电子频率计课程设计报告

电子频率计课程设计报告
电子频率计课程设计报告

物理与电子工程学院

课程设计

题目:简易频率计

专业

班级

学号

学生姓名

指导教师

数字频率计数器

电子工程师经常需要测量频率、时间间隔、相位和对事件计数,精确的测量离不开频率计数器或它的同类产品,如电子计数器和时间间隔分析仪。

频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。

频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。

衡量频率计数器主要指标是测量范围、测量功能、精度和稳定性,这些也是决定价格高低的主要依据。

关键词:频率计;数码管;锁存器;计数器;定时器

1课程设计目的 (1)

2课程设计的指标 (1)

3课程设计报告内容 (1)

3.1设计方案的选定与说明 (1)

3.1.1方案的设计与论证 (2)

3.2论述方案各部分工作原理 (3)

3.2.1时基电路 (3)

3.2.2计数器 (5)

3.2.3锁存器 (6)

3.3设计方案的图表 (7)

3.3.1设计原理图 (7)

3.4编写设计说明书 (8)

3.4.1设计说明 (8)

3.4.2性能技术指标与分析 (9)

4仿真结果 (10)

5总结 (11)

参考文献 (12)

附录 (13)

附录A 元器件清单 (13)

附录B 设计电路 (13)

1课程设计目的

1)掌握中、小规模集成电路设计与制作的方法。

2)进一步培养学生对数字电路的综合应用能力和设计能力。

3)熟悉并掌握Multisim软件。

4)通过查阅手册和文献资料,培养独立分析和解决实际问题的能力。

2课程设计的指标

频率计技术指标:

频率测量范围:1~9999Hz

输入电压幅度:300mV~3V

输入信号波形:任意周期信号

显示位数: 4位

电源: 5V

3课程设计报告内容

3.1设计方案的选定与说明

数字频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物理量的变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经过传送带的产品数量等等,这些物理量的变化情况可以有关传感器先转变成周期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来。

3.1.1方案的设计与论证

交流电信号或脉冲信号的频率是指单位时间内产生的电振动的次数或脉冲个数。用数学模型可表示为:

N

f=

t

式中f——频率。N——电振动次数或脉冲数。t——产生N次电振动或脉冲所需要的时间。

首先必须把各种被测信号通过放大整形电路,使其成为规矩的数字信号,以便于计数器计数。实现频率测量的另一必备环节是时基电路。所谓时基电路,就是产生时间标准信号的电路装置。通常要求精确稳定,所以采用1MHz或5MHz石英晶体振荡器做成标准时间信号发生器。一般计数器则采用十位计数器,N进制的计数器也就是N分频器,其N进位信号也可作为N分频信号。

如图3.1所示为数字频率计系统原理总框图,被测量信号经过放大与整形电路传入十进制计数器,变成其所要求的信号,此时数字频率计与被测信号的频率相同,时基电路提供标准时间基准信号,此时利用所获得的基准信号来触发控制电路,进而得到一定宽度的闸门信号,当1s信号传入时,闸门开通,被测量的脉冲信号通过闸门,其计数器开始计数,当1s信号结束时闸门关闭,停止计数。根据公式得被测信号的频率f=NHz。

图3.1 数字频率计数器原理框图

逻辑控制电路的一个重要的作用是在每次采样后还要封锁主控门和时基信号输入,使计数器显示的数字停留一段时间,以便观测和读取数据。简而言之,控制电路的任务就是打开主控门计数,关上主控门显示,然后清零,这个过程不断重复进行。控制电路如图3.2所示:

图3.2 逻辑控制电路

3.2论述方案各部分工作原理

3.2.1时基电路

为了获得较为稳定的时间基准信号,以便准确的控制主控门的开启时间,其电路见图3.3所示:

图3.3 时基电路

本设计采取用555定时器组成的多谐振荡器如图3.3所示。接通电源后,电容被充电,当C v 上升到

3

2CC

V 时,使O v 为低电平,同时放电三极管T 导通,此时电容C 通过2R 和T 放电,C v 下降。当C v 下降到3

CC

V 时,O v 翻转为高电平。电容器C 放电所需的时间为

C R C R t pL 227.02ln ≈=

当放电结束时,T 截止,CC V 将通过1R 、2R 向电容C 充电,C v 由

3

CC

V 上升到3

2CC

V 所需的时间为 C R R C R R t pH )(7.02ln )(2121+≈+=

当C v 上升到

3

2CC

V 时,电路又翻转为低电平。如此周而复始,于是在电路的输出端就得到一个周期性的矩形波。其振荡频率为

C

R R t t f pH pL

)2(43

.1121+≈+=

3.2.2计数器

图3.4计数器

为了提高计数速度,可采用同步四位十进制计数器。其特点是计数脉冲作为时钟信号同时接于各位触发器的时钟脉冲输入端,在每次时钟脉冲沿到来之前,根据当前计数器状态,利用逻辑控制电路,准备好适当的条件。当计数脉冲沿到来时,所有应翻转的触发器同时翻转,同时也使用所有应保持原状的触发器不该变状态。

由于频率计的测量范围10~9999Hz,因此采用十进制计数器74LS160,它不仅可用于对脉冲进行计数,还可用于分频;此电路则需分频,N位进制计数器就是N分频器。

