五年级数学——抽屉原理

五年级数学——抽屉原理
五年级数学——抽屉原理

五年级数学兴趣小组讲义(5)

姓名:班级:

抽屉原理①:如果把n+k(k≥1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。

抽屉原理②:如果把m×n+k(k≥1)件东西放入n个抽屉,那么必定有一个抽屉里至少有m+1件东西。

例1:六年级有31名学生是在9月份出生的,那么其中至少有2名学生的生日师在同一天,为什么?

例2:今年入学的一年级新生有181人。这些新生中,至少有多少人是同一个月出生的?

练习题:

1、数学兴趣小组有38人,老师至少拿多少本书,随意分给大家,才能保证至少有1名学生能拿到2本书?

2、某小学学生的年龄最大为13岁,最小为6岁,至少需要从中挑选多少名学生,就一定能使挑出的同学中有两位同学岁数相同?

3、参加数学竞赛的210名同学中,至少有多少人是同一个月出生的?

4、六年级(1)班的40名同学中,年龄最大的13岁,最小的11岁,其中必有多少名学生是同年同月出生的?

5、5名同学在一起练习投篮,共投进了41个球,那么至少有一个人投进了多少个球?

五年级下册抽屉原理提高题(最新整理)

五年级下册抽屉原理提高题 五(下)数学兴趣班(8)(抽屉原理)班级姓名成绩 例题1 在40名同学中,至少有几位同学是在同一个月出生的? 例题2 某旅行团一行50人,随意游览甲、乙、丙三个景区,至少 有多少人游览的地方完全相同? 例题3 六一班的同学参加考试,最高分为100分,最低分为75分,每人的得分都是整数,并且班上至少有3人的得分相同,那么六一班至少有学生多少人? 例题4 一副扑克牌有54张,至少从中取出多少张牌,才能保证其 中必有3种花色?(大小王不算花色) 例题5 任取6个自然数,其中至少有两个数的差是5的倍数,为什么? 练习: 1、一个鱼缸中有很多金鱼,共有4个品种,至少要捞出几条金鱼,才能保证有两条金鱼是一个品种? 2、某小区内住有居民1000人,在这些人当中,至少有多少人的属相相同? 3、某班45人去春游,随意游览中山陵、夫子庙、总统府三个景区,每人至少要游览一个地方,至少有多少人游览的地方完全相同? 4、架子上有4种不同的书,每名学生拿2本,要保证有3人所拿的结果一样,至少要有多少人去拿书? 5、在一次数学测验中,某班的最高分为98分,最低分为83分,每人的得分都是整数,并且班上至少有4人的得分相同,该班至少有学生多少人? 6、一次测验共有10道问答题,每题的评分标准是:回答完全正确,得6分;回答不完全正确。得5分;回答完全错误或不回答,得0分,至少多少人参加这次测验,才能保证至少3人的得分相同。(提示:先求一共可能出现多少种分值?) 7、任意取多少个自然数,才能保证至少有两个数的差是7的倍数?请说明理由。 8、一副扑克牌有54张,至少从中取出多少张牌,才能保证其中必

抽屉原理例习题

8-2抽屉原理 教学目标 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: 1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题; 5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 知识点拨 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个

苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进 其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的. 利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”, 6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么 肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子. 【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼. 【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的 任意一个中,这样至少有一个鱼缸里面会放有两条金鱼. 【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名 学生中,至少有两个人在做同一科作业. 【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽 屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的 作业. 【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生 日.”你知道张老师为什么这样说吗? 【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显 知识精讲

