(完整版)正态分布习题与详解(非常有用-必考点)

(完整版)正态分布习题与详解(非常有用-必考点)
(完整版)正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P (-

2.322). 解:(1)P (-2.32

=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.

(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体

(1)在N(1,4)下,求)3(F (2)在N (μ,σ2

)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2

1

3(

-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ

μ

σμ-+Φ=Φ(1)=0.8413

F(μ-σ)=)(

σ

μ

σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为

π

21,求总体落入区

间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848]

解:正态分布的概率密度函数是),(,21)(2

22)(+∞-∞∈=

--

x e

x f x σμσ

π,它是偶函数,

说明μ=0,)(x f 的最大值为)(μf =σ

π21,所以σ=1,这个正态分布就是标准正态分

布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1

P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ-

0.57930.884810.4642=+-=

4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)

内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2

N ξ 520500500500

(500520)(

)()(0.1)(0)0.53980.50.0398200200

P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200

a a a

P a a μξμ-<<+=Φ-Φ-=Φ-≥,

()0.975200

a ∴Φ≥ 查表知: 1.96392200a

a ≥?≥

奎屯王新敞新疆

1设随机变量

(3,1),若,,则P(2

( B)l —p

C .l-2p

D .

【答案】 C 因为,所以

P(2

,选 C .

2.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )

A .100

B .200

C .300

D .400[答案] B

[解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.

3.设随机变量ξ的分布列如下:

其中a ,b ,c 成等差数列,若E (ξ)=1

3,则D (ξ)=( )

A.49 B .-19 C.23 D.59 [答案] D

[解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×?

???-1-132+13????0-132+12????1-132=5

9. 4.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6

7

,则口袋中白球的个数为( )A .3 B .4 C .5 D .2

[答案] A

[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42,

P (ξ=1)=x ·(7-x )C 72=x (7-x )

21,

P (ξ=2)=C x 2C 72=x (x -1)

42

∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6

7,

∴x =3.

5.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )

A.255256

B.9256

C.247256

D.764 [答案] C

[解析] 由条件知ξ~B (n ,P ),

∵????? E (ξ)=4,D (ξ)=2,∴?????

np =4np (1-p )=2

, 解之得,p =1

2

,n =8,

∴P (ξ=0)=C 80×????120×????128=????128

, P (ξ=1)=C 81×????121×????127=????125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1) =1-????128-????125=247256.

5已知三个正态分布密度函数φi (x )=12πσi

e -(x -μi )22σi 2(x ∈R ,i =1,2,3)的图象如图所示,

则( )

A .μ1<μ2=μ3,σ1=σ2>σ3

B .μ1>μ2=μ3,σ1=σ2<σ3

C .μ1=μ2<μ3,σ1<σ2=σ3

D .μ1<μ2=μ3,σ1=σ2<σ3 [答案] D

[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.

6①命题“”的否定是:“”;

②若

,则的最大值为4;

③定义在R 上的奇函数

满足

,则

的值为0;

④已知随机变量服从正态分布,则;

其中真命题的序号是________(请把所有真命题的序号都填上).

【答案】①③④ ①命题“”的否定是:“”;所以

①正确.

②若,则,即.所以

,即,解得,则的最小值为4;

所以②错误.③定义在R上的奇函数满足,则,且,即函数的周期是4.所以;所以③正确.

④已知随机变量服从正态分布,则

,所以;所以

④正确,所以真命题的序号是①③④.

7、在区间上任取两数m和n,则关于x的方程有两不相等实根的概

率为___________.

【答案】由题意知要使方程有两不相等实根,则,即.作出对应的可行域,如图直线,,当时,,所以

,所以方程有两不相等实根的概率为

.

8、下列命题:

` (1);

(2)不等式恒成立,则;

(3)随机变量X服从正态分布N(1,2),则

(4)已知则.其中正确命题的序号为____________.

【答案】(2)(3) (1),所以(1)错误.(2)不等式

的最小值为4,所以要使不等式成立,则,所以(2)正确.(3)正确.(4)

,所以(4)错误,所以正确的为(2)(3).