被测信号由闸门开通送入计数器,记录所测信号频率值传入译码显示电路中,显示器显示测得频率值;待闸门关闭,计数器停止工作;电路则继续工作进行下次循环,计数器清零,显示器数值消失,频率计完成一次测量。数字频率计测周期基本原理如图3.6所示

图3.5数字频率计测周期基本原理图

当被测信号的频率较低时,采用直接测频方法由量程误差一起的测量误差太大,为了提高测低频时的准确度,应先测周期X T ,然后计算X

x T f 1

=

。 被测信号经过放大整形电路变成方波,加到门控电路产生闸门信号,如

ms T X 10=,则闸门打开的时间也为10ms ,在此期间内,周期为S T 的标准脉冲通

过闸门进入计数器计数。

以上分析可见,频率计测周期的基本原理正好与测频相反,即被测信号用来控制闸门电路的开通与关闭,标准时基信号作为计数脉冲。

3.2.3 锁存器

锁存器是构成各种时序电路的存储单元电路,其具有0和1两种稳定状态,一旦状态被确定,就能自行保持,锁存器是一种脉冲电平敏感的存储单元电路,它们可以在特定输入脉冲电平作用下改变状态。

在确定的时间内计数器的技术结果必须经锁定后才能获得稳定的显示值。锁存器的作用是通过触发脉冲控制,将测量的数据寄存起来,送入译码显示器。锁

存器可以采用一般的8位并行输入寄存器。

此电路采用74LS373锁存器,其作用是将计数器在1s结束时锁记得的数进行锁存,使显示器上能稳定地显示此时计数器的值。当1s计数结束时,通过逻辑电路产生信号送入锁存器,将此时计数的值送入译码显示器。

选用两个8位锁存器74LS373可以完成上计数功能。当时钟脉冲CP的正跳变来到时,锁存器的输入等于输入,即Q=D,从而将计数器的输出值送到锁存器的输出端正脉冲结束后,无论D为何值,输出端Q的状态仍保持原来的状态的Q 不变。所以在计数期间内,计数器的输出不会送到译码显示器。

图3.6锁存器和数码管

3.3设计方案的图表

3.3.1设计原理图

根据系统框图,方案论证,设计数字频率计系统原理图如下图3.8所示。

在多谐振荡器中,电路从暂稳态过渡带另一个状态,其“触发”信号是由电路内部电容充(放)电提供的,因此无需外部触发脉冲。暂稳态持续的时间是脉冲电路的主要参数,它与电路的阻容原件取值有关。电路中RC电路充、放电过

程对相应门输入电平的影响是分析电路的关键。

图中根据课题要求,电路采用555定时器组成的多谐振荡器,为获得较为稳定的时间基准信号,用来准确的控制主控门的开启时间。计数器是最常用的时序电路之一,计数器的种类不胜枚举,按触发器动作分类,可分为同步计数器和异步计数器;按计数数值增减分类,可分为加计数器、减计数器和可逆计数器;按编码分类,又可分为二进制码计数器、BCD码技术区、循环码计数器。此设计采用十进制计数器进行计数。

通过时基选择开关,将所选用的时基信号作为控制电路的触发信号(用8位寄存器,实际上就是触发器构成的计数器,它可以循环位移一个1电平,也可以循环位移一个0电平),再将信号传入逻辑控制电路中,控制电路输出接往主控门,该输出端仅在所选时间基准内维持高电平,使主控门开启,被测信号在采样时间内通过主控门,进入十进制计数器计数,计数器数值由数字显示器在数字频率计面板上显示出来。此即为所测信号之频率值。

图3.8 数字频率计原理图

3.4编写设计说明书

3.4.1设计说明

(1)接通电源后,用示波器观察时基电路的输出波形,其中t 1=1s,t 2=0.25s ,否则重新调节时基电路中的R 1 和R 2,使其满足要求,然后,改变示波器的扫描速率旋钮,观察波形。其真值表如下表3.9所示

表3.1 74LS123真值表

(2)将3计数器74LS160部接低电平,锁存器74LS373都接时钟脉冲,有各位计数器的引脚加入计数脉冲,检查4位锁存,译码,显示器的工作是否正常。 (3)有放大电路输入端加入KHz f 1=,V V 1=的正弦信号,用示波器观察放大电路和整形电路的输出波形,应为与被测信号同频率的脉冲波,显示器上的读数应为1000Hz 。

3.4.2 性能技术指标与分析 (1)频率准确度

一般用相对误差来表示,即

???

? ???+±=?c

c x

x x f f Tf f f 1 式中

N

N N Tf x 11±=?=为量化误差(即±1个字误差),是数字仪器所特有的误差,当闸门时间T 选定后,x f 越低,量化误差越大;

T

T

f f c c ?=

?为闸门时间相对误差,主要由时基电路标准频率的准确度决定,

x

c c Tf f f 1

??