五年级简单的抽屉原理练习题及答案【五篇】

【第一篇方格涂色】把一个长方形画成 3 行 9 列共 27 个小方格, 然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同? 将 9 列小方格看成 9 件物品,每列小方格不同的涂色方式看成不 同的抽屉。 如果涂色方式少于 9 种,那么就可以得到肯定的答案。 涂色方式共有下面 8 种 9 件物品放入 8 个抽屉,必有一个抽屉的物品数不少于 2 件,即 一定有两列小方格涂色的方式相同。 【第二篇相同的四位数】用 1,2,3,4 这 4 个数字任意写出一 个 10000 位数,从这个 10000 位数中任意截取相邻的 4 个数字,可以 组成许许多多的四位数。 这些四位数中至少有多少个是相同的? 猛一看,谁是物品,谁是抽屉,都不清楚。 因为问题是求相邻的 4 个数字组成的四位数有多少个是相同的, 所以物品应是截取出的所有四位数,而将不同的四位数作为抽屉。 在 10000 位数中,共能截取出相邻的四位数 10000-3=9997 个, 即物品数是 9997 个。 用 1,2,3,4 这四种数字可以组成的不同四位数,根据乘法原 理有 4×4×4×4=256 种,这就是说有 256 个抽屉。 9997÷256=3913,所以这些四位数中,至少有 40 个是相同的。 【第三篇取数字】从 1,3,5,7,,47,49 这 25 个奇数中至少

任意取出多少个数,才能保证有两个数的和是 52。 首先要根据题意构造合适的抽屉。 在这 25 个奇数中,两两之和是 52 的有 12 种搭配 {3,49},{5,47},{7,45},{9,43}, {11,41},{13,39},{15,37},{17,35}, {19,33},{21,31},{23,29},{25,27}。 将这 12 种搭配看成 12 个抽屉,每个抽屉中有两个数,还剩下一
个数 1,单独作为一个抽屉。 这样就把 25 个奇数分别放在 13 个抽屉中了。 因为一共有 13 个抽屉,所以任意取出 14 个数,无论怎样取,至
少有一个抽屉被取出 2 个数,这两个数的和是 52。 所以本题的答案是取出 14 个数。 【第四篇班级人数】 把 125 本书分给五 2 班学生,如果其中至少有 1 人分到至少 4 本
书,那么,这个班最多有多少人? 这道题一下子不容易理解,我们将它变变形式。 因为是把书分给学生,所以学生是抽屉,书是物品。 本题可以变为 125 件物品放入若干个抽屉,无论怎样放,至少有
一个抽屉中放有 4 件物品,求最多有几个抽屉。 这个问题的条件与结论与抽屉原理 2 正好相反,所以反着用抽屉
原理 2 即可。 由 125÷4-1=412 知,125 件物品放入 41 个抽屉,至少有一个

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一)

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共34题;共175分) 1. (5分)有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片? 2. (5分)一个正方体有六个面,给每个面都涂上红色或白色,至少有三个面是同一颜色。为什么? 3. (5分)在一个矩形内任意放五点,其中任意三点不在一条直线上。证明:在以这五点为顶点的三角形中,至少有一个的面积小于矩形面积的四分之一。 4. (5分)有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 5. (5分)小明参加飞镖比赛,投了5镖,成绩是36环,小明至少有一镖不低于8环,对吗?为什么? 6. (5分)六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么? 7. (5分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9 条直线中至少有3 条通过同一个点。 8. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34. 9. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么? 10. (5分)在下面每个格子中任意写上“爸爸”或“妈妈”,至少有几列所写的字是完全一样的?

人教版小学数学六年级下册抽屉原理

《抽屉原理》教学设计 教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。教学目标: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书,各小组。备好自己的记分牌教学过程: 一、创设情景导入新课 师:同学们,昨天晚上与爸爸、妈妈做过导学案中的扑克牌游戏吗?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示) 师生共同做两轮抽牌游戏,让没有做过游戏的同学观察、思考、验证 师:为什么会出现这种情况呢?如何解释呢?今天我们就来探索这其

