程度越。 【练习】1、相同物质的量浓度的NaX、NaY、NaZ三种溶液的pH分别为7、8、9,则相同物质的量浓度的HX、HY、HZ的酸性强弱顺序为。 2、K(HNO2)> K(CH3COOH)> K(HClO)的推测NaClO、CH3COONa、NaNO2 溶液pH由大到小的顺序是:。 2、外因: (1)温度:盐的水解是反应,因此升高温度水解程度。 (2)浓度:盐的浓度越小,水解程度越。 (3)外加酸碱能促进或抑制盐的水解。例如水解显酸性的盐溶液,若加入碱,就会中和溶液中的,使平衡向方向移动而水解,若加酸则 水解。 【当堂训练】(选择题中有一项或两项正确) 1、填写表格。分析NH 4 Cl溶液的水解平衡。写出水解的离子方程式 改变条件移动方向[H+]变化[OH-]变化[NH4+] 变化[NH3·H2O] 变化 水解程度加热 加NH 4 Cl固体 加水稀释 加入浓盐酸 加入浓NaOH 2、针对下列平衡体系回答问题:Fe3+ + 3H2O Fe(OH)3 + 3H+ 条件移动方向H+浓度pH Fe3+水解程度 升温 通HCl(g) 加H2O 加FeCl3 加NaOH(s) (不考虑T变) 3、Al3+ + 3H2O Al(OH)3 +3 H+的平衡体系中,要使平衡向水解方向移动,且使溶液的

纤维素酶的结构与功能综述

研究生课程作业(综述)题目:纤维素酶的结构与功能 食品学院食品工程专业 学号 学生姓名 课程食品酶学 指导教师 二〇一三年十二月

纤维素酶的结构与功能 摘要:人类的生命活动离不开酶,生物体的一切新陈代谢活动都离不开酶,并且工业酶产业正在迅速发展。本文简单阐述了酶的结构与功能,重点以纤维素酶为例子,阐述它的来源、结构、分类、催化机制以及在各行业的应用,并对纤维素酶的发展前景作了一定展望。 关键词:纤维素酶结构家族功能 The structure and function of cellulase Abstract:Human's life activities is dependent on the enzyme,and all the metabolic activity of organisms cannot leave the enzyme, and industrial enzyme industry is developing rapidly.This article simply expounds the structure and function of enzymes.The key to cellulose enzyme as an example,expounds its source,structure, classification,catalytic mechanism and application in various industries,and lastly expect the development prospect of cellulase. Keywords: cellulase structure family function 1

纤维素酶在纺织行业的应用

纤维素酶在纺织行业的应用 1 引言 纤维素是世界上蕴藏量最丰富的天然高分子化合物,绝大多数由绿色植物通过光合作用合成。微生物对纤维素的降解、转化是自然界中碳素转化的主要环节。 纤维素酶是降解纤维素生成葡萄糖的多组分酶的总称。目前,纤维素酶产品广泛应用于纺织、饲料、酿造、制药、造纸等行业,尤其是在纺织行业的应用范围目前正在不断扩大。 2 纤维素酶 纤维素酶的研究最早是1906年Seilliere在蜗牛的消化液中发现了分解纤维素的纤维素酶。纤维素酶是能水解纤维素β-1,4-葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。 纤维素酶的来源非常广泛,昆虫、软体动物、原生动物、细菌、放线菌和真菌等都能产生纤维素酶。主要的有:康氏木霉、里氏木霉、黑曲霉、斜卧青霉、芽孢杆菌等。丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物,而嗜碱细菌产生的纤维素酶在碱性范围起作用。 纤维素酶分子是由球状的催化结构域(CD)通过一个富含脯氨酸或羟基氨基酸的连接桥(Linker)和纤维素结合结构域(CBD)三部分组成。连接桥的作用可能是保持CD和CBD之间的距离。纤维素结合结构域执行着调节酶对可溶和非可溶性底物专一性活力的作用,对酶的催化活力是非常必需的。催化作用域的三维结构极其复杂,对酶的催化活力起决定作用。[1,4] 3 纤维素酶对纤维素的作用机理 目前,一种理论认为:纤维素酶水解纤维素是β-1,4-内切葡聚糖(纤维二糖水解)酶(EG,Endo-β-Glucanase),β-1,4-外切葡聚糖(纤维二糖水解)酶(CBH,Cellobiohydrolase)和β-葡萄糖苷酶(BG, β-Glucosidase)协同作用下进行的。首先,EG酶随机水解切断无定型区的纤维素分子链,使结晶纤维素出现更多的纤维素分子基端,为CBH酶水解纤维素创造条件,CBH酶的水解产物纤维二糖则由BG酶水解成葡萄糖,因而纤维素酶水解纤维素的过程可以简单表示为:EG→CBH→BG。 目前的研究表明,EG酶实际上至少包括EGⅠ、 EGⅡ、 EGⅢ和 EGⅤ四种,CBH 至少包括CBHⅠ和CBHⅡ两种。 另外一种理论认为:纤维素酶是由葡聚糖内切酶(Cx酶)、葡聚糖外切酶(C1酶)、β-葡萄糖苷酶三个主要成分所组成的诱导型复合酶系。其中C1酶起水化作用,它作用于不溶性的固体表面,使形成结晶结构的纤维素链开裂,长链分子的末端部分游离,从而使纤维素链易于水化。Cx酶随机水解非结晶纤维素、可溶性纤维素衍生物和葡萄糖的β-1,4-寡聚物,葡萄糖苷酶将纤维二糖和纤维三糖水解成葡萄糖。该假说的基本降解模式如下:

纤维素酶

西安工程大学 纤维素酶对纤维素的作用机理及其 在纺织上的应用 院系:纺织与材料学院 专业班级:轻化工程11(1) 姓名:赵华 学号:41101030111

纤维素酶对纤维素的作用机理及其在纺织上的应用 张海生,张同亮,陈德兆 摘要:介绍了纤维素酶的性质、纤维素酶对纤维素的作用机理及纤维素酶在纺织上的应用,对其在纺织上的应用前景进行了展望。 关键词:纤维素酶;纤维素;纺织;应用 0引言 纤维素是世界上蕴藏量最丰富的天然高分子化合物,绝大多数由绿色植物通过光合作用合成。微生物对纤维素的降解、转化是自然界中碳素转化的主要环节。纤维素酶是降解纤维素生成葡萄糖的多组分酶的总称。目前,纤维素酶产品广泛应用于纺织、饲料、酿造、制药、造纸等行业,尤其是在纺织行业的应用范围目前正在不断扩大。 早在1906年,Seilliere就在蜗牛的消化液中发现了能分解纤维素的纤维素酶。纤维素酶是能水解纤维素β-1,4-葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。 纤维素酶的来源非常广泛,昆虫、软体动物、原生动物、细菌、放线菌和真菌等都能产生纤维素酶。主要的有:康氏木霉、里氏木霉、黑曲霉、斜卧青霉、芽孢杆菌等。丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物,耐嗜碱细菌产生的纤维素酶在碱性范围起作用。 纤维素酶分子是由球状的催化结构域(CD)通过一个富含脯氨酸或羟基氨基酸的连接桥(Linker)和纤维素结合结构域(CBD)三部分组成。连接桥的作用可能是保持CD和CBD之间的距离。纤维素结合结构域执行着调节酶对可溶和非可溶性底物专一性活力的作用,对酶的催化活力是非常必需的。催化作用域的三维结构极其复杂,对酶的催化活力起决定作用。 1 纤维素酶的制造方法 1. 1固体发酵法 固体发酵法是以玉米、稻草等植物秸杆为主要原料,投资少,工艺简单,产品价格低廉。目前国内绝大部分厂家采用该技术,主要分布在上海、江苏、湖北、黑龙江。然而固体发酵法存在着根本上的缺陷,不可能像液体发酵那样随着规模的扩大,成本大幅度下降。以秸杆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前生产厂家只能采用直接干燥粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,产品外观粗糙,成品质量不稳定,杂质含量高。因此,随着液体发酵酶工艺的发展及菌种性能的提高,采用液体发酵法生产纤维素酶是必然趋势。 1. 2液体发酵酶 液体发酵生产工艺过程是将玉米秸杆粉碎至20目以下后进行灭菌处理,送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70 h ,温度控制低于60 0C,采用净化后的无菌空气从釜底通入进行物料的气流搅拌,发酵完的物料经压滤机压滤,超滤浓缩,喷雾干燥,制得纤维素酶产品。其工艺流程示意图如下: 液体发酵法动力消耗大,设备要求高,但原料利用率高,生产条件易控制,产量高,劳动强度小,产品质量稳定,建议国内新建装置采用该技术。 2纤维素酶维素的对纤作用机理 目前,一种理论认为:纤维素酶水解纤维素是β-1,4-内切葡聚糖(纤维二糖水解)酶