?。

(2)频率测量范围及各电路的测试

在输入电压符合规定要求值时,能正常进行测量的频率区间称为频率测量范围。频率测量范围主要由放大整形电路的频率响应决定。

①时基电路测试:

在通直流时,用示波器测555电路引脚和输出波形图,引脚的波形应如图

3.2所示波形II,调节电位器RP,使t

1=1s,t

2

=0.25s,引脚的输出波形应为电容

不断充放电的过程。

③放大与整形电路的测试:

有放大电路的输入端加正弦小信号,用示波器观察输出端,可以观察到信号幅度被放大,经整形电路后,在输出端可以观察到矩形波信号。

④测试译码显示部分:

频率计的数字显示位数决定了频率计的分辨率。位数越多,分辨率越高。

在74LS160输入端加入不同的高低电平组合,观察数码管能否显示相应的数字,判断译码,显示部分是否能工作正常。

⑤频率测试:

测量时间是频率计完成一次测量所需要的时间,包括准备、计数、锁存和复位时间。

先在放大整形电路输出端加一大信号矩形波脉冲,调节频率,观察数码管能

否显示相应的数值,若与实际成一定比例关系则说明时基电路的t

1,t

2

没有调到

相应的大小,应小幅度调节电位器RP使得显示正确。

若上述测试正常,说明整形放大电路以上的部分能够正常工作,最后再加一小信号在放大电路的输入端,观察数码管能否显示相应结果,从而判断整个数字频率计电路的工作情况。

(3)对电路进行分部分测试,可以准确定位出现问题的具体位置,从而保证能够很快地解决。

4仿真结果

此数字频率计数器由输入整形电路、分频器、门控电路、闸门、计数译码显示电路等组成。被测信号(以正弦波为例)通过放大、整形电路将其转换成同频率的脉冲信号,被测量的脉冲通过闸门进入到计数器进行计数。逻辑控制电路是控制计数器的工作顺序的,使计数器按照一定的工作程序进行有条理的工作(例如准备——计数——显示——清零——准备下一次测量)。

通过显示器显示的数据,可以测出脉冲的个数N,通过时基电路以及分频电路可以得到在时间段T内,被测信号发生的脉冲个数N,从而可以通过计算得到脉冲频率f1,被测信号的原频率为f,得误差W=(f1-f)/f.测的误差小于10%。

现在如果我设定输入频率为1KHz,那么在运行后在数码管上显示的数据应该是1000,因为我设置的时间是0.1秒则根据公式频率刚好应该为1KHz。如图3.6所示,测量的数值刚好为1000,说明计数成功了。

图4.1信号频率

图4.2数字显示

5总结

经过为期一个月的仿真课程设计,使我学会了仿真软件protues 7和

protel99SE的一些基本使用方法,在实习中,我能和我的组员一起讨论我们的课题,共同研讨设计方案,选定设计器件及电路,并进行一些简单的调试,通过网络查找资料,并结合课内所学的知识进行综合性的分析与评估。

这次的课程设计,我们组使用了仿真软件protues 7,选定了包括74LS160N、LM555CN、73LS373N等等器件。

两周的实习下来,我收获了很多,包括自学能力,团队合作,并且也对以前所学习的知识有了一个比较系统的实践复习。不仅本次课程设计达到了设计的目的,而且了解掌握了数字电子技术的知识并应用于实践。培养了自己独立完成课题的能力与动手能力,并加强了对待事物严谨的态度。另外还激发了我对我们这个专业的兴趣,更加爱上了自己学的电子信息工程专业。

参考文献

[1] 童诗白.模拟电子技术基础(第四版)[M].北京:高教出版社,2006

[2] 阎石.数字电子技术基础(第五版)[M]. 北京:高教出版社,2006

[3] 陈生谭、郭宝龙等.信号与系统西安电子科技大学出版社,2008

[4] 王生春. 电路原理重庆大学出版社,2001

附录

附录A 元器件清单

附录B 设计电路

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

电子技术课程设计总结报告(精)

课程设计总结报告 一、课程名称:数字电子钟的设计。 二、内容:设计并制作一台数字电子钟,完成设计说明书。 三、设计内容及要求: 设计内容:要求由所学的数字电子知识以及查阅有关资料设计并制作出一台数字电子钟。而且要完成电路的装配和调试。设计基本框图如下: 数字电子钟的基本框图 要求:1>.采用位数码管,显示范围0分00秒——9分59秒。 2>.提出至少两种设计实现方案,并优选方案进行设计。 3>.详细说明设计方案,并计算组件参数。包括选择的依据和原理,参数确定的根据。 4>.提倡有能力的同学在完成上述要求后,提出增强功能的设计方案。 四、比较和选写设计的系统方案,画出系统框图。 方案一:1>.振荡器由555定时器构成。在555定时器的外部接适当的电阻和电容组件构成多谐振荡器,再选择组件参数使其发出标准秒信号。 2>.计数器由74LS90集成记数构成。根据74LS90的菜单可以知道它是一个集成的 二—五—十进制计数器。对于分记数因为显示范围是0——9所以一块芯片就 可以构成。对于秒记数因为显示范围是0——59所以可以用两块并联构成100 进制计数器后再强制清零即可。再外设一定的控制电路。 3>.译码显示电路由74LS49作为译码驱动器和工阴极七段数码显示管构成。中间 设置一定的限流电阻即可。 系统框图如下: 方案一简化的系统框图