中的规律——抽屉原理 教师板书:抽屉原理 二、自主操作探究新知 1 活动) 一( 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放? 师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。 1、学生动手操作,师巡视,了解情况。 2、汇报交流说理活动 学生动手操作,教师巡视,了解情况,并参与到较弱的小组中适当点拨:要把所有可能的情况摆出来 一个小组上台展示,四人操作,一人同时解说,教师协助学生将记录放在投影机上展示比较 教师展示数组的形式(4,0,0)(3,1,0)(2,2,0)(2,1,1),让学生比较认识到数组形式的简洁) 引导学生再认真观察记录,还有什么发现?并请刚才展示的小组回答板书:总有一个笔筒里至少有2枝铅笔。 ③怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)……1(枝) ④这样摆挺麻烦,那么怎样摆可以一次得出结论?各组摆摆、想想。

小学抽屉原理

《数学广角—抽屉原理》教学设计 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教学准备】 1、教学ppt课件 2、铅笔120支 (小棒代替) ,笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。 【教学流程】 一、问题引入。 师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5 位同学上来。

1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。 2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗? (游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。) 3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 4、明确学习目标与任务: 师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法) 课件出示学习目标与要求 1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2)通过实验操作、自主探究、小组合作发现抽屉原理。 3)感受数学文化的魅力,提高对数学的兴趣。 二、探究新知 (一)教学例1 为了研究这个原理,我们做一组实验。 1、观察猜测 课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放 进____支铅笔。 猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -,结论:至少有(商+1)个苹果在同一个抽屉 里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的?

例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有()只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着()本书;

五年级奥数专题-抽屉原理

五年级奥数专题-抽屉原理 如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。 同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。 以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n 个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。 从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。 一、例题与方法指导 例1. 某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友? 分析与解:1996年是闰年,这年应有366天。把366天看作366个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。 例2. 在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除? 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。 将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。 例3. 在任意的五个自然数中,是否其中必有三个数的和是3的倍数? 分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。 第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。 第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个

六年级数学抽屉原理

抽屉原理 知识框架 一、 知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、 抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、 抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 重难点 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题; (4) 利用最不利原则进行解题;

最新小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求. 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同.这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相 同. 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本.试证明:必有两个学生所借的书的类型相同. 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相 同. 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同. 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同. 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致 的? 解题关键:利用抽屉原理2. 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的. 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为 __________人. 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)

小学五年级-抽屉原理

第24讲抽屉原理二 内容概述 抽屉原理在教字、表格、图形等具体问题中有较复杂的应用.能够根据已知条件合理地选取和设计“抽屉”与“苹果”,有时还应构造出达到最佳状态的例子. 典型问题 兴趣篇 1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起? 答案:7 详解:60÷(8+1)=6……6,6+1=7个。 2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的? 答案:3 详解:答案的结果有23=8种情况,即8个抽屉。17÷8=2……1,2+1=3名。 3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等. 详解:两位数的情况共4种:12,21,11,22。六位数可以截取出5个两位数,所以必有重复。 4.将1至6这6个自然数随意填在图2,4-1的六个圆圈中,试说明:图中至少有一行的数字之和 不小于8。 详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。 5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明: (1)在这51个数中,一定有两个数的差等于50; 详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。选出51个数,必有两数来自一组,即差为50. (2)在这51个数中,一定有两个数差1. 详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。必有两数来自一组,即差为1.

人教版六年级下册《抽屉原理》教学设计

《抽屉原理》教学设计 教学内容:教科书第70,71页 教学目标: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。 教学重点: 经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 教学难点: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 教学准备: 多媒体课件、扑克牌、盒子、铅笔、书、练习纸。 教学过程: 一、游戏激趣,初步体验。 在上课前,我们先热热身,一起玩抢椅子游戏好吗?谁愿意参加?请五位同学到前面来,这有四把椅子,老师说:开始!你们几个都要坐到椅子上。听明白了吗?好开始。告诉老师他们坐下了吗?老师不用看,就知道一定有一把椅子上至少做了两名同学。对吗?假设请这五位同学再反复坐几次,老师还敢肯定地说,不管怎么做,总有一把椅子上至少坐了两个同学,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?出示课题:抽屉原理。 二、操作探究,发现规律。 1.观察猜测:

多媒体出示例1: 4个苹果,三个抽屉 师:4个人从3个数字中挑一个喜欢的写,不管怎么写,总有一个数字至少有两个同学写了,4个苹果放进三个抽屉里呢?请同学们运用教具放一放,看有几种放法? (1)学生汇报结果,师板书 (4 ,0 , 0 )(3 ,1 ,0)(2 ,2 ,0)(2 ,1 ,1 )(2)看看这几种放法,你可以怎么用一句话来概括这四种放法? (学情预设:学生可能会说,不管怎么放,总有一个抽屉里至少有2个苹果。) 让学生发现并解释“总有”就是一定有,“至少”就是最少有,或者多于 (3)还有什么放法更简捷?引出平均分为下面埋下伏 (4)如果把苹果数量和抽屉数量变大呢?会有什么情况发生? 你发现了什么:引导学生,只要放的苹果数比抽屉数多1,不管怎么放,总有一个抽屉里至少有2个苹果。 2,运用抽屉原理解决问题。 课件出示:5只鸽子飞回4个鸽笼,至少有2只飞进同一个鸽笼,为什么? 七只鸽子飞回五个鸽舍,至少有两只鸽子飞回同一个鸽舍里,为什么? 中心小学6(2)班第一组共有13名学生,一定至少有2 学生的生日在同一个月 发现规律,初步建模:我们将学生、鸽子看做物体,12个月、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律? 小结:只要物体数量比抽屉的数量多,总有一个抽屉至少有2个物体。这就叫做抽屉原理 3、再次发现规律。

五年级抽屉原理(一)教师用稿

抽屉原理(一) 抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2:将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。 (2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。 (3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。 (4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。 例1、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 分析与解:关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 例2 、夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的

抽屉原理五年级奥数

抽屉原理 例题1 从1 2 3 … 100 这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质(2)2个数的差为50 (3)8个数,他们的最大公约数大于1 练习1从1 2 3 … 50 这50个数中取出若干个数使其中任意2个数的和都不能被7整除。最多可取多少个数? 例题2 问在1,3,5,7…97,99 这50个数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数? 练习2 从1.2.3.4 … 1988 .1989 这些自然数中,最多可以取多少个数,其中每2个数的差不等于4。 例题3 在一个边长为1的正方形内(含边界),任意给定9个点(其中没有3点共线)证明:在以这些点为顶点的各个三角形中,必有一个三角形,它的面积不大于1/8。 练习3 一个边长为1的等边三角形内,任意放置10 个点,试说明,至少有2个点之间的距离不超过1/3。 例题4 如图是一个3行10列共30个小正方形的长方形,现在把每个小方格涂上红色或者黄色,请证明无论怎样涂法一定能找到2列,他们的涂色方式完全相同

练习4 给出一个3行9列共27个小方格的长方形,将每个小方格随意涂上白色或者红色,求证:无论如何涂色,其中至少有2列涂色方式相同。 例题5 一副扑克牌有54张,最少要抽出几张牌,方能保证其中至少有2张牌有相同的点数? 例题6 将全体自然数按照它们的个位数字,分为10类,个位数字是1的为第一类,个位数为2的为第二类,….个位数为9的为第九类,个位数为0的为第十类。 {1}任意取出6个互为不同类的自然数,其中一定有2个数的和是10的倍数吗? {2}任意取出7个互为不同类的自然数,其中一定有2个数的和是10的倍数吗? 如果一定,请简要说明理由,如果不一定,请举出一个反例。 练习6 现有64个乒乓球,18个乒乓球盒子。每个盒子最多可以放6个乒乓球,如果把这些球全部放到盒子里,不许有空盒,那么至少有几个乒乓球盒子里的乒乓球数量相同? 分一分 1.你能将1~16分成4份,每份4个数,使这4份中的4个数和相等吗? 2. 你能将1~15分成5份,每份3个数,使这5份中的3个数和相等吗? 练习: 1.一副扑克牌有4种花色,每种花色有13张牌,从中任意抽牌,问最少要抽几张牌,才 能保证有4张牌是一个花色的?