2已知某篮球运动员2012年度参加了40场比赛,现从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为

()A.26 B.25 C.23 D.18

【答案】D样本的平均数为23,所以样本方差为

,选D.

3有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为

( )

A .

B .

C .

D .

【答案】C 样本数据在

之外的频率为

,

所以样本数据在内的频率为

,所以样本数据在的频数为

,选 C .

4.(2013年临沂市高三教学质量检测考试理科数学)如图所示,在边长为l 的正方形OABC 中

任取一点P,则点P 恰好取自阴影部分的概率为 ( )

A .

B .

C .

D .

【答案】 【答案】B 根据积分的应用可知所求阴影部分的面积为

,所以由几何概型公式可得点P 恰好取自阴影部分

的概率为

,选

B .

5从集合{}1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为______.

【答案】

2

5

从集合{}1,2,3,4,5中随机选取3个不同的数有3

510C =种.则3个数能构成等差数列的

有,1,2,3;2,3,4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为

42

105

=.

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

(完整版)正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P (- 2.322). 解:(1)P (-2.322)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为 π 21,求总体落入区 间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥ 奎屯王新敞新疆

正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-(2)==. 奎屯王新敞新疆 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率 [Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 (1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内 的概率不少于,则a 至少有多大[Φ()=, Φ()=] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

有关二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布” 问题举例 一.基本概念 1.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件 X=k 发生的概率为:P(X=k)= n N k n M N k M C C C --?,k= 0,1,2,3,,m ; 其中,m = min M,n ,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n M N 2.二项分布

在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为: P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布. 记作:X B(n,p),EX= np 3.“二项分布”与“超几何分布”的联系与区别 (1)“二项分布”所满足的条件 每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次

试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数. (2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布; (3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.事实上,对于“超几何 分布”中,若p= M N ,则EX= ∑ = - - ? ? n i n N k n M N k M C C C k 1 =

选修2-3随机变量及其分布知识点汇总典型例题

选修2-3随机变量及其分布知识点汇总典型例题

————————————————————————————————作者:————————————————————————————————日期:

2-3随机变量及其分布 离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列: 要点归纳 一、 1. 一般地,若离散型随机变量X 可能取的不同值为x 1,x 2…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: X x 1x 2…x i …x n P p 1 p 2 … p i … p n 我们将上表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了简单起见,也用等式P (X =x i )=p i , i =1,2,…,n 表示X 的分布列.(4)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…,n ; ② i =1n p i =1.

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. X 01P 1-p p 两点分布又称0-1分布,伯努利分布. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X = k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,即 X 0 1 …m P … C 0M C n - N -M C n N C 1M C n - 1 N -M C n N C m M C n - m N -M C n N 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.二项分布及其应用2. (1)条件概率:一般地,设A 和B 是两个事件,且P (A )>0,称P (B |A )= P (AB ) P (A ) 为在事件A 发生的条件下,事件B 发生 的条件概率.P (B |A )读作A 发生的条件下B 发生的概率. (2)条件概率的性质:①0≤P (B |A )≤1; ②必然事件的条件概率为1,不可能事件的条件概率为0; (4)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. (5)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 ③如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). (3)事件的相互独立性:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.

河北省张家口一中选修2-3 2.4 正态分布 教案

教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用 。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.即总体密度曲线在区间(a ,b )上得定积分。 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 22()2,(),(,)2x x x μσμσ?πσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ?的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

1.一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X b x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2 σμN . 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布讲解含标准表

正态分布讲解含标准表 Revised by Jack on December 14,2020

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ ?的图象为正态分布密度曲 线,简称正态曲线. 讲解新课: 一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作 ),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书 中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面 均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4.正态曲线的性质: (1)曲线在x 轴的上方,与x (2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列: 要点归纳 一、 1. 一般地,若离散型随机变量X 可能取的不同值为x 1,x 2…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: X x 1x 2…x i …x n P p 1 p 2 … p i … p n 我们将上表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了简单起见,也用等式P (X =x i )=p i , i =1,2,…,n 表示X 的分布列.(4)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…,n ; ② i =1n p i =1.