纤维素酶、淀粉酶

杰诺生物-纤维素酶 纤维素酶是由里氏木霉诱变筛选高产菌株,经液态深层通风发酵精制提取制成。本品广泛应用于食品、发酵工业等。 产品规格 本品是褐色液体,具有下列标准酶活力单位(CMC酶) 固态酶:40000 u/g 执行标准 QB 2583--2003 产品特性 纤维素酶是一种多组分的复合生物酶催化剂,能催化纤维素的水解生成短纤维、纤维二糖、葡萄糖等。 该酶作用PH范围为4.5-6.2,最适作用PH4.8;温度范围50-65℃,最适作用温度60℃。包装 固体产品为50公斤木料桶包装。 储存 超期或不利的保存条件将导致用量增加。 中温淀粉酶 中温a-精制淀粉酶是由枯草芽孢杆菌经液体深层发酵提取而成。该产品为液体剂型,适用于酒精、啤酒、味精、造纸、发酵工业、果汁、纺织等行业。 产品特性: 1、作用方式:本产品能随机水解淀粉、可溶性糊精以及低聚糖中的a-1,4葡萄糖苷键。酶作用后可使糊化淀粉的粘度迅速下降,水解生成糊精及少量葡萄糖和麦芽糖等。 2、酶活力为: 2000u/g 3、钙离子对酶活力的影响:该产品的反应环境要求钙离子的存在,钙离子能够保持酶分子的活力,本产品反应环境中钙离子的浓度应在150~250mg/kg。 4、P H: PH范围: 5.5~7.5,最适PH范围6.0~7.0 5、温度:最适作用温度60~75℃之间。随着温度的升高,其反应速度加快,但失活也快,温度低可以适当延长反应时间。

参考用量 常规工艺一般按每克淀粉用0.01-0.1个单位计算。 在造纸工业中,一般按每克淀粉用0.01-0.1个单位计算。 酶活力定义 60°C、PH6.0条件下,1克酶1小时液化可溶性淀粉1克成为糊精即为1个酶活力单位,用u/g表示。 灭活方法 将溶液PH降到4.0以下,或将温度升高至90℃保持10分钟。 执行标准 QB1805.1-93 包装、保存: 塑料编织包装,20公斤/袋或25kg/桶或按要求包装,标准酶存活率三个月85%以上。 耐高温a-淀粉酶 本品是由地衣芽孢杆菌经液体深层发酵提取而成,产品为液体剂型,适用于生物制药、淀粉糖、酒精、啤酒、味精、果汁、发酵工业、纺织等行业。 产品特性: 1、作用方式:本产品是一种内切酶,能随机水解淀粉、可溶性糊精以及低聚糖中的a-1,4糖苷键。酶作用后可使糊化淀粉的粘度迅速下降,水解生成糊精及少量葡萄糖和麦芽糖。 2、产品规格:酶活力为10000u/ml、20000u/ml 3、P H对酶活力的影响:本产品稳定PH范围5.0-10.0,有效PH范围5.0-8.0,最适PH范围5.5-7.0 4、温度对酶活力的影响:本产品最适作用温度为90℃以上(连续喷射液化中,温度也可在100-105℃) 5、钙离子对酶活力的影响:本产品对钙离子的依赖性不高,钙离子的浓度应保持在 50-70mg/kg的范围已经足够。 酶活力定义: 70°C、PH6.0条件下,1分钟液化可溶性淀粉1毫克成为糊精所需要的酶量为1个酶活力单位,用u/ml表示。

相关文档
最新文档