方案二:1>.振荡器和方案一相同仍由555定时器构成。 2>.计数器由74LS90构成。但是在记数方面和方案一不同,方案一是 符合平时记数逻辑,高位记数由低位进位得来。而在这个方案中则不是。 它的分记数、秒十位记数以及秒个位记数分别独立。各个计数器由共同的标准秒 振荡器驱动。只是分记数要经过一个60分频的电路,秒十位记数要经过一个10 分频的电路。而秒个位则直接接入。整个电路外加一定是设置电路即可。 3>.译码显示电路和方案一相同。 电路基本框图如下: 方案二简化系统框图 两方案的比较: 1、我们从分析电路可以知道两个方案在理论上都是可行的。 2、在难易程度方面:方案一电路设计简单,所用组件数目少,当然制作就比较简单, 而且在后期的调试和维护方面也就相对容易一些。但是在方案改进上就存在困难了, 比如要加一个校时电路就会十分复杂会使电路变的麻烦。 方案二相对与方案一就有点复杂,因为它多了两个分频电路,所用组件数目也就多, 不用数制作就会相对于方案一复杂一些,那幺在后期的调试和维护方面也就困难一 些。但是在改进方案方面就有独特的好处。因为它的各个记数电路相对独立,在操作 方面就可以分开处理。比如同样加一个校时电路就会十分方便的实现,只需要在各个 计数器电路设置一些简单的控制电路即可。 3、因为两个电路都是十分简单的电路,所用组件相对于一些大的电路来看就十分的少 了,因此在价格方面没有太多的差别,这方面就没有什幺比较的地方了。 4、在电路可靠性方面:因为方案一比方案二电路简单,根据电路的原则方案一应该是 比较可靠的。因为方案二的分记数和秒十位记数经过了分频电路,而秒个位没有经 过分频电路,因此在记数上会因为延时的原因使的记数误差增大。 综合上面的比较,而且这次的设计又没有要求设置校时装置,因此选用方案一进行设计,对于方案二可以经过改进后作为增强功能的改进方案进行设计。下面就以方案一进行电路的全部设计。 五、单元电路的设计、参数的计算和器件的选择。 1.标准秒振荡器的设计

电子课程设计报告

海南大学信息科学技术学院电子技术课程设计报告 设计题目: 自动换挡数字频率计 专业班级:___11级通信工程2班_____ _ 姓名:_______ ____ ________ 同组员: 学号:_____ _____ 指导教师:_______易家傅___________

目录 一、设计目的 (1) 二、设计目标 (1) 1、整体功能要求 2、系统结构要求 3、电气指标 三、方案比较 (2) 四、理论分析 (3) 1、基本原理 2、整体框图 五、单元电路设计和整体电路图 (5) 1、时基电路设计 2、闸门电路设计 3、分频器的设计 4、控制信号产生电路 5、计数、锁存、显示电路设计 6、换挡电路设计 7、量程显示电路设计 8、整体电路图 六、电路仿真结果记录及分析 (10) 七、元器件列表 (11) 八、心得体会 (11)

自动换挡型数字频率计 一、 设计目的 本次课程设计主要是配合《模拟电子技术》和《数字电子技术》理论课程而设置的一门实践性课程,起到巩固所学知识,加强综合能力,培养电路设计能力,提高实验技术,启发创新思想的效果。 二、 设计目标 1、整体功能要求 频率计主要用于测量正弦波、矩形波等周期信号的频率值。 2、系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,自动换挡指的是超量程自动换高档,低量程自动换低档。 图1 系统结构图 3、电气指标 (1)被测信号波形:正弦波、矩形波。 (2)被测信号的频率范围:1Hz 999KHz ,共分为4个档位: 1Hz 档位: 1Hz~999HZ 10Hz 档位: 10Hz~9.99KHZ 100Hz 档位: 100Hz~99.9KHZ 1000Hz 档位:1KHz~999KHZ (3)测量精度:用3位数码管显示测量数据,1位数码管显示档位。测量误差 小于1%。 (4)具有自检功能,即用仪器内部的标准脉冲校准测量精度。 (5)具有自动换挡功能,即超量程能换高档,欠量程换低档。 输入信号 数字频率计 (自动换挡) 显示结果

简易数字频率计设计

简易数字频率计设计报告 设计内容: 1、测量信号:方波、正弦波、三角波; 2、测量频率范围: 1Hz~9999Hz; 3、显示方式:4位十进制数显示; 4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得); 5、当被测信号的频率超出测量范围时,报警。 设计报告书写格式: 1、选题介绍和设计系统实现的功能; 2、系统设计结构框图及原理; 3、采用芯片简介; 4、设计的完整电路以及仿真结果; 5、Protel绘制的电路原理图; 6、制作的PCB; 7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。 电子课程设计过程: 系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告

简易数字频率计课程设计报告 第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进

5.3心得体会附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。

基于单片机的简单频率计课程设计报告

《单片机原理与接口技术》课程设计报 告 频率计

1功能分析与设计目标 0 2频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3频率计的软件设计与调试 (6) 3.1软件设计介绍 (6) 3.2程序框图 (8) 3.3功能实现具体过程 (8) 3.4测试数据处理,图表及现象描述 (10) 4讨论 (11) 5心得与建议 (12) 6附录(程序及注释) (13)

