光合作用的反应曲线图解说明:

光合作用的反应曲线图解说明:
光合作用的反应曲线图解说明:

(完整版)光合作用知识点总结

第五章细胞的能量供应和利用 第四节能量之源——光与光合作用 一、主要知识点回顾 1、色素分类 叶绿素a 叶绿素主要吸收红光和蓝紫光 叶绿体中色素叶绿素b (类囊体薄膜)胡萝卜素 类胡萝卜素主要吸收蓝紫光 叶黄素(保护叶绿体免受强光伤害) 2、色素提取和分离实验注意事项: ⑴、丙酮的用途是提取(溶解)叶绿体中的色素; ⑵、层析液的的用途是分离叶绿体中的色素; ⑶、石英砂的作用是为了研磨充分; ⑷、碳酸钙的作用是防止研磨时叶绿体中的色素受到破坏; ⑸、分离色素时,层析液不能没及滤液细线的原因是滤液细线上的色素会溶解到层析液中; 3、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。 4、光合作用作用过程(重点) 联系:光反应阶段与暗反应阶段既有区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP,暗反应为光反应提供ADP+Pi,没有光反应,暗反应无法进行,没有暗反应,有机物无法合成。

条件:一定需要光 场所:类囊体薄膜, 产物:[H]、O 2和能量 光反应阶段 过程:(1)水的光解,水在光下分解成[H]和O 2 (光合作用释放的氧气全部来自水) (2)形成ATP :ADP+Pi+光能?→?酶ATP 能量变化:光能变为ATP 中活跃的化学能 条件:有没有光都可以进行 场所:叶绿体基质 暗反应阶段 产物:糖类等有机物和五碳化合物 过程:(1)CO 2的固定:1分子C 5和CO 2生成2分子C 3 (2)C 3的还原:C 3在[H]和A TP 作用下,部分还原 成糖类,部分又形成C 5 能量变化:ATP 活跃的化学能转变成化合物中稳定的化学能 5、影响光合作用的环境因素:光照强度、CO2浓度、温度、光照长短、光的成分等 (1)光照强度:在一定的光照强度范围内,光合作用的速率随着光照强度的增加而加 快。 (2)CO2浓度:在一定浓度范围内,光合作用速率随着CO2浓度的增加而加快。 (3)温度:光合作用只能在一定的温度范围内进行,在最适温度时,光合作用速率 最快,高于或低于最适温度,光合作用速率下降。 6、农业生产以及温室中提高农作物产量的方法 ⑴、控制光照强度的强弱;⑵、控制温度的高低;⑶、适当的增加作物环境中二氧化碳的 浓度;⑷、延长光合作用的时间; ⑸、增加光合作用的面积-----合理密植,间作套种;⑹、 温室大棚用无色透明玻璃;⑺、温室栽培植物时,白天适当提高温度,晚上适当降温;⑻、 温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。 7、化能合成作用:利用体外环境中的某些无机物氧化分解所释放的能量制造有机物。 光 合 作 用 的 过 程

有关光合作用的曲线图的分析(一)

有关光合作用的曲线图的分析(一) 教学随笔 2008-09-09 21:52:38 1、纵坐标代表实际光合作用强度还是净光合作用强度? 这是什么图?分析坐标图时,首先要明确纵坐标和横坐标的含义。 大家知道我们通常用单位时间里CO2 吸收量、O2 释放量、有机物的制造量来代表光合作用强度。而光合作用强度又有实际光合作用强度和净光合作用强度,我们如何区分它们呢? 光合总产量和光合净产量常用的判定方法:①如果CO2 吸收量出现负值,则纵坐标为光合净产量;②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量;③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。 因此本图纵坐标代表的是净光合作用强度。

A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作 用,不进行光合作用。 AC段:在一定的光照强度范围内,随着光照强度的增加,光合作 用强度逐渐增加 C点:当光照强度增加到一定值时,光合作用强度达到最大值。 CD段:当光照强度超过一定值时,光合作用强度不随光照强度的 增加而增加。 3、几个点、几个线段的生物学含义: A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。净光合强度为负值 由此点获得的信息是:呼吸速率为OA的绝对值。 AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。净光合强度仍为负值。此时呼吸作用产生的CO2 除了用于光合作用外还有剩余。表现为释放CO2。 B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。表现 为既不释放CO2也不吸收CO2(此点为光合作用补偿点) BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。 C点:当光照强度增加到一定值时,光合作用强度达到最大值。此值为纵坐标(此点为光合作用饱和点) CD段:净光合作用强度已达到最大值,不随光照强度的增加而增 加。 N点:为光合作用强度达到最大值(CM)时所对应的最低的光照 强度。(先描述纵轴后横轴) 4、AC段、CD段限制光合作用强度的主要因素  在纵坐标没有达到最大值之前,主要受横坐标的限制,当达到最大值 之后,限制因素主要是其它因素了  AC段:限制AC段光合作用强度的因素主要是光照强度。  CD段:限制CD段光合作用强度的因素主要是外因有:CO2浓度、温

