我国核能技术发展的主要方向

我国核能技术发展的主要方向
我国核能技术发展的主要方向

我国核能技术发展的主要方向

中国核电发展现状

我国核电在运核电厂已达到38台,总发电功率超过3 700万千瓦,在建

机组18台,总装机容量2 100万千瓦,到2020年我国在运核电厂预期将达到

5 800万千瓦,占世界第二位。

正如中国工程院、法国科学院及法国国家技术院给国际原子能机构的报告中所写:“就所有民用核能活动而言,可以认为法国和俄罗斯在当下全球领先。同时,中国在核电站建设方面正在取得重大突破,是未来潜在的领先国家之一。”

我国核电充分吸收了国际核电发展的经验和教训,并采用当前最先进的技术,遵循最高的安全标准,坚持自主创新,不断改进,并拥有技术先进、实力强大的装备行业,以支撑中国核电建设。可以说,中国核电具有“后发优势”。

我国最早引入和开发三代核电技术,遵循国际最高安全标准,完全满足美国“电力公司要求文件”(URD)和欧洲国家的“欧洲电力公司要求”(EUR),堆芯损坏概率(CDF)小于十万分之一,大量放射性释放概率(LRF)小于百万分之一。

我国率先在三门、海阳引进、建设首批4台AP1000先进压水堆核电厂,同时在台山建设2台EPR1700先进压水堆核电厂。我国自主研发的三代核电包括CAP1400和“华龙一号”,其中“华龙一号”正在福建福清、广西防城港和巴基斯坦卡拉奇顺利建设,并积极准备进入英国市场。

“华龙一号”是在我国具有成熟技术和规模化核电建设及运行的基础上,通过优化和改进,自主设计建设的三代压水堆核电机组。它满足先进压水堆核电厂的标准规范,其主要特点有:1)采用标准三环路设计,堆芯由177个燃料组件组成,降低堆芯比功率,满足热工安全余量大于15%的要求;2)采用能动加非能动的安全系统;3)采用双层安全壳,具有抗击大型商用飞机撞击的能力;4)设置严重事故缓解设施,包括增设稳压器卸压排放系统,非能动氢气复合装置,以及堆腔淹没系统,保持堆芯熔融物滞留在压力容器内;5)设置湿式(文丘里)过滤排放系统,以防止安全壳超压;6)设计基准地面水平加速度为0.3g;7)全数字化仪控系统。

2 持续提高核电的安全性

我国和国际上都在进行提高核电的安全性研究,主要有从设计上实际消除大规模放射性释放,保持安全壳完整性,严重事故预防和缓解(包括:严重事故管理导则,极端自然灾害预防管理导则),耐事故燃料(ATF)研究以及先进的废物处理和处置技术的开发和应用。

国际上安全监管机构都要求新建反应堆应满足下列安全目标:

(1)必须实际消除出现堆芯熔化、导致早期或大量放射性泄露的事故;

我国核能技术发展的主要方向

我国核能技术发展的主要方向 中国核电发展现状 我国核电在运核电厂已达到38台,总发电功率超过3 700万千瓦,在建 机组18台,总装机容量2 100万千瓦,到2020年我国在运核电厂预期将达到 5 800万千瓦,占世界第二位。 正如中国工程院、法国科学院及法国国家技术院给国际原子能机构的报告中所写:“就所有民用核能活动而言,可以认为法国和俄罗斯在当下全球领先。同时,中国在核电站建设方面正在取得重大突破,是未来潜在的领先国家之一。” 我国核电充分吸收了国际核电发展的经验和教训,并采用当前最先进的技术,遵循最高的安全标准,坚持自主创新,不断改进,并拥有技术先进、实力强大的装备行业,以支撑中国核电建设。可以说,中国核电具有“后发优势”。 我国最早引入和开发三代核电技术,遵循国际最高安全标准,完全满足美国“电力公司要求文件”(URD)和欧洲国家的“欧洲电力公司要求”(EUR),堆芯损坏概率(CDF)小于十万分之一,大量放射性释放概率(LRF)小于百万分之一。

我国率先在三门、海阳引进、建设首批4台AP1000先进压水堆核电厂,同时在台山建设2台EPR1700先进压水堆核电厂。我国自主研发的三代核电包括CAP1400和“华龙一号”,其中“华龙一号”正在福建福清、广西防城港和巴基斯坦卡拉奇顺利建设,并积极准备进入英国市场。 “华龙一号”是在我国具有成熟技术和规模化核电建设及运行的基础上,通过优化和改进,自主设计建设的三代压水堆核电机组。它满足先进压水堆核电厂的标准规范,其主要特点有:1)采用标准三环路设计,堆芯由177个燃料组件组成,降低堆芯比功率,满足热工安全余量大于15%的要求;2)采用能动加非能动的安全系统;3)采用双层安全壳,具有抗击大型商用飞机撞击的能力;4)设置严重事故缓解设施,包括增设稳压器卸压排放系统,非能动氢气复合装置,以及堆腔淹没系统,保持堆芯熔融物滞留在压力容器内;5)设置湿式(文丘里)过滤排放系统,以防止安全壳超压;6)设计基准地面水平加速度为0.3g;7)全数字化仪控系统。 2 持续提高核电的安全性 我国和国际上都在进行提高核电的安全性研究,主要有从设计上实际消除大规模放射性释放,保持安全壳完整性,严重事故预防和缓解(包括:严重事故管理导则,极端自然灾害预防管理导则),耐事故燃料(ATF)研究以及先进的废物处理和处置技术的开发和应用。 国际上安全监管机构都要求新建反应堆应满足下列安全目标: (1)必须实际消除出现堆芯熔化、导致早期或大量放射性泄露的事故;