六年级《抽屉原理》教案

《抽屉原理》教学设计 授课人:姚宝华时间:20XX年4月2日 教学内容 人教版六年级下册第五单元数学广角第70-71页例1、例2。 教学目标: 1.从具体问题情境入手,通过操作、观察、比较、推理等活动,引导学生在事实中感知现象,把握规律,逐步经历抽屉原理的探究过程,理解抽屉原理,掌握至少数的方法,会用抽屉原理来解决生活中简单问题。 2.在探究过程中,培养学生有条理地进行思考、表达和推理的能力,渗透平均分的思想,培养学生的问题意识和模型思想。 3.使学生感受到数学的魅力,培养学习数学的兴趣。 教学重点: 理解抽屉原理,并能灵活运用。 教学难点:理解“至少”,构建模型。 教学过程: 课前交流 游戏:抽扑克牌。理解至少有2张是同一花色。 一、开门见山,提出问题 师:课前我们一起做了扑克牌游戏,在这个游戏中蕴含了一个重要的数学原理——抽屉原理。 看到抽屉原理,你有什么问题要问吗? 学生提出问题。 师:这节课我们就带着这些问题来研究抽屉原理。 二、解决问题,建构模型、 (一)教学例1,研究苹果数比抽屉多1的情况。 1.4个苹果放进3个抽屉 师:顾名思义,抽屉原理和什么有关? 出示“把4个苹果放进3个抽屉里,任意放,有几种不同的放法? 师:你打算如何研究? 如果把抽屉和苹果拿来,多不方便啊。所以我们可以用一些模型代替,请大家用长方形代替抽屉,用圆代替苹果画一画,看有几种不同的放法。 学生画草图。 ① ② ③ ④

(1)观察每一种方法,抽屉里最多放几个苹果? (2)最多的这几个抽屉最少放了几个? (3)最少两个,还有的超过2个,我们还可以怎么说?(至少两个) (4)用自己的话说说,把4个苹果放3个抽屉里,不管怎么放,总会存在什么现象? 教师小结:把4个苹果放进3个抽屉,不管怎么放,总有一个抽屉至少放2个苹果。 2.5个苹果放4个抽屉 师:那把5个苹果放进4个抽屉,不管怎么放,总有一个抽屉至少放几个苹果?你能根据刚才的经验猜一猜吗? 学生猜想、小组验证。 交流小组验证情况。 ① ② ③ ④ ⑤ ⑥ (1)用列举法进行验证的小组先进行汇报交流。 (2)用假设法进行验证的小组再进行汇报交流。 将这种方法与列举法进行比较,使学生意识到任何方法都不是孤立存在的。 师:为什么这种方法就能说明不管怎么放,总有一个抽屉里至少有2个苹果? 引导学生观察、分析。 课件演示:假设先把这5个苹果平均放到4个抽屉里,每个抽屉放一个,还余一个,再把这一个任意放进一个抽屉里,不管怎么放,总有一个抽屉里至少放2个。 教师小结:这种方法在数学上叫假设法,它蕴含了平均分的思想,用这种方法能使我们很快找到不管怎么放,总有一个抽屉里至少放的苹果数。 (如果没有出现假设法,教师要从列举法中进行引导,使学生感受到假设法的一般性。) 3.概括规律 (1)师:那把6个苹果放进5个抽屉里,总有一个抽屉里至少放几个苹果

五年级抽屉原理(一)教师用稿教学内容

五年级抽屉原理(一) 教师用稿

抽屉原理(一) 抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2:将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。 (2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。 (3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。 (4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。 例1、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 分析与解:关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。

44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 例2 、夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。 因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。 2000÷6=333……2, 根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。 例3、把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人? 分析与解:这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物品。本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。由