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. X 01P 1-p p 两点分布又称0-1分布,伯努利分布. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X = k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,即 X 0 1 …m P … C 0M C n - N -M C n N C 1M C n - 1 N -M C n N C m M C n - m N -M C n N 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.二项分布及其应用2. (1)条件概率:一般地,设A 和B 是两个事件,且P (A )>0,称P (B |A )= P (AB ) P (A ) 为在事件A 发生的条件下,事件B 发生 的条件概率.P (B |A )读作A 发生的条件下B 发生的概率. (2)条件概率的性质:①0≤P (B |A )≤1; ②必然事件的条件概率为1,不可能事件的条件概率为0; (4)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. (5)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 ③如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). (3)事件的相互独立性:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.

多维高斯分布讲解

多维高斯分布讲解 高斯分布 高斯分布:1维高斯分布公式: 多维高斯分布公式: 对于1维的来说是期望,是方差;对于多维来说D表示X的维数,表示D*D的协方差矩阵,定义为 ,为该协方差的行列式的值。 代码如下: m=[0 1]'; S=eye(2); x1=[0.2 1.3]'; x2=[2.2 -1.3]'; pg1=comp_gauss_dens_val(m,S,x1) pg2=comp_gauss_dens_val(m,S,x2) 其中comp_gauss_dens_val函数文件的代码如下: function [z]=comp_gauss_dens_val(m,S,x) [l,c]=size(m); z=(1/( (2*pi)^(l/2)*det(S)^0.5) )*exp(-0.5*(x-m)'*inv(S)*(x-m));

题目大致意思就是判断x是属于w1还是w2? 代码如下: P1=0.5; P2=0.5; m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]'; p1=P1*comp_gauss_dens_val(m1,S,x) p2=P2*comp_gauss_dens_val(m2,S,x) 题目大致意思就是给出正态分布的期望和方差构造出一些服从这个分布的数据点代码如下:

% Generate the first dataset (case #1) randn('seed',0); m=[0 0]'; S=[1 0;0 1]; N=500; X = mvnrnd(m,S,N)'; % Plot the first dataset figure(1), plot(X(1,:),X(2,:),'.'); figure(1), axis equal figure(1), axis([-7 7 -7 7]) % Generate and plot the second dataset (case #2) m=[0 0]'; S=[0.2 0;0 0.2]; N=500; X = mvnrnd(m,S,N)'; figure(2), plot(X(1,:),X(2,:),'.'); figure(2), axis equal figure(2), axis([-7 7 -7 7]) % Generate and plot the third dataset (case #3) m=[0 0]'; S=[2 0;0 2]; N=500; X = mvnrnd(m,S,N)'; figure(3), plot(X(1,:),X(2,:),'.'); figure(3), axis equal figure(3), axis([-7 7 -7 7]) % Generate and plot the fourth dataset (case #4) m=[0 0]'; S=[0.2 0;0 2]; N=500; X = mvnrnd(m,S,N)'; figure(4), plot(X(1,:),X(2,:),'.'); figure(4), axis equal figure(4), axis([-7 7 -7 7]) % Generate and plot the fifth dataset (case #5) m=[0 0]'; S=[2 0;0 0.2]; N=500; X = mvnrnd(m,S,N)'; figure(5), plot(X(1,:),X(2,:),'.');

经典高考概率分布类型题归纳(供参考)

经典高考概率类型题总结 一、超几何分布类型 二、二项分布类型 三、超几何分布与二项分布的对比 四、古典概型算法 五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 一、超几何分布 1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个. (1)若甲、乙二人依次各抽一题,计算: ①甲抽到判断题,乙抽到选择题的概率是多少? ②甲、乙二人中至少有一人抽到选择题的概率是多少? (2)若甲从中随机抽取5个题目,其中判断题的个数为X ,求X 的概率分布和数学期望. 二、二项分布 1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A ,B ,C 三家社区医院,并且他们对社区医院的选择是相互独立的. (1)求甲、乙两人都选择A 社区医院的概率; (2)求甲、乙两人不选择同一家社区医院的概率; (3)设4名参加保险人员中选择A 社区医院的人数为X ,求X 的概率分布和数学期望. 2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红 灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X , 当这排装饰灯闪烁一次时: (1)求X =2时的概率;