核能的利用与发展

核能的利用与前景 摘 要 本文简要介绍原子核的质量亏损和结合能、核子的平均结合能与规律等核能利用原理及核能发电、供热的应用,并对核能聚变前景进行展望。 关键词 核能 质量亏损 结合能 1、引言【1】 人类赖以生存的地球,正在超负荷运行。不仅人口在增长,而且社会发展对能源的需求正以惊人的速度增长。而靠大量燃烧石化燃料获得能源的同时,也给现代社会带来了许多难以解决的灾难性问题:能量资源短缺,森林植被遭破坏,大气、水系、土壤被污染,二氧化碳增多导致的温室效应使自然灾害增多等等。在保护和改善环境的前提下开发利用新兴能源,是人类生存和社会发展的必然趋势。20世纪30年代,随着对原子核研究的深入,人类发现了原子核内蕴藏着巨大的可开发的能量,并开始和平利用原子能的研究。经半个多世纪的努力,迄今世界上已有30多个国家建造核电站440多座,发电量占全球的18%。与火电相比,核电是廉价、洁净、安全的能源。随着将来受控热核聚变的成功,核能必然成为未来的能源支柱。 2、原理 2.1、原子核的质量亏损和结合能【1】 原子核都是由质子和中子组成的,质子和中子统称核子。实验数据发现任何一个原子核的质量总小于组成它的所有核子的质量和,也即核子在组成原子核的过程中,发生了质量亏损,其亏损等于核子结合为核时质量的减少,用△M 表示。 根据爱因斯坦质能方程2E mc =,可知自由核子在结合成原子核时要释放能量,这个能量称为原子核的结合能B 。2()p n B ZM NM M C =+-,其中M p 、M n 、M 分别为质子、中子、原子核的质量。 2.2、核子的平均结合能与规律【1】

质子和中子结合为原子核时放出 的总能量除以质量数A,称为核子的平 均结合能E 。其物理意义是自由核子结 合成原子核时平均每个核子释放的能 量;也可以理解为核分散成核子时,外 界必须对每个核子作功的平均值。E 的 大小可以表征原子核稳定的程 度。平均结合能越大,表示这些 原子核越稳定。核子数较小的轻 核与核子数较大的重核,平均结 合能都比较小,中等核子数的原 子核,平均结合能较大,表示这 些原子核较稳定。当平均结合能 较小的原子核转化成平均结合 能较大的原子核时,就可释放核 能。 图1中表示出各种不同核的平均结合能对质量数A 的分布曲线。从曲线图分析可知中等原子核的平均结合能较大,轻核和重核的平均结合能较小。这说明当一个重核分裂成两个中等质量的原子核时或者当两上很轻的核聚合成一个较重的核时,将有能量的释放,此能即为原子能,又称核能。重核的裂变和轻核的聚变是获取原子能的两条主要途径。 2.3、核裂变【2】 核裂变,又称核分裂,是指由重的原子(铀y óu 或钚b ù)分裂成较轻的原子的一种核反应形式。原子弹以及裂变核电站或是核能发电厂的能量来源都是核裂变。其中铀裂变在核电厂最常见,加 热后铀原子放出2到4个中子,中子再 去撞击其它原子,从而形成链式反应而 自发裂变。如图2所示。 2.2、核聚变【2】 核聚变是指由质量小的原子 (主要 图1:平均结合能图 图3 :核聚变示意图 外来中子 铀-235 裂变 辐射 中子 链式裂变反应 图3:裂变反应示意图

核能的可持续发展性

核能的可持续发展性 核能(nuclear energy)是人类历史上的一项伟大发现,这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。 1895年德国物理学家伦琴发现了X射线。 1896年法国物理学家贝克勒尔发现了放射性。 1905年爱因斯坦提出质能转换公式。 1938年德国科学家奥托·哈恩用中子轰击铀原子核,发现了核裂变现象。 1942年12月2日美国芝加哥大学成功启动了世界上第一座核反应堆。 1954年苏联建成了世界上第一座核电站------奥布灵斯克核电站。 在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。 大自然的奉献与人类的聪明才智的结合缔造了核能,一个世纪的时间,核能已经成为了世界能源家族中最重要的一员了。在今天,核能主要有四个作用:第一也是最主要的用途即用于电力生产。当今世界面临的最大问题之一就是能源短缺。像石油、天然气、煤炭,这些化石燃料不但是污染源,而且终将耗尽。此外,从石油中可以提炼石油化工产品或更有价值的产品,所以应该节约使用石油。现在世界上许多国家,特别是工业国家几乎都用核能发电,世界16%的电也是通过核能保障的。世界上六分之一的电是由核电站生产的。现在许多国家还在继续建造核电站。 第二个用途即发展医学技术。现在核技术的发展越来越使医学技术受益,许多病症需要用放射性物质来治疗和预防。如:核放射和核药物对确诊和治疗癌症就有很大的功效。科学家们制造了各种核放射仪器,用其确诊脑癌、肠癌、前列腺癌和乳癌。这些机器对医生对症下药提供了很大帮助。此外,核放射物还能确诊甲状腺、传染病、关节炎、贫血等症状,这使医学越来越依赖于核技术。现今可以用核能而发明的“CT”和核磁共振来确诊每个人身体上不适的地方,并且其误诊率非常低。 第三个用途即用于处理食物。核技术对食品的影响也越来越大,如有些容易