1 功能分析与设计目标 背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(△m ,△ T )要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M 法),脉冲周期测频法(T 法),脉冲数倍频测频法(AM 法),脉冲数分频测频法(AT 法),脉冲平均周期测频法(M/T 法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M 法):此法是记录在确定时间Tc 内待测信号的脉冲个数Mx ,则待测频率为: Fx=Mx/ Tc 脉冲周期测频法(T 法):此法是在待测信号的一个周期Tx 内,记录标准频率信号变化次数Mo。这种方法测出的频率是: Fx=Mo/Tx 脉冲数倍频测频法(AM 法):此法是为克服M 法在低频测量时精度不高的缺陷发展起来的。通过A 倍频,把待测信号频率放大A 倍,以提高测量精度。其待测频率为: Fx=Mx/ATo 脉冲数分频测频法(AT 法):此法是为了提高T 法高频测量时的精度形成的。由于T 法测量时要求待测信号的周期不能太短,所以可通过A 分频使待测信号 的周期扩大A倍,所测频率为: Fx=AMo/Tx 脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录

DSP课程设计总结报告

课程设计总结报告 课程名称DSP控制器及其应用 设计题目万年历设计 专业电子信息工程 班级 姓名 学号 指导教师 报告成绩 信息工程学院 二〇一四年六月十三日

目录 前言 (3) 第一章设计要求 (4) 1.1 基本要求 (4) 1.2 提高要求 (4) 第二章系统的组成和工作原理 (5) 2.1 DSP TMS320 VC5509APGE芯片的工作原理 (5) 2.2 LCD1602液晶显示器的工作原理 (6) 第三章主电路图及程序流程图 (7) 3.1主电路图 (7) 3.2程序总流程图 (7) 3.3程序分块流程图 (8) 第四章软件程序设计 (9) 4.1 程序 (9) 4.2 调试与处理出现问题 (9) 第五章设计总结 (20)

附录1:参考文献 (30) 前言 随着科技的不断发展,诞生了越来越多的电子产品。比如手表,时钟等等,现在的钟表在功能设计上不断地完善,不仅仅可以显示时间(时分秒),而且可以显示年月日,星期几等等。 科技的发展离不开人类的不断努力,培养高科技人才是21世纪必做的事。作为祖国的接班人更要努力学习好电子信息这门科技专业。因此我们要不断的接触各种电子产品,加强对电子技术技术理论的掌握和实际的应用。在本次的实验中,我们就以DSP芯片为核心控制电子钟,具有多项显示,用2812上的LCD液晶显示屏显示当前年、月、日、时、分、秒。

第一章设计要求 本次课程设计要求设计一个万年历,利用DSPTMS320 VC5509APGE芯片控制,使用程序来控制时间的实时更新,当秒加到60时,分自动加1,当分加到60时,小时自动加1,当小时加到24,天加1,天加到30时,月加1,月加到12时,年加1,使用I602上的LCD液晶显示屏显示当前年、月、日、时、分、秒。对现有器件进行简单地编程,实现各种简单地显示控制。 1.1设计目的 1. 学习软件的安装,熟悉运用CCS v3.3软件,加强软件编程能力; 2. 学习DSP芯片的I/O端口的控制方法; 3. 了解1602字符液晶的使用功能 4. 能够对现有器件进行简单地编程,实现各种简单地显示控制。 1.2 基本要求 ⑴此系统先显示设定的当前时间(年月日时分秒),并进行计数 ⑵设计硬件外扩电路,同时设计软件程序进行软硬件联系调试

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

课程设计报告(频率计)

设计题目:数字频率计的设计与制作 一、课程设计的主要内容与目的 1. 主要内容:数字频率计的主要功能是测量周期信号的频率,频率是单位时间内信号 发生周期变化的次数,如果我们能在给定的1S时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来,这就是数字频率计的基本原理。 从数字频率计的基本原理出发,根据设计要求,得到如图1所示的电路框图。 图1 2. 设计目的:(1)掌握数字频率计的工作原理 (2)根据课程设计,熟悉一般产品设计的流程和方法。 (3)重点掌握数字频率计设计的计数部分。 二、主要技术指标 1.频率测量范围:10~9999HZ。 2.输入信号波形:任意周期信号,输入电压幅度>300mv. 3.电源:220V,50HZ。 系统框图中各部分的功能及实现方法 (1)电源与整流稳压电路 框图中的电源采用50Hz的交流市电。市电被降压、整流、稳压后为整个系统提供直流电源。系统对电源的要求不高,可以采用串联式稳压电源电路来实现。 (2)全波整流与波形整形电路 本频率计采用市电频率作为标准频率,以获得稳定的基准时间。按国家标准,市电的频率漂移不能超过0.5Hz,即在1%的范围内。用它作普通频率计的基准信号完全能满足系统的要求。全波整流电路首先对50Hz交流市电进行全波整流,得到如图2(a)所示100Hz的全波整流波形。波形整形电路对100Hz信号进行整形,使之成为如图2(b)所示100Hz的矩形波。波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进行整形。

数字逻辑数字频率计的设计课程设计报告

滁州学院 课程设计报告 课程名称:数字逻辑课程设计 设计题目:数字频率计的设计 系别:网络与通信工程系 专业:网络工程(无线传感器网络方向)组别:第七组 起止日期:2012年5月28日~2012年6 月18日指导教师:姚光顺 计算机与信息工程学院二○一二年制

课程设计任务书

目录 1绪论 (1) 1.1设计背景 (1) 1.2主要工作和方法 (1) 1.3本文结构 (1) 2相关知识 (1) 2.1数字频率计概念...................................................................................................................... .. (1) 2.2数字频率计组成 (1) 3系统设计 (2) 4系统实现 (2) 4.1计数译码显示电路 (2) 4.2控制电路 (3) 5系统测试与数据分析 (5) 6课程设计总结与体会 (8) 6.1设计总结 (8) 6.2设计体会 (8) 结束语 (9) 参考文献 (9) 附录 (10) 致谢 (12)