光合作用曲线图分析大全

有关光合作用的曲线图的分析 1.光照强度对光合作用强度的影响 (1)、纵坐标代表实际光合作用强度还是净光合作用强度? 光合总产量和光合净产量常用的判定方法: ①如果CO2 吸收量出现负值,则纵坐标为光合净产量; ②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量; ③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。 因此本图纵坐标代表的是净光合作用强度。 (2)、几个点、几个线段的生物学含义: A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。净光合强度为负值由此点获得的信息是:呼吸速率为OA的绝对值。 B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。表现为既不释 放CO2也不吸收CO2 C N点:为光合作用强度达到最大值(CM)时所对应的最低的光照强度。(先描述纵轴后横轴) AC段:在一定的光照强度范围内,随着光照强度的增加,光合作用强度逐渐增加 AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。净光合强度仍为负值。此时呼吸作用产生的CO2除了用于光合作用外还有剩余。表现为释放CO2。 BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。 CD段:当光照强度超过一定值时,净光合作用强度已达到最大值,光合作用强度不随光照强度的增加而增加。 (3)、AC段、CD段限制光合作用强度的主要因素 在纵坐标没有达到最大值之前,主要受横坐标的限制,当达到最大值之后,限制因素主要是其它因素了 AC段:限制AC段光合作用强度的因素主要是光照强度。 CD段:限制CD段光合作用强度的因素主要是外因有:CO2浓度、温度等。内因有:酶、叶绿体色素、C5 (4)、什么光照强度,植物能正常生长? 净光合作用强度> 0,植物才能正常生长。 BC段(不包括b点)和CD段光合作用强度大于呼吸作用强度,所以白天光照强度大于B点,植物能正常生长。 在一昼夜中,白天的光照强度需要满足白天的光合净产量 > 晚上的呼吸消耗量,植物才能正常生长。

有关光合作用曲线图研究分析

有关光合作用的曲线图的分析(一) 1、纵坐标代表实际光合作用强度还是净光合作用强度? 这是什么图?分析坐标图时,首先要明确纵坐标和横坐标的含义。 大家知道我们通常用单位时间里CO2 吸收量、O2 释放量、有机物的制造量来代表光合作用强度。而光合作用强度又有实际光合作用强度和净光合作用强度,我们如何区分它们呢? 光合总产量和光合净产量常用的判定方法:①如果CO2 吸收量出现负值,则纵坐标为光合净产量;②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量;③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。 因此本图纵坐标代表的是净光合作用强度。 2、如何描述该曲线? A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。 AC段:在一定的光照强度范围内,随着光照强度的增加,光合作用强度逐渐增加 C点:当光照强度增加到一定值时,光合作用强度达到最大值。

CD段:当光照强度超过一定值时,光合作用强度不随光照强度的增加而增加。 3、几个点、几个线段的生物学含义: A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。净光合强度为负值 由此点获得的信息是:呼吸速率为OA的绝对值。 AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。净光合强度仍为负值。此时呼吸作用产生的CO2除了用于光合作用外还有剩余。表现为释放CO2。 B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。表现为既不释放CO2也不吸收CO2(此点为光合作用补偿点) BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。 C点:当光照强度增加到一定值时,光合作用强度达到最大值。此值为纵坐标(此点为光合作用饱和点) CD段:净光合作用强度已达到最大值,不随光照强度的增加而增加。 N点:为光合作用强度达到最大值(CM)时所对应的最低的光照强度。(先描述纵轴后横轴) 4、AC段、CD段限制光合作用强度的主要因素 在纵坐标没有达到最大值之前,主要受横坐标的限制,当达到最大值之后,限制因素主要是其它因素了 AC段:限制AC段光合作用强度的因素主要是光照强度。 CD段:限制CD段光合作用强度的因素主要是外因有:CO2浓度、温度等。内因有:酶、叶绿体色素、C5 5、什么光照强度,植物能正常生长? 净光合作用强度> 0,植物才能正常生长。BC段(不包括b点)和CD段光合作用强度大于呼吸作用强度,所以白天光照强度大于B点,植物能正常生长。在一昼夜中,白天的光照强度需要满足白天的光合净产量> 晚上的呼吸消耗量,植物才能正常生长。 6、若该曲线是某阳生植物,那么阴生植物的相关曲线图如何?为什么? 阴生植物的呼吸作用强度一般比阳生植物低,所以对应的A点一般上移。阴生植物叶绿素含量相对较多,且叶绿素a /叶绿素b的比值相对较小,叶绿素b的含量相对较多,在光照比较弱时,光合作用强度就达到最大,所以对应的C点左移。阴生植物在光照比较弱时,光合作用强度就等于呼吸作用强度,所以对应的B点左移。 7、已知某植物光合作用和呼吸作用的最适温度分别是25℃和30℃,则温度由25℃上升到30℃时,对应的A点、B点、N点分别如何移动? 根据光合作用和呼吸作用的最适温度可知,温度由25℃上升到30℃时,光合作用减弱,呼吸作用增强,所以对应的A 点下移。光照强度增强才能使光合作用强度等于呼吸作用强度,所以B点右移。由于最大光合作用强度减小了,制造的有机物减少了,所需要的光能也应该减少,所以N点应该左移。