核能技术应用及发展

核能技术应用及发展 核能是核裂变能的简称,是由于原子核内部结构发生变化而释放出的能量。核能的释放通常有两种形式,一种是重核的裂变,即一个重原子核(如铀、钚)分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量;另一种是轻核的聚变,即两个轻原子核(如氢的同位素氘)聚合成为一个较重的核,从而释放出巨大的能量。 重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。 所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。 与重核裂变相比,轻核聚变发电有着无可比拟的优点。 (1)能量巨大。核聚变比核裂变释放出更多的能量。例如,铀-235的裂变反应,将0.1%的物质变成了能量;而氘的聚变反应,将近0.4%的物质变成了能量。 (2)资源丰富。重核裂变使用的主要原料是铀,目前探明的储量仅够使用几十年;而轻核聚变使用的是海水中的氘,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即“1升海水约等于300升汽油”,地球上海水中就有45万亿吨氘,足够人类使用数百亿年。而且地球上锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。因此受控核聚变的燃料取之不尽、用之不竭。 (3)成本低廉。1千克氘的价格只为1千克浓缩铀的1/40。 (4)安全、无污染核。聚变不产生放射性污染物,万一发生事故,反应堆会自动冷却而停止反应,不会发生爆炸。 但是,实现核聚变的条件十分苛刻,为了使2个原子核聚变,必须使两个原子核的一方或双方有足够的能量,去克服彼此之间的静电斥力,满足这样的条件需要几千万甚至几亿摄氏度的高温。 自20世纪70年代起,世界范围内掀起了托卡马克的研究热潮。目前,全世界有30多个国家及地区开展了核聚变研究,运行的托卡马克装置有几十个。 最近,由中国、美国、欧盟、日本、俄罗斯、韩国共同参与的国际热核反应堆合作计划(ITER)因其最终选址问题再次引起了人们的兴趣。这个被称为“人造太阳”的热核反应堆,不仅因为13万亿日元的巨大投资引人关注,更因为如能在未来50年内开发成功,将在很大程度上改变目前世界能源格局,使人类拥有取之不尽、用之不竭的理想的洁净能源。国际热核实验反应堆是继国际空间站之后最大的国际科学合作项目,我国也已正式加盟。根据计划,世界首座热核反应堆将于2006年开工,2013年前完工。这预示着在能源革命中占有重要地位的核聚变能开发和利用的曙光已出现,核能文明时代即将到来。 虽然目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态

我国核能发展现状

我国核能发展现状 目前我们国家核能起着相当重要的作用,核能的和平利用是20世纪人类最伟大的成就之一,经过半个多世纪的发展,核技术已经渗透到能源、工业、农业、医疗、环保等各个领域,特别是核能在电力工业成功运用,为提高各位人们的生活质量与水平作出了重要贡献。 目前核电约占世界总发电量的16%,与水电、火电一起构成电力能源三大支柱,核能技术不断发展和进步寄托着人类对未来的希望,它将成为最终解决全球可持续发展的综合能源之一。世界50多年的核能发展表明,核能不失为一种清洁、安全和经济的能源,随着我国经济的持续高速发展,毕竟对能源提出快速增长要求,而我国目前以煤炭为主的能源结构又与日益严重的环境问题日益相关,所以发展核能是解决我国能源短缺、改善能源结构、控制环境污染、保障能源结构重要途径之一。 中国建设的第一座核电厂1991年建成投产,结束了中国大陆无核电力的历史,1994年投产大电站,1996年中国又自主设计建设了二级核电站,三级核电站,随着最近广东核电厂投入,我国目前公共12组核电机组投入运行,运行的核电机组安全状况良好,平均用于值可达到85%,核电辐射水平一直保持在本地水平。 到目前为止我国已合作了12个核电项目,共31台机组,合作规模达到3378万千瓦,已开工建设24台,建成规模2660万千瓦。核电作为我国新能源的主力军,正面临着难得的发展机遇,进入了批量化、规模化的发展阶段,目前我国引进三代核技术AP1千以及EP2顺利建成,它在中国经济快捷的发展,对核燃料的高效利用以及对减少高排放物发挥了重大的效应。 07年3月,随着中美间两份重要协议《核岛供货合同框架协议》和《技术转让合同的框架协议》的签署,美国西屋公司和绍尔公司组成的西屋联合体在中国的第三代核电招标中正式中标,AP1000成为三代核电自主化依托项目所选择的技术路线,世界上最先进的第三代核电技术AP1000落户中国。 AP1000技术虽然先进,但到目前为止世界上尚没有一座建成的电站,中国将是第一个“品尝”这一技术的国家。我国的研究人员从AP600到AP1000进行了十多年的研究,对这一技术有较深入的了解。第三代技术是从第二代发展来的,其主要系统均有工程实践,只是核电站安全系统设计理念不同,AP1000使用的是非能动的方式。 作为第三代核电站,AP1000具有良好的安全性和经济性。第二代核电站主要是上世纪70年代根据当时安全法规设计的。其设计基准不考虑核电站严重事故(如

马克思主义基本原理-核能对人类社会发展的影响

核能对人类社会发展的影响 刘xx (北京理工大学机械工程及自动化 xxxxx) 摘要核能是一种高效、清洁的能源。介绍了核能的发展历史以及产生的基本原理。核能在核电站、医疗、核动力装置、核武器的相关技术原理,还有核能在这四个方面对人类社会生产、生活、管理、建设的影响。 关键词核能核电站医疗核动力核武器 从古至今,人类都在消耗能源,各种各样的能源,最常见、使用最长久的就是化石燃料,包括木材、煤矿、石油等,到近代人类发现了中子撞击铀会产生巨大的能量,于是乎核能产生了。 1 核能产生原理 首先先介绍一下核能(Nuclear Energy)的概念,核能又称为原子能,是由组成原子核的粒子之间发生的反应,转化其质量从原子核中释放出的能量。 1905年,阿尔伯特·爱因斯坦提出狭义相对论,之后作为推论,又提出质能方程E=mc2,(其中E=能量,m=质量,c=光速常量)。 原子核是由中子和质子构成。每个中子和质子都有自己的质量。但一个原子核的质量不完全等于每一个中子和质子的质量和。这两者的质量差根据爱因斯坦的质能方程,可以算出由中子和质子形成原子核的过程中释放的能量。 当重原子裂变成两个或多个原子时,生成原子的结合能总和会大于原来重原子所具有的结合能,此间的差值便会以热能的形式释放出来,这便是核裂变反应。反之,当几个轻原子结合,合成原子的结合能大于原本所有原子结合能之和,这便是核聚变反应放出能量的来源。总的来说:核能是通过三种核反应之一释放:1.核裂变。打开原子核的结合力。2、核聚变,原子的粒子熔合在一起。3、核衰变,自然的慢得多的裂变形式。 原子能比化学反应中释放的热能要大将近5千万倍:铀核裂变的这种原子能释放形式约为200,000,000电子伏特,而碳的燃烧这种化学反应能量仅放出4.1电子伏特。 核能是人类历史上的一项伟大发现,但是由于其巨大的能量具有强大的应用潜力如果应用不当,落入反和平人士的手中,其高强度能量就有可能成为全人类的灾难。核能就像是一个天使与魔鬼的结合体,人类一直在寻找一种途径能够通过利用核能解决日益加剧的能源短缺问题,但是有震慑于它的可怕威力,稍不注意就会造成难以估量的损失(日本福田核电站事件)。 核能在社会发展(社会生产、管理、建设、生活)中发挥了巨大的作用。目前而言,核能的应用主要集中在核电站、医疗、小型核动力装置、核武器这四种形式。 2 核能发电