1绪论 1.1设计背景 数字频率计是一种基础测量仪器,到目前为止已有 30 多年的发展史。早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量数字频率计的技术水平,决定数字频率计价格高低的主要依据。目前这些基本技术日臻完善,成熟。应用现代技术可以轻松地将数字频率计的测频上限扩展到微频段。 随着科学技术的发展,用户对数字频率计也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对于中高档产品,则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用频率计所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 随着数字集成电路技术的飞速发展,应用计数法原理制成的数字式频率测量仪器具有精度高、测量范围宽、便于实现测量过程自动化等一系列的突出特点。 1.2主要工作和方法 设计一个数字频率计。要求频率测量范围为1Hz-10kHz。数字显示位数为四位静态十进制计数显示被测信号。先确定好数字频率计的组成部分,然后分部分设计,最后组成电路。 1.3本文结构 本文第1部分前言主要说明频率计的用处和广泛性。第2部分简要说明了本次课程设计的要求。第3部分概要设计大致的勾画出本次设计的原理框架图和电路的工作流程图。第4部分简要说明4位二进制计数器74160的原理和搭建计数译码显示电路的原理,同时分析控制电路的功能,形成控制电路图,及搭建显示电路和控制电路的组合原理图。第5部分调试与操作说明,介绍相关的操作和输入不同频率是电路的显示情况。 2相关知识 2.1数字频率计介绍 2.1.1数字频率计概念 数字频率计是一种直接用十进制数字现设被测信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波等信号的频率,而且还可以用它来测量被测信号的周期。经过改装,在电路中增加传感器,还可以做成数字脉搏计、电子称、计价器等。因此,数字频率计在测量物理量方面有广泛的应用。 2.1.2数字频率计组成 数字频率计由振荡器、分频器、放大整形电路、控制电路、计数译码显示电路等部分组成。其中的控制脉冲采用时钟信号源替代,待测信号用函数信号发生器产生。数字频结构原理框图如图3.1

模拟电子技术课程设计报告

课程设计报告 题目方波、三角波、正弦波信号 发生器设计 课程名称模拟电子技术课程设计 院部名称机电工程学院 专业10自动化 班级10自动化 学生姓名吉钰源 学号1004104001 课程设计地点 C206 课程设计学时 1周 指导教师赵国树 金陵科技学院教务处制成绩

目录 1、绪论 (3) 1.1相关背景知识 (3) 1.2课程设计目的 (3) 1.3课程设计的任务 (3) 1.4课程设计的技术指标 (3) 2、信号发生器的基本原理 (4) 2.1总体设计思路 (4) 2.2原理框图 (4) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (7) 3.2.1正弦波到方波转换电路图 (7) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (9) 3.3.1方波到三角波转换电路图 (9) 3.3.2方波到三角波转换电路的工作原理 (10) 4、电路仿真结果 (11) 4.1正弦波产生电路的仿真结果 (11) 4.2 正弦波到方波转换电路的仿真结果 (11) 4.3方波到三角波转换电路的仿真结果 (13) 5、电路调试结果 (13) 5.1正弦波产生电路的调试结果 (13) 5.2正弦波到方波转换电路的调试结果 (14) 5.3方波到三角波转换电路的调试结果 (14) 6、设计结果分析与总结 (15)

1、绪论 1.1相关背景知识 由于物理学的重大突破,电子技术在20世纪取得了惊人的进步。特别是近50年来,微电子技术和其他高技术的飞速发展,致使农业、工业、科技和国防等领域发生了令人瞩目的变革。与此同时,电子技术也正在改变着人们日常生活。在电子技术中,信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计目的 通过本次课程设计所要达到的目的是:增进自己对模拟集成电路方面所学知识的理解,提高自己在模拟集成电路应用方面的技能,树立严谨的科学作风,培养自身综合运用理论知识解决实际问题的能力。通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作提供引导性的背景知识,打下必要的基础。 1.3课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波和三角波; ③用±12V电源供电; 先对课程设计任务进行分析,及根据参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。然后运用仿真软件Multisim对电路进行仿真,观察效果并与课题要求的性能指标作对比。仿真成功后,用实物搭建电路,进行调试,观测示波器输出的波形。 1.4课程设计的技术指标 ①设计、组装、调试信号发生器; ②输出波形:正弦波、方波、三角波; ③频率范围在10Hz~10000Hz范围内可调; ④比较器用LM339,运算放大器用LM324,双向稳压管用两个稳压管代替。

电子电力课程设计报告

一、设计课题:DC/DC PWM控制电路的设计 二、设计要求: 1、设计基于PWM芯片的控制电路,包括外围电路。按照单路输出方案进行设计,开关频率设计为10KHZ;具有软启动功能、保护封锁脉冲功能,以及限流控制功能。电路设计设计方案应尽可能简单、可靠。 2、实验室提供面包板和器件,在面包板或通用板上搭建设计的控制电路。 3、设计并搭建能验证你的设计的外围实验电路,并通过调试验证设计的正确性。 4、扩展性设计:增加驱动电路部分的设计内容。 5、Buck电路图如下图: Buck电路图 三、设计方案 本次课程设计基于PWM芯片TL494进行设计,通过查阅该芯片的相关资料,了解其各引脚功能,结合设计要求进行电路设计。首先建立最基本的电路,然后在其上面进行改进,得到进一步满足条件与