五年级数学奥数抽屉原理

五年级数学奥数抽屉原理 五年级数学奥数抽屉原理 1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。 2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。 3.夏令营有400个小朋友参加,问:在这些小朋友中, (1)至少有多少人在同一天过生日? (2)至少有多少人单独过生日? (3)至少有多少人不单独过生日? 5.在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的.距离小于10米? 6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有? 7.在一个口袋中有10个黑球、6个白球、4个红球。问:至少从中取出多少个球,才能保证其中有白球? 8.口袋中有三种颜色的筷子各10根,问: (1)至少取多少根才能保证三种颜色都取到? (2)至少取多少根才能保证有两双颜色不同的筷子? (3)至少取多少根才能保证有两双颜色相同的筷子? 9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。 10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。

11.证明:在任意的37人中,至少有四人的属相相同。 12.跳绳练习中,一分钟至少跳多少次才能保证在某一秒钟内,至少跳了两次? 13.一个正方体有六个面,给每个面都涂上红色或白色。证明:至少有三个面是同一颜色。 14.袋里有红、白、蓝、黑四种颜色的单色球,从袋中任意取出若干个球。问:至少要取出多少个球,才能保证有三个球是同一颜色的? 15.一只鱼缸里有很多条鱼,共有五个品种。问:至少捞出多少条鱼,才能保证有五条相同品种的鱼? 18.口袋里放有足够多的红、白、兰三种颜色的球,现有31个人轮流从袋中取球,每人各取三个球。证明:至少有4个人取出球的颜色完全相同。 19.蓝子里有苹果、梨、桃和桔子,如果每个小朋友都从中任意拿两个水果,问至少有多少个小朋友,才能保证至少有两个小朋友拿的水果完全一样? 试证明:至少有两对选手,不但甲班选手选用的饮料相同,而且乙班选手选用的饮料也相同。 22.在上题中,如果学校为比赛准备了可乐、汽水和果汁三种饮料,那么比赛时每班至少出多少人,才能保证至少有两对选手,甲班选手选用的饮料相同,乙班选手选用的饮料也相同? 23.100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票。 问:在尚未统计的选票中,甲至少再得多少票就一定当选? 24.有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。证明:在200个信号中至少有4个信号完全相同。

人教版六年级下册抽屉原理教学设计

《数学广角——抽屉原理》教案 城区小学李忠 【教学内容】: 人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2.“总有”“至少”具体含义,以及为什么商+1而不是加余数。 【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的小棒、杯子、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们,你们玩过扑克牌吗? 生齐:玩过。 师:下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?生齐:对。 师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们信吗? 部分生说:信 部分生说:不信。

师:那我们就来验证一下。 师请5名同学各抽一张,验证至少有两张牌是同一种花色的。 师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗? 生齐:相信。 师:其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊? 生齐:想。 二、操作探究,发现规律。 1.研究小棒数比杯子数多1的情况。 师:今天这节课我们就用小棒和杯子来研究。板书:小棒杯子 师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法? 学生分组操作,并把操作的结果记录下来。 请一个小组汇报操作过程,教师在黑板上记录。 生:我们组一共有2种摆法,第一种摆法是一个杯子里放3根,另一个杯子里没有,记作(3 0);第二种摆法是一个杯子里放2根,另一个杯子里放1根,记作(2 1)。 师:你们的摆法跟他一样吗? 生齐:一样。 师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?生1: 总有一个杯子里至少有2根小棒。生2:总有一个杯子里至少有几根小棒。师板书:总有一个杯子里至少有2。 师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现?学生分组操作,并把操作的结果记录下来。 请一个小组代表汇报操作过程,教师在黑板上记录。 生:我们组一共有四种摆法。第一种摆法是一个杯子里放4根,另外两个杯子里没有,记作(4 0 0);第二种摆法是一个杯子里放3根,一个杯子里放一根,另外一个杯子里没有,记作(3 1 0);第三种摆法是一个杯子里放2根,另一个杯子里也放2根,最后一个杯子里没有,记作(2 2 0);第四种摆法是一个杯子里放2根,另外两个杯子里各放一根,记作(2 1 1)。师:还有不同的摆法吗? 生都摇头表示没有异议。 师:观察所有的摆法,你发现了什么?

相关文档
最新文档