(2)求X 的数学期望. 解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红 灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24? ????232? ????132=827 . (2)法一 X 的所有可能取值为0,1,2,3,4,依题意知 P(X =k )=C k 4? ????23k ? ?? ??134-k (k =0,1,2,3,4). ∴X 的概率分布列为 ∴数学期望E(X)=0×18+1×881+2×881+3×3281+4×1681=83. 三、超几何分布与二项分布的对比 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取3件,若X 表示取到次品的次数,则P (X )= . 辨析: 1.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取3件,若X 表示取到次品的件数,则P (X )= 2. 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取件,第k 次取到次品的概率,则P (X )= 3.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取件,第k 次取到次品的概率,则P (X )= 四、古典概型算法

知识讲解 正态分布

正态分布 【学习目标】 1. 了解正态分布曲线的特点及曲线所表示的意义。 2. 了解正态曲线与正态分布的性质。 【要点梳理】 要点诠释: 要点一、概率密度曲线与概率密度函数 1.概念: 对于连续型随机变量X ,位于x 轴上方,X 落在任一区间(a ,b]内的概率等于它与x 轴、直线x a =与直线x b =所围成的曲边梯形的面积(如图阴影部分),这条概率曲线叫做X 的概率密度曲线,以其作为图象的函数()f x 叫做X 的概率密度函数。 2、性质: ①概率密度函数所取的每个值均是非负的。 ②夹于概率密度的曲线与x 轴之间的“平面图形”的面积为1 ③()P a X b <<的值等于由直线x a =,x b =与概率密度曲线、x 轴所围成的“平面图形”的面积。 要点二、正态分布 1.正态变量的概率密度函数 正态变量的概率密度函数表达式为:22 ()2,()(R)2x x x μσμσ?πσ -- = ∈,(0,σμ>-∞<<+∞) 其中x 是随机变量的取值;μ为正态变量的期望;σ是正态变量的标准差. 2.正态分布 (1)定义 如果对于任何实数,()a b a b <随机变量X 满足:,()()b a P a X b x dx μσ?<≤=?, 则称随机变量X 服从正态分布。记为2 (,)X N μσ:。 (2)正态分布的期望与方差 若2 (,)X N μσ:,则X 的期望与方差分别为:EX μ=,2 DX σ=。 要点诠释: (1)正态分布由参数μ和σ确定。

参数μ是均值,它是反映随机变量取值的平均水平的特征数,可用样本的均值去估计。σ是 标准差,它是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计。 (2)经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它 就服从或近似服从正态分布. 在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布. 要点三、正态曲线及其性质: 1. 正态曲线 如果随机变量X 的概率密度函数为22 ()21 ()(R)2x f x e x μσπσ -- = ∈,其中实数μ和σ为参数 (0,σμ>-∞<<+∞),则称函数()f x 的图象为正态分布密度曲线,简称正态曲线。 2.正态曲线的性质: ①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x μ=对称; ③曲线在μ=x 时达到峰值 2πσ ; ④当μx 时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近. ⑤曲线与x 轴之间的面积为1; ⑥μ决定曲线的位置和对称性; 当σ一定时,曲线的对称轴位置由μ确定;如下图所示,曲线随着μ的变化而沿x 轴平移。 ⑦σ确定曲线的形状; 当μ一定时,曲线的形状由σ确定。σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,

(完整版)超几何分布典型例题(附答案)