核能利用与发展论文

核能利用与发展趋势 学校:东北农业大学 学院:工程学院 班级:机化1302 学号: 姓名:

核能利用与发展趋势 Unclear energy utilization and development trend 摘要核电是一种清洁、安全、技术成熟、供应能力强、能大规模应用的发电方式,目前,我国核电已由起步进入发展阶段,具有自主设计建造第一代核电的能力,我国已做出积极推进核电发展的重大决定,加快我国核电建设,提高核电在电力供给中的比重,这将有助于缓解电力增民与交通运输的矛盾,核能利用的发展前景将越来越广阔。 关键词核能利用前景核能发展核电 1.核电概述 核能的发展和利用是20世纪科技史上最杰出的成就之一。它通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc2,该方程式表明,质量和能量是等价的,其比例常数为光速的平方。在核能的利用中,核电厂的发展是相当迅速的,己被公认为是一种经济、安全、可靠、干净的能源,核动力技术在多数发达国家得到了巨大发展,也在很多发展中国家获得了广泛的认可。根据能源需求和能源生产结构,我国政府己制定了积极发展核电的方针,建设了秦山和大亚湾两大核电基地,中国核电建设的安全策略取得了成功。 2.核能发电 核能是原子核结构发生变化是释放出来的能量。目前人类利用核能主要有三种——重元素的原子核发生裂变和轻元素的原子核发生聚合反映时释放出来的核能或是原子核自发射出某种粒子而变为另一种核的过程,它们分别为核裂变能、核聚变能和核衰变。核裂变能 核裂变,又称核分裂,是指由较重的原子,主要是指铀或钚,分裂成较轻的(原子序数较小的)原子的一种核反应形式。原子弹以及裂变核电站的能量来源都是核裂变。早期原子弹应用钚-239为原料制成。而铀-235裂变在核电厂最常见。 重核原子经中子撞击后,分裂成为两个较轻的原子,同时释放出数个中子。释放出的中子再去撞击其它的重核原子,从而形成链式反应而自发分裂。原子核裂变时除放出中子还会放出热,核电厂用以发电的能量即来源于此。 由于每次核裂变释放出的中子数量大于一个,因此若对链式反应不加以控制,同时发生的核裂变数目将在极短时间内以几何级数形式增长。若聚集在一起的重核原子足够

核技术及其应用的发展

核技术与核安全 核动力技术的核心是反应堆技术,反应堆可用来发电,供热,驱动运载工具等.反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析,生产放射性核素等."核能工程与技术"和"辐射防护与环境保护"也是"核科学与技术"之下的二级学科. 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托,互相渗透的.同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的.其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化.相应的研究构成了辐射物理学,辐射化学和辐射生物学的主要内容.在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴.因此,核技术及应用这一学科与核物理学,辐射物理学,辐射化学,放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内.近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理,核医学等学科.另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理,机械,真空技术,电子学,射频技术,计算机技术,控制技术,成像技术等多种学科和技术的综合.故此核技术充分体现了多种学科的交叉这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一.第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工,无损检测,核医学诊断设备与9放射治疗设备,同位素和放射性药物生产等.据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%.美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%. 现代很多科学技术成就的取得都是与核技术的贡献分不开的.仅以诺贝尔奖为例,1931年美国科学家劳伦斯发明回旋加速器,为此获得了1939年诺贝尔物理奖.1932年英国科学家Cockcroft和Walton制造了第一台高压倍压加速器并用其完成了首次人工核反应,获1957年诺贝尔物理奖.此外还有八项诺贝尔物理奖和化学奖是利用加速器进行实验而获得的.在探测器方面,威尔逊因发明云室探测器而获1927年诺贝尔物理奖,其后布莱克特因改进威尔逊云室实现自动曝光而获1948年诺贝尔物理奖,鲍威尔发明照相乳胶法并用其发现π介子而获1950年诺贝尔物理奖,这之后格拉泽因发明气泡室使粒子探测效率提高1000倍而获1960年诺贝尔物理奖,阿尔瓦雷兹因改进气泡室并用其发现共振态粒子而获1968年诺贝尔物理奖,沙帕克因发明多丝正比室和漂移室而获1992年诺贝尔物理奖.在核分析技术方面,1948年美国科学家利比建立了14C测年方法并为此获得了1960年诺贝尔化学奖,穆斯堡尔因发现穆斯堡尔效应而获1961年诺贝尔物理奖,布罗克豪斯和沙尔因发展了中子散射技术而获1994年诺贝尔物理奖.核技术对于科学发展的重要推动作用由此可见一斑.由于核技术为多种学科的基础研究提供了灵敏而精确的实验方法和分析手段,自20世纪80年代以来各国竞相建造与核技术密切相关的大型科学工程,如大型对撞机,同步辐射装置,自由电子激光装置,散裂中子源,加速器驱动次临界反应堆,大型放射性核束加速器等,其造价动辄数亿美元乃至数十亿美元.美国能源部2003年11月发布研究报告"未来科学的装置",列出了今后20年重点发展的28项大型科学工程,其中基于加速器的有14项,占了一半.我国自改革开放以来先后建造了北京正负电子对撞机,兰州重离子加速器,合肥同步辐射装置等大科学工程,辐照和放疗用电子加速器,大型集装箱探测装置,辐射加工和同位素生产等也已经形成了一定规模的产业. 1 在工业中的应用 核技术的工业应用始于20世纪50年代兴起的辐射加工.辐射加工利用60Co源产生的γ射线或电子加速器产生的电子束照射物料,可引起高分子材料的聚合,交联和 1