光反应和暗反应的对比

光反应和暗反应的对比 一、反应场所 光反应:叶绿体类囊体薄膜上 暗反应:叶绿体的基质中 二、反应步骤 光反应: 1.光能的吸收、传递和转换——原初反应在光照下,叶绿素分子吸收光能,被激发出一个高能电子。该高能电子被一系列传递电子的物质有规律地传递下去。叶绿素分子由于失去一个电子,就留下一个空穴,这空穴立刻从电子供体得到一个电子来填补,使叶绿素分子恢复原来状态,准备再一次被激发。这样,叶绿素分子不断被激发,不断给出高能电子,又不断地补充电子,就完成了从光能到电能的过程——原初反应。 2.电子传递和光合磷酸化——原初反应中的电能再用作水的光解和光合磷酸化,经过一系列电子传递体的传递,最后形成ATP和NADPH,H+。 (1)水的光解和氧的释放:当叶绿素分子吸收光能后,被激发出一个高能电子,处于很不稳定的状态,有极强的夺回电子的能力。经实验证明,它是从周围的水分子中夺得电子,因而促使水的分解。其中的氧被释放出来,氢和辅酶Ⅱ(NADP)结合,形成还原型辅酶Ⅱ(NADPH)。 (2)光合磷酸化:光合作用中形成的高能电子在传递过程中,拿出一部分能量使ADP和(P)结合形成ATP的过程,叫做光合磷酸化。光合作用中磷酸化跟电子传递是偶联的,一般认为光合磷酸化偶联因子是它们之间的物质联系。到此为止,ATP和NADPH已形成了,它们是光合作用的重要中间产物,一方面因为这两者都能暂时贮存能量,继续向下传递;另一方面因为NADPH的H又能进一步还原二氧化碳,并把它固定成中间产物。 暗反应: 绿叶从外界吸收来的二氧化碳,不能直接被氢[H]还原。它必须首先与植物体内的一种含有五个碳原子的化合物(简称五碳化合物,用C5表示)结合,这个过程叫做二氧化碳的固定。一个二氧化碳分子被一个五碳化合物分子固定以后,很快形成两个含有三个碳原子的化合物(简称三碳化合物,用C3表示)。在有关酶的催化作用下,三碳化合物接受ATP释放出的能量并且被氢[H]还原。其中,一些三碳化合物经过一系列变化,形成糖类;另一些三碳化合物则经过复杂的变化,又形成五碳化合物,从而使暗反应阶段的化学反应循环往复地进行下去。 三、区别 1、光反应需要色素、光和酶,暗反应不需色素和光,需多种酶; 2、光反应反应产物为[H]、O2、ATP,暗反应反应产物为有机物(CH2O)、ADP、Pi; 3、光反应的反应性质是光化学反应,暗反应的反应性质是酶促反应; 4、光反应必须在光下,进行暗反应有光无光都能进行; 5、光反应中光能→ATP中活跃的化学能,暗反应中ATP中活跃的化学能→糖类等有机物中稳定的化学能; 6、光反应的实质是光能转化为化学能,暗反应的实质是放出O 2同化CO 2 生成 (CH 2 O)。 四、光合作用中形成的高能电子在传递过程中,拿出一部分能量使ADP和(P)结合形成ATP的过程,叫做光合磷酸化。

高中生物 必修1 光合作用 知识点全面总结 (word20页)