1.20世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染。人们长期食用含高浓度甲基汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm. 罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下: (Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率; (Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ. 【分析】①不放回→超几何分布 ②N=15,汞含量超标的鱼为X,则X服从一个参数为15(N).5(M).3(n)的超几何分布 ③由频率估计概率/由样本估计总体 2句都等价于将N无限化→不是超几何分布 ④做n次独立重复实验,每次实验成功的概率都相同→二项分布 法2:设3条鱼中汞含量超标的鱼的条数为X.则X服从一个参数为15、5、3的超几何分布 ∴P(X=1)= (每个概率的求得过程必须有公式和最简结果,再画表格)

设“学生持满意态度”为事件A,由题意可知该事件满足古典概型。 ∴P(A)= (Ⅱ)由题意可知,服从参数为14、3、4的超几何分布. (右上角为4-k)

(1)解:设“扫黑除恶利国利民”的卡片有M张 设抽取2张卡片中“扫黑除恶利国利民·”的卡片数为X,则X服从参数为9、M、2的超几何分布。 故由题意可得,即解得M=4 则抽奖者获奖的概率为 (为防止与第二问雷同,将X改为Y)(2)【分析】甲乙丙三人在抽奖过程中互不影响,各自独立,可看作3次独立重复实验,故为二项分布解:设中奖为事件A(下求中奖的概率) 即 则X服从参数为3(抽奖的人数)、5/9(中奖概率)的二项分布. 补充:数学期望

超几何分布习题

2、一批产品共50件,次品率为4%,从中任取10件,则抽的1件次品的概率是A A 0.078 B 0.78 C 0.0078 D 0.078 5、从分别标有数字1,2,3,4,5,6,7,8,9的9张卡片中任取 2张,则两数之和是奇数的概率是________________.9 5 1.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望. (Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A B ,相互独 立,且23241()2C P A C ==,2 4262 ()5 C P B C ==. 故取出的4个球均为黑球的概率为 121 ()()()255 P A B P A P B ==?=··. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥, 且21132422464()15C C C P C C C ==··,12 3422 461 ()5 C C P D C C ==·. 故取出的 4个球中恰有1 个红球的概率为 417 ()()()15515 P C D P C P D +=+=+=. (Ⅲ)解:ξ可能的取值为0123,,,.由(Ⅰ) ,(Ⅱ)得1 (0)5 P ξ==,7 (1)15 P ξ==,

选修2-3第二章内容总结+典型例题

随机变量及其分布列 一、本章知识框图: 二、知识点 1、随机变量:随着_________变化而变化的_______,常用________________________表示 2、离散型随机变量:所有取值可以_______________的随机变量。 3、离散型随机变量的分布列(有几种表现形式) (1)表格法: : (3)图像法: 4、离散型随机变量的分布列的性质: (1)P i ≥0,i=1,2,3,…,n (2) 5、离散型随机变量的均值 (1)定义: n i i 1p 1.==∑n i p x X P i i ,...2,1)(,===n n i i p x p x p x p x X E +++++=......)(2211

(2)性质: 6、方差 (1)定义:D (X )= (2)性质: 7、二项分布的期望: 二项分布的方差: 两点分布的期望: 两点分布的方差: 三、四种常见分布 1.两点分布 X 0 1 P 1-p p 若随机变量X 的分布列具有上表的形式,就称X 服从两点分布,并称p=P(X=1)为成功概率. 2、二项分布 在n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能取的 值为0,1,2,3,…,n ,并且P (ξ=k )=C k n p k q n -k (其中k =0,1,2,…,n ,q =1-p ). 显然P (ξ=k )≥0(k =0,1,2,…,n ),∑k =0 n C k n p k q n -k =1. 称这样的随机变量ξ服从参数n 和p 的二项分布,记为ξ~B (n ,p ). 3、超几何分布 ____ __________)(件次品,则恰有件,其中 件产品中,任取件次品的在含有==k X P X n N M *,,,,且,__________其中N N M n N M N n m ∈≤≤= 说明:超几何分布解决的问题涉及的背景往往由明显的两部分组成,如产品中的正品和次品、盒中的白球和黑球、同学中的男生和女生等. 4.正态分布 (1)定义: __________ )(=+b aX E

相关文档
最新文档