中国发展核能利大于弊

中国发展核能利大于弊 总部位于法国巴黎的国际能源署2010年7月19日发布的最新数据称,中国已超过美国,成为全球最大的能源消费国。2009年年中国消费了22.52亿吨油当量,较美国高出约4%,美国消费了21.70亿吨油当量. 而纵观当今中国能源的结构,2011年底全国电力总装机达到10.5亿千瓦。其中,火电7.6亿千瓦,占装机总量72.4%;水电装机2.3亿千瓦,核电装机1191万千瓦,风电装机4700万千瓦,非化石能源发电装机占比为27.5%。 众所周知,中国目前的能源结构仍是以火电为主。中国的核电发电量,仅占全部发电量的2%,与14%的世界平均水平相比,差距很大。而火电的主要燃料是煤。中国探明可直接利用的煤炭储量1886亿吨,人均探明煤炭储量145吨,按人均年消费煤炭1.45吨,即全国年产19亿吨煤炭匡算,只能在开采100年左右。而煤炭的形成要经过上亿年的时间,这就表示,一百年后中国的煤炭储量将消耗殆尽。 再看其他的能源。 全球天然气储量为143万亿立方米,按1991年全世界天然气消费是2.1万亿立方米估算,可供消费67年。 全球石油探明储量达13331亿桶,其中包括处于积极开发阶段的加拿大油砂储量和由委内瑞拉政府上调的本国官 方储量。以2009年的年开采速度计算,可开采45.7年。

太阳能是一种清洁无污染的能源,但发展太阳能投资太大,再加上光辐射的不稳定性,以及材料的寿命限制,太阳能很难在全国普及。据预计,到2030年太阳能发电占全球总电量的比例不会超过10%。 潮汐能、地热能、风能都是新型清洁能源,但它们都受到严重地域限制,无法成为未来的主导能源。 由此看来,加速发展核能并且广泛普及核能是中国应对能源危机的最好出路。 一直以来,在人们的心目中,核能总给人一种神秘的感觉,甚至让人感到恐惧(也许是因为核武器的巨大杀伤力)。核能固然有弊有利,弊端好比成本,利益好比收益。于是,我们就来具体探究一下,生产“核能”这种商品是赚了还是亏了。 我们先来看看核能的威力。到家都知道,核能的产生是因为铀235在裂变的时候发生了质量亏损。根据质能方程,一千克铀235完全裂变所释放出的能量为7.68×1013焦耳。说形象一点,这个能量相当于2500吨煤完全燃烧所释放出来的能量。再举一个熟悉的例子吧,原子弹的爆炸原理与和发电原理相同,都是通过铀235的裂变释放能量。广岛原子弹爆炸形成了10 亿度的高温,把一切都化为灰烬,处在爆心极点影响下的人和物,象原子分离那样分崩离析。离中心远

中国核电发展概况

中国核电发展概况(截止2010年) 1我国核电产业未来前景 我国目前的电力供应依然以火力发电为主,水电、风电、核电等规模非常小,电力结构极为不合理,一方面带来能源的极大浪费,另一方面也带来了严重的环境问题。为此国家提出了发展新能源发电,鼓励核能等清洁能源的综合利用政策。 中国核电发展进程大约比全球核能发展进程相对滞后约20年。七十年代中国开始对核电的探索,八十年代中国核电开始“起步”,九十年代至2006年为中国核电的“发展期”,至今大约30年时间。中国核电的“发展期”正处于世界核电发展之“低谷期”。尽管如此,中国核电在不利的条件下仍取得了较大的成绩。到2006年底为止中国投运的核电机组共11台,870万千瓦,约占全国发电总装机容量的1.4%。特别是2000年至今中国投运机组8台,占全球同期投运机组数的1/4。与此同时,中国建立了较为完备全面的核电体系,基本掌握了第二代核电技术,并开始了第三代和第四代核电技术的基础研发工作。这一切,为下一步的跨越发展做好了全方位的准备。 2010年,我国正在制定的《新兴能源产业发展规划》着眼于中国新兴能源产业中长期发展目标,在2011年-2020年间,核能、水能以及煤炭的清洁化利用将是政策支持的重点,也将是5万亿投资的重点支持对象。因此,国家有关部门正在积极调整我国的核电中长期发展规划,提出到2020年中国的核电装机容量将由原来的4000万千瓦提高到7000万千瓦以上。而且有消息称,国家能源局正在制定的《核电管理条例》有望于2010年底前上报国务院。《核电管理条例》将重点体现对未来核电开发的支持,其中将大力推动内陆核电站的开发建设。 为实现规划目标,在“十二五”期间提高核电站开工量是核电产业规划的重点任务之一。原因是,核电站的建设周期长达四五年,要实现核电装机容量到2020年达到7000万千瓦以上的目标,必须在2015年开工至少60个100万千瓦的核电站,2010年开始展开前期规划。因此,未来5年,将是核电企业们迎来大量订单的黄金期。