实际应用的电路,根据原理图在实验板上搭建电路进行试验,得出结果进行分析验证,最后得出DC/DC PWM控制电路。 四、设计原理图 如图所示为设计原理图,通过调节电位器Rp进行控制输出,从Vo端得到输出驱动电压的波形。 设计原理图 五、TL494各引脚功能 TL494的个引脚功能图如下表 TL494引脚功能表 引脚号功能引脚号功能 1 误差放大器1的同相输入端9 末极输出三极管发射极端 2 误差放大器1的反相输入端10 末极输出三极管发射极端

3 输出波形控制端11 末极输出三极管集电极端 4 死区控制信号输入端12 电源供电端 5 振荡器外接震荡电容连接端13 输出控制端 6 振荡器外接震荡电阻连接端14 基准电压输出端 7 接地端15 误差放大器2的反相输入端 8 末极输出三极管集电极端16 误差放大器2的同相输入端 六、各部分功能及工作原理 首先设计其振荡电路,根据振荡公式f=1.1/(R3XC2)=10Khz,取R3=1KΩ,则电容C2=0.1uF;然后,将同样大小的电容电阻串联并加以电压接地后,在电容电阻中间引出一根信号线作为第四脚的输入端,作为死区控制信号的输入。 接着,通过示波器测量振荡电路的波形如图所示: 震荡电路波形图 根据实验所测得的波形图及TL494芯片的内部结构, 可得振荡电路的峰值为2.88V,若要对其输出波形进行控制,则在第三脚接入的电压需小于 2.88-0.7=2.18V,即第三脚输入电压变化范围约为0-2.2V。如原理图所示,将1KΩ电阻与1-10KΩ电位器按照如原理图

简易频率计课程设计

目录 1 技术要求及系统结构 (1) 1.1技术要求 (1) 1.2系统结构 (1) 2设计方案及工作原理 (2) 2.1 算法设计 (2) 2.2 工作原理 (3) 3组成电路设计及其原理 (6) 3.1时基电路设计及其工作原理 (6) 3.2闸门电路设计 (7) 3.3控制电路设计 (8) 3.4小数点控制电路 (9) 3.5整体电路 (10) 3.6 元件清单 (10) 4设计总结 (11) 参考文献 (11) 附录1 (12) 附录2 (17)

摘要 简易数字频率计是一种用四位十进制数字显示被测信号频率(1Hz—100KHz)的数字测量仪器.它的基本功能是测量正弦波,方波,三角波信号,有四个档位(×1,×10,×100,×1000),并能使用数码管显示被测信号数据,本课程设计讲述了数字频率计的工作原理以及其各个组成部分,记述了在整个设计过程中对各个部分的设计思路、对各部分电路设计方案的选择、元器件的筛选、以及在设计过程中的分析,以确保设计出的频率计成功测量被测信号。 关键词:简易数字频率计十进制信号频率数码管工作原理 1技术要求及结构 本设计可以采用中、小规模集成芯片设计制作一个具有下列功能的数字频率测量仪。 1.1技术要求 ⑴要求测量频率范围1Hz-100KHz,量程分为4档,即×1、×10、×100、×1000。 ⑵要求被测量信号可以是正弦波、三角波和方波。 ⑶要求测试结果用数码管表示出来,显示方式为4位十进制。 1.2 系统结构 数字频率计的整体结构要求如图1-1所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 图1-1 数字频率计系统结构框图 2 设计方案及工作原理 2.1 算法设计

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

数字电路课程设计总结报告

数字电路课程设计总结报告题目:交通灯控制器 班级:08通信工程1班 学号:0810618125 姓名:廖小梅 指导老师:张红燕 日期:2010年12月

目录 1、设计背景 2、设计任务书 3、设计框图及总体描述 4、各单元设计电路设计方案与原理说明 5、测试过程及结果分析 6、设计、安装、调试中的体会 7、对本次课程设计的意见及建议 8、附录 9、参考文献 10、成绩评定表格

一、设计背景 随着经济的快速发展,城市交通问题日益凸显严重,尤其在城市街道的十字叉路口,极其容易发生交通问题,为了保证交通秩序和人们的安全,一般在每条街上都有一组红、黄、绿交通信号灯。交通灯控制电路自动控制十字路口的红、黄、绿交通灯。交通灯通过的状态转换,指挥车辆行人通行,保证车辆行人的安全,实现十字路口交通管理自动化。 二、设计任务书 1、设计一个十字路口的交通灯控制电路,要求南北方向(即 A车道)和东西方向(即B车道)两条交叉道路上的车辆 交替运行,每次通行时间都为30秒; 2、在绿灯转红灯时,先由绿灯转为黄灯,黄灯亮6秒后,再 由黄灯转为红灯,此时另一方向才由红灯转为绿灯,车辆 才开始通行。 三、设计框图及总体描述 1、分析系统的逻辑功能,画出其框图 交通灯控制系统的原理框图如图1所示。它主要由控制器、定时器、译码器和秒脉冲信号发生器等部分组成。秒脉冲发生器是该系统中定时器和控制器的标准时钟信号源,译码器输出两组信号灯的控制信号,经驱动电路后驱动信号灯工作,控制器是系统的主要部分,由它控制定时器和译码器的工作。