核能的有效利用与可持续发展

目前,在全球范围内,为解决油气资源枯竭和燃煤造成的环境污染问题,科学家正在加紧研究开发新能源和可再生能源如核能、风能、太阳能、地热和水力发电等替代能源。其中,核能作为一种清洁、安全和经济的新型能源,其逐渐取代现有化石能源(煤炭和石油)的趋向已越来越明显。调整和优化能源结构,尽可能多地用清洁能源如核能替代含碳量高的化石能源,已经成为中国各界人士的共识和迫切要求,也是能源产业发展应当遵循的原则。 核能是20世纪出现的新能源,核科技的发展是人类科技发展史上的重大成就。核能的有效利用,对于缓解能源紧张、减轻环境污染具有重要的意义。我国十分重视核能的开发利用,在国家高技术研究发展计划(863计划)中,能源领域研制开发三种先进反应堆,它们是快中子堆、高温气冷堆、聚变-裂变混合堆。目前,核裂变能已经为人类提供了总能耗的6%。而当将来利用轻原子核的聚变反应产生的核聚变能得到工业应用后,人类将从根本上解决能源紧张的问题。 从人类能源需求的前景来看,发展核能更是必由之路,这是因为核能有其无法取代的优点,主要表现于: 1.核能是地球上储量最丰富的能源,又是高度浓集的能源。 2.核电是清洁的能源,有利于保护环境。 3.核电的经济性优于火电。 4.以核燃料代替煤和石油,有利于资源的合理利用。 中国核能利用坚持可持续发展,核电发展采用热堆-快堆-聚变堆“三步走”的方针。近期以压水堆核电 站为主,在充分利用已有技术,建设一批压水堆核电站的同时,积极开展国际合作,适时建造先进压水堆 核电站,并以此作为我国未来核电发展的主力机型。 中国积极推进和平利用核能的开发研究,力争在一些重大项目上有新的突破。例如,利用快堆发电、 用核能进行海水淡化、用低温供热堆采暖、用高温气冷堆发电和制氢等,当条件成熟时,使其成为新的产 业。 在更长远的将来,能源开发将更多地寄希望于受控热核反应即核聚变堆的应用。热核反应技术如果获得突破,将有很多优点:热核燃料资源极其丰富,几乎是取之不尽;热核聚变的产物不象裂变产物那样产生核辐射,因而对人类的安全性要比现在的核电站高得多。因此,聚变反应堆核电站的商用成功,将会为人类“永远”解决能源需求问题。

核能发展现状及研究报告

核能研究汇报 1.核能的安全性: 核电是一种清洁、安全、技术成熟、供应能力强、能大规模应用的发电方式,国际核能的应用经历了对核电机组的从第一代到第三代不断改进的过程,目前,国际第四代核能利用系统研究提出了反应堆设计和核燃料循环方案的新概念,我国核电已由起步进入发展阶段,具有自主设计建造第二代核电的能力,我国已做出积极推进核电发展的重大决定,加快我国核电建设,提高核电在电力供给中的比重,这将有助于缓解电力增长与交通运输、环境保护的矛盾,核能利用的发展前景将越来越广阔。 从核能第一次利用至今,已经跨过了半个多世纪,对它的利用已经从由军事用途逐步扩展到民用领域。在当前和平利用的情况下,核能发展给人类带来了诸多好处——高效经济地解决能源危机、快速持续地带来经济效益、深入多元地扩展科技前景以及为人类社会持续发展提供动力,但核能技术是一把双刃剑。在体现优点的同时,核物质本身安全风险、核科技本身安全风险以及核能外部安全风险也给我们敲响了警钟。从伦理学角度有必要利用其实践功能和应用功效来引导、规范人类利用核能的行为,要更安全、可持续的发展核能。正是基于此目的,本文对当前核能发展中的主要弊端:核事故,核走私,企业管理操作者缺失职业道德,核科学家不负责任的行为,放射性污染进行分析,并阐述这些弊端涉及到的伦理问题。提炼了确保核安全利用的四条核伦理原则:和平利用原则、安全无害原则、公开透明原则、利

益与风险均衡原则。最后从政治、经济、文化、科技、环境角度提出相应对策,力图在这些领域内发挥核伦理的实践功能和应用功效,确保核能技术安全利用。 法国没有专门规范新能源问题的法典,其涉及新能源的法律规范主要包括能源基本法、新电力法等综合性法律以及专门性能源立法三类。法国在核能领域的成功依赖于基本法的支持、三级核能监管体制、核废物安全处置法律制度以及信息披露制度。法国在风能、太阳能和生物质能等可再生能源领域也制定了较为详细的法律和政策。我国应借鉴法国的成功经验,健全新能源法律体系并及时、灵活地修订能源法律,因地制宜地确定不同地区的新能源重点发展领域,采取合理的经济激励措施,并在能源开发利用过程中注重保护环境。 2.核能实现方式: 核能是人类最具希望的未来能源之一。人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研究之中。 人类的能源从根本上说,来自核聚变反应,即发生在太阳上的“轻核聚变”。人类已经在地球上实现了不可控的热核反应, 即氢弹爆炸。要获得取之不尽的新能源, 必须使这一反应在可控条件下持续进行。为实现可控核聚变有两种方法,一是用托卡马克装置开展“磁约束聚变”的研究。另一条技术路线是20世纪70年代初公开的“包括以激光驱动为主攻方向的惯性约束核聚变(ICF)”。