图1交通灯控制系统原理框图 在图中, T30: 表示甲车道或乙车道绿灯亮的时间间隔为30秒,即车辆正常通行的时间间隔。定时时间到,T30 =1,否则,T30 =0。 T6:表示黄灯亮的时间间隔为6秒。定时时间到,T6=1,否则,T6=0。 S T:表示定时器到了规定的时间后,由控制器发出状态转换信号。 由它控制定时器开始下个工作状态的定时。 交通系统的车道信号灯的工作状态转换如下所述: 状态1:A车道绿灯亮,B车道红灯亮。表示A车道上的车辆允许通行,B车道禁止通行。绿灯亮满规定的时间隔T30时, 控制器发出状态信号S T,转到下一工作状态。 状态2:A车道黄灯亮,B车道红灯亮。表示A车道上未过停车线的车辆停止通行,已过停车线的车辆继续通行,B车 道禁止通行。黄灯亮足规定时间间隔TY时,控制器发 出状态转换信号S T,转到下一工作状态。 状态3:A车道红灯亮,B车道黄灯亮。表示A A车道禁止通行,B车道上的车辆允许通行绿灯亮满规定的时间间隔T30 时,控制器发出状态转换信号S T,转到下一工作状态。

电子课程设计报告

电子课程设计报告——集成运算放大电路 姓名: 学号: 专业班级:

摘要:集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。 一、设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面, 可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并 利用Protel软件(或proteus)对实现对积累运算放大电路的设计,并最 终实现PCB版图形式。 二、设计任务及步骤: 1、通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证。要求: (1)运算放大电路类型:同相比例、反相比例、加法、减法、积分、微分电路; (2)所有运算放大电路的增益均可任意调节; (3)输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并且可以进行比较; (4)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电路进行原理图SCH设计,要求:所有运算放大电路在一张原理图 上;运算放大器芯片可以选择集成运放741系列;输入输出信号需预留 接口; (5)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至少为双层PCB板。

单片机简易频率计课程设计

前言 (3) 一、总体设计 (4) 二、硬件设计 (6) AT89C51单片机及其引脚说明: (6) 显示原理 (8) 技术参数 (10) 电参数表 (10) 时序特性表 (11) 模块引脚功能表 (12) 三、软件设计 (12) 四、调试说明 (15) 五、使用说明 (17) 结论 (17) 参考文献 (18)

附录 (19) Ⅰ、系统电路图 (19) Ⅱ、程序清单 (20)

前言 单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用在生活中至关重要。 随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的范围比较小.考虑到上述问题,本论文设计一个基于单片机技术的数字频率计。首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。

一、总体设计 用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量. 所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f x。时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确地等于1s.闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。由于计数器计得的脉冲数N是在1秒时间内的累计数,所以被测频率fx=NHz。 本系统采用测量频率法,可将频率脉冲直接连接到AT89C51的T0端,将T/C1用做定时器。T/C0用做计数器。在T/C1定时的时间里,对频率脉冲进行计数。在1S定时内所计脉冲数即是该脉冲的频率。见图1: 图1测量时序图 由于T0并不与T1同步,并且有可能造成脉冲丢失,所以对计数器T0做一定的延时,以矫正误差。具体延时时间根据具体实验确定。 根据频率的定义,频率是单位时间内信号波的个数,因此采用上述各种方案

数字频率计_课程设计报告

电气与信息工程学院 数字频率计 设计报告书 前言 摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的 测量就显得更为重要。测量频率的方法有多种,其中数字计 数器测量频率具有精度高、使用方便、测量迅速,以及便于 实现测量过程自动化等优点,是频率测量的重要手段之一。 其原理为通过测量一定闸门时间内信号的脉冲个数。本文阐 述了设计了一个简单的数字频率计的过程。 关键词:频率计,闸门,逻辑控制,计数-锁存

目录 第一章设计目的 第二章设计任务和设计要求 2.1 设计任务及基本要求 2.2.系统结构要求 第三章系统概述 3.1概述 3.2设计原理及方案 第四章单元电路设计及分析 4.1 时基电路 4.2逻辑控制电路 4.3计数电路 4.4锁存电路 4.5显示译码电路 4.6 闸门电路 第五章安装与调试过程 5.1 电路的安装过程 5.2 电路的调试过程 5.3 出现的问题及解决办法 第六章结果分析 第七章收获与体会

第八章元件清单 第九章实现结果实物图 附录A 参考文献 第一章 设计目的: 1.了解数字频率计测量频率与测量周期的基本原理; 2.熟练掌握数字频率计的设计与调试方法及减小测量误 差的方法。 3.本设计与制作项目可以进一步加深我们对数字电路应 用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。 4.针对电子线路课程要求,对我们进行实用型电子线路设 计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

第二章 设计任务及要求: 2.1设计任务及基本要求: 设计一简易数字频率计,其基本要求是: 1)测量频率范围0~9999Hz; 2)最大读数9999HZ,闸门信号的采样时间为1s;. 3)被测信号可以是正弦波、三角波和方波; 4)显示方式为4位十进制数显示; 5)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。 2.2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量。 波形 整 形 计 数 器 数 码 显 示 振荡 电 路分 频 器 控 制 门 数 据 锁 存 器 显 示 译 码 器 被测 信 号

相关文档
最新文档