核能发展的利与弊

核能发展的利与弊 吴瀚 中国石油大学(华东)信息与控制工程学院电气1605 1605030521 摘要:随着社会的发展,人们对于能源的需求越来越多,然而地球上的化石能源正越来越少,并且带来了许多环境问题。所以,我们继续一种新的相对清洁的能源,而核能恰好符合这些条件。诚然,核能作为新生事物,必然有其两面性。它所带来的运行与废料处理问题不容忽视,但我们可以加速技术的研发,解决这些问题,让核能能更好地为我们服务。 关键词:核能、利弊、发展历程、解决方法 引言:19世纪末,英国物理学家汤姆逊发现电子。从此,人们开始逐渐揭开原子核的神秘面纱。在1895年德国物理学家伦琴发现了X射线,紧随其后的是法国物理学家贝克勒尔于1896年发现了放射性。到了1898年居里夫人与居里先生发现放射性元素钋。经过三年又九个月的艰苦努力,居里夫人于1902年又发现了放射性元素镭。在1905年爱因斯坦提出质能转换公式,而到了1914年英国物理学家卢瑟福通过实验,确定氢原子核是一个正电荷单元,称为质子,之后,1935年英国物理学家查德威克发现了中子。1938年德国科学家奥托·哈恩用中子轰击铀原子核,发现了核裂变现象,从此,人们意识到隐藏在核内的巨大能量。于1942年12月2日美国芝加哥大学成功启动了世界上第一座核反应堆。1945年8月6日和9日美国的两颗原子弹先后投在了日本的广岛和长崎,伴着巨响,核能终于为世人所熟知。1954年苏联建成了世界上第一座商用核电站——奥布灵斯克核电站。从此人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开核能应用研究。 到2017年,全世界已有30个国家拥有核电站,全球运行核电站数量已有441座,其中绝大部分是压水堆核电站。目前,只有核裂变被用于核能发电,而核聚变,乐观地估计,还需50年实现商业化。由于自然界有很多核聚变所需的氢同位素,且不会产生核废料的问题,所以各国在积极地发展受控核聚变,最著名的便是托卡马克受控热核反应装置。 随着时代的发展,现有的能源已经不能很好地满足。化石燃料的探明量并没有太多的增加,而人们燃烧量越来越多,余下的储量会越来越少。这样,便能很好地解释各国对核能的研究的大力支持。 新生事物都有其两面性,我们应正确认识到核能的优点以及它所可能带来的问题。对这些问题的认真思考,可以让我们更好地控制核反应,处理好带来的问题,让核能转变成高效安全的供电能源,为社会的未来发展提供能源。 一、核能的优点 1、经济方面

核能技术的发展前景

世界核能发展状况 目前全世界的经济,政治和生活方式都离不开化石能源,但是随着消费量的不断增加,化石能源储量的不断减少,人们迫切需要寻找一种替代能源,而能满足能效高,技术上可行,环保,并且可再生这四个条件的能源并不多。不过有一种能源能做到这一点,那就是核能。核能利用是解决能源问题必由之路,它在能源中的比例将逐步加大,从而改善能源结构,并有希望在将来彻底解决人类对能源的需求。 本本截至2006年,全世界运转中的核反应堆435座,有29座以上在建设中。拥有核能发电的30个国家中,由核能供电的份额变化较大。从法国高达占78%,到比利时占54%、韩国占39%、瑞士占37%、日本占30%、美国占19%、南非占4%和中国占2%。 现在核能发电站的扩建集中在亚洲:至2006年底建设中的29座就有15座在亚洲。最近建设的36座核反应堆已与电网联网的有26座在亚洲。印度核能发电所占比例现小于3%,但至2006年底,拥有建设中核电站的1/4,在建设中29座核电站中拥有7座。印度的计划更令人印象深到:到2022年将增长8倍,达到电力供应的10%;到2052年将增长75倍,达到电力供应的26%。75倍的增长意味着年均增长9.4%,与全球1970~2004年的平均增长率相同。 “全球核能伙伴计划”(GNEP)是美国长远的核能战略。它旨在向全世界推广民用核能技术,并最终找到一种对核废料进行再加工的方法,使得处理后的核废料无法用于制造核武器。 为了配合GNEP计划,美国能源部向选择出的4家公司提供总计1600万美元的费用,用于GNEP的技术与支持研究;以及通过向38所大学分别提供10万美元援助的方式,培养发展下一代核能所必需的工程师和科学家。 不久前,俄罗斯总统普京与澳大利亚总理霍华德在悉尼签署了一项历史性的核原料贸易协议。根据这项协议,澳大利亚出产的铀可以被俄罗斯的核电厂用于民用事业,而这些铀也可以被俄罗斯的核能公司再加工。 澳大利亚的铀矿储量居世界第一位,而俄罗斯的浓缩铀生产能力居于世界领先地位,这一协议意味着世界核能的龙头已经产生。 世界核能会议的最新报告同时指出,由于原油价格不断高涨和采取温室效应对策,全球正在大力推进核电站建设,在这种情况下,各国之间可能会为获取铀的权益展开激烈的竞争。据日本放送协会等媒体援引会议报告称,由于美国、俄罗斯等国正在大力建设核电站,到2015年,天然铀很可能出现6000吨短缺,铀的供给将持续紧张状态。 俄罗斯有31座核反应堆在运转,5座在建设中,并有大的扩能计划。日本55座核反应堆在运转,1座在建设中,并计划使核能发电占电力份额从2006年30%提高到后10年内的超过40%。韩国于2006年投运第20座核反应堆,核能发电已供应其电力的39%。芬兰、法国、保加利亚和乌克兰也有核能扩能计划。英国拥有19座运转的核反应堆,美国有103座核反应堆。 当然,核能有利有弊,人们应该把握其利弊,掌握其规律,用科学发展的手段和方式对其加以开发和利用,做到可持续发展。

中国核电发展现状及未来发展趋势

中国核电发展现状及未来发展趋势 山东大学 能源与动力工程学院 公元1964,中国西北,罗布泊的一声巨响,向世界宣告,中国拥有了自己的核武器。 1970年12月26日,中国第一艘核潜艇下水,代表我国开始使用核动力。 1991年12月15日,我国自行设计、建造和运营管理的第一座30万千瓦压水堆核电站——秦山核电站正式并网发电,代表着中国在和平利用核能的道路上迈出了坚实的第一步。 漫漫征途,从中国第一次核试验,到第一核电机组并网发电,中国核能利用已经走过了近三十年。在党中央、国务院的正确领导下,我国核电经过20多年的发展,取得了显著成绩。核电设计、建设和运营水平明显提高,核电工业基础已初步形成。三十年风风雨雨,三十年艰苦历程。中国核电从无到有,为共和国的华美乐章添加了最美妙的音符。 我国核电现状 从上世纪80年代起,经过起步和小批量两个阶段的建设,我国目前形成了浙江秦山、广东大亚湾和江苏田湾三个核电基地。截至到2004年9月,我国共有9台核电机组投入运行,装机容量达到700万千瓦。2003年底,我国核电装机容量和核发电总量,分别占我国电力总装机容量和发电量的1.7%和2.3%。在浙江、广东两省,2003年核发电量均超过本省总发电量的13%,核电成为当地电力供应的重要支柱。 与此同时,通过引进与自主研发,我国在核电站维护运营及设计方面都有了很大的的进步:秦山一期核电站已经安全运行13年,在2003年结束的第七个燃料循环中创造了连续安全运行443天的国内核电站最好成绩,2003年世界核电运营者协会(WANO)九项性能指标中,秦山核电站有六项指标达到中值水平,其中三项指标达到世界先进水平。秦山二期国产化核电站全面建成投产,实现了我国自主建设商用核电站的重大跨越,比投资1330美元/千瓦,国产化率55%,经受住了初步运行考验,表现出了优良的性能,实现了较好的经济效益和社会效益。秦山三期重水堆核电站提前建成投产,实现了核电工程管理与国际接轨,创造了国际同类型核电站的多项纪录。 广东大亚湾核电站投运10年来,保持安全稳定运行,部分运行指标达到国际先进水平,取得了较好的经济效益。广东岭澳核电站也已经全面建成投产并取得良好的运行业绩。江苏田湾核电站1号机组正在调试过程中。此外,我国出口巴基斯坦的恰希玛核电站2000年6月并网发电,2003年负荷因子达到85%。 我国核电当前技术水平与发展情况 进入二十一世纪,传统能源的利用程度已经接近极限,而且,由于工业革命以来,人类对化石能源的过分利用,对环境造成了难以消除的影响。今天,面对油价高涨,能源短缺,各国都在寻找能源的解决办法。中国科学院学部核能发展战略咨询组起草的一份战略研究报告指出,我国能源供应面临三大挑战:第一,能源发展需求与我国能源资源人均拥有量不足之间的矛盾;第二,以煤为主的能源结构不合理,大量燃煤造成严重的环境污染和温室气体问题;第三,能源利用效率不高,能源浪费比较严重。为应对上述挑战,我国将强化节能和提高能效作为基本国策放在首位,并逐步调整和优化能源结构,逐步降低化石能源的消耗份额,提高新能源的份额。而“在各种替代能源中,只有核能既是一种经济、安全、洁净的能源,又可大规模地替代化石能源。只有积极发展核

核能与人类未来发展

核能与人类未来发展 张品2012301550041 选择核电吗?大部分科学家认为面对全球变暖的形势,这或许是我们仅有的希望所在。数字表明,许多人对核能的恐惧是不理智的。 大地母亲正处于困境中。大量像二氧化碳这样的气体从发电厂的烟囱和汽车尾气中排到空中,从而影 响了环境,产生温室效应造成全球变暖。不断上升的温度将引起一系列严重的物理变化,海平面升高会淹 没海滨城市和风景名胜地。 不过,为阻止灾难的发生,我们仍大有可为。全球变暖源于我们对煤、石油、天然气这一类含碳燃料 的依赖。只要能避免燃烧这些“化石”燃料,全球变暖便失去动力。那么,怎样才能做到这一点呢? 有一条救生索就在我们眼前,立即抓住它,就可以把地球从全球变暖的严重后果及迫在眉睫的能源短 缺中解救出来。这条救生索已被证明是安全、实用并且廉价的,它就是核能。 洁净高效的核能 你不妨设想自己是一名必须作出决定的政府部长,你面临的问题是:一座能为半个巴黎大的城市供电 的在建新电厂,究竟应使用何种燃料?这样的问题每年都会遇到,答案不外乎是以下几种:煤:需要一条1000公里长的铁路运输线,车厢满载着昂贵的煤炭;电厂向外排放着使地球变热的气 体,总量超过10亿立方米;还产生60万吨有毒粉尘。 石油:需要四五个装载重油的巨型储油罐;油需要从世界上某个不稳定的地区进口;其排放的温室气 体数量与使用煤炭不相上下;外加巨量氧化硫倾泻到大气中,从而转化为酸雨和其他有毒化合物。 天然气:通过轮船或输气管道远距离进口,易发生事故和泄漏;其排放同样造成高污染,并且供气设 施易受恐怖分子袭击。 核能:仅需要装填两卡车载量的铀燃料;从加拿大或澳大利亚这样稳定的国家进口,价格便宜且来源 充足;气体和酸性物质排放等于零;不产生有毒粉尘;产生的高辐射废料只有几桶。 使用核能代替化石燃料的好处是极为明显的。我们都知道这种燃料既安全又清洁,并且高效。眼下西 欧三分之一以上的电力是由137座核反应堆生产的;而全球438座反应堆提供了世界几乎七分之—的电力。 在英国,单单12个核电站就生产了接近全国四分之一的电力,同时还免于产生大约6000万吨二氧化碳(几近 于全国汽车尾气排放量的一半)。

相关文档
最新文档