第三单元之—光合作用 一、叶绿体的结构与功能 (一)叶绿体的结构模型. (二)相关知识 1、.叶绿体是真核细胞进行光合作用的场所 2、叶绿体由两层膜(内膜和外膜)包围而成,内部有许多基粒,基粒和基粒之间充满了基质。 3、每个基粒都有许多个类囊体构成,类囊体薄膜上含有吸收、传递和转化光能的色素以及光反应所需的酶,是光反应的场所。 4、基质中含有暗反应所需的酶,是进行暗反应的场所。 5、光合色素的相关知识。 (1)叶绿体色素的种类及含量: 叶绿素a 叶绿素(3/4) 叶绿素b 叶绿体色素 胡萝卜素 类胡萝卜素(1/4) 叶黄素 (2)叶绿体色素的分布:叶绿体类囊体薄膜上。 (3)叶绿体色素的功能:吸收,传递(4种色素),转化光能(只有少量的叶绿素a把光能转为电能) (4)影响叶绿素合成的因素: ①光照:光是影响叶绿素合成的主要条件,一般植物在黑暗中不能合成叶绿素,因而叶片发黄。(例如韭黄,蒜黄) ②温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。低温(秋末)时,叶绿素分子易被破坏,而使叶子变黄。 ③必需元素:叶绿素中含N、Mg等必需元素,缺乏N、Mg将导致叶绿素无法合成,叶变黄。另外,Fe是叶绿素合成过程中某些酶的辅助成分,缺Fe也将导致叶绿素合成受阻,叶变黄。

(5)叶绿体色素的吸收光谱: ①叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。 ②叶绿素a和叶绿素b主要吸收红光和蓝紫光,类胡萝卜素(胡萝卜素和叶黄素)主要吸收蓝紫光。色素对绿光吸收最少。对其他波段的光并非不吸收,只是吸收量较少。 经过色素吸收后,光谱出现两条黑带。说明:叶绿体中的色素主要吸收红光和蓝紫光。 (6)叶绿体色素的性质:易溶于酒精、丙酮和石油醚等有机溶剂,不溶于水,叶绿素的性质不稳定,易被破坏,类胡萝卜素性质相对稳定。 (7)植物叶片的颜色与所含色素的关系: 正常绿色正常叶片的叶绿素和类胡萝卜素的比例约为3∶1,且对绿光吸收最少,所以正常叶片总是呈现绿色 叶色变黄寒冷时,叶绿素分子易被破坏,类胡萝卜素较稳定,显示出类胡萝卜素的颜色,叶子变黄 叶色变红秋天降温时,植物体为适应寒冷,体内积累了较多的可溶性糖,有利于形成红色的花青素,而叶绿素因寒冷逐渐降解,叶子呈现红色 6、色素的提取和分离实验。 (1)原理解读: ①色素的提取:叶绿体中的色素溶于有机溶剂而不溶于水,可以用无水乙醇(或丙酮)作溶剂提取绿叶中的色素,而不能用水,因为叶绿体中的色素不能溶于水。 ②色素的分离原理:利用色素在层析液中的溶解度不同进行分离,溶解度大的在滤纸上扩散得快,反之则慢。从而使各种色素分离。 (2)选材:应选取鲜嫩、颜色深绿的叶片,以保证含有较多的色素。 (3)过程:省略。 (4)结果分析:

影响光合作用的因素及曲线分析

【一】影响光合作用的环境因素及其在生产上的应用 1 ?单因子因素 (1)光照强度 ①原理分析:光照强度影响光合速率的原理是通过影响光反应阶段,制约的产生,进而制约暗反应阶段。 ② 图像分析: A点时只进行细胞呼吸;AB段随着光照强度的增强,光合作用强度也增 强,但是仍然小于细胞呼吸强度;B点时代谢特点为光合作用强度等于细胞呼吸强度;BC 段随着光照强度的增强,光合作用强度也不断增强;C点对应的光照强度为光饱和点,限制 C点的环境因素可能有温度或二氧化碳浓度等。 ③应用分析:欲使植物正常生长,则必须使光照强度大于 提高光照强度可增加大棚作物产量。 (2)光照面积 ①图像分析: 作用面积的饱和点。 照不足。 0B段表明干物质量随光合作用增加而增加,而由于A点以后光合作用强度不再增加, 但叶片随叶面积的不断增加,呼吸量(0C段)不断增加,所以干物质积累量不断降低(BC段)。 ②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。 (3)CO2浓度 ①原理分析:C02浓度影响光合作用的原理是通过影响暗反应阶段,制约C3生成。 ②图像分析:图1中A点表示光合作用速率等于细胞呼吸速率时的C02浓度,即C02 补偿点,而图2中的A'点表示进行光合作用所需C02的最低浓度;两图中的B和B'点都表示C02饱和点,两图都表示在一定范围内,光合作用速率随C02浓度增加而增大。 ③应用分析:大气中的C02浓度处于0A段时,植物无法进行光合作用;在农业生产 中可通过“正其行,通其风”和增施农家肥等措施增加C02浓度,提高光合作用速率。 ⑷温度 ①原理分析:是通过影响酶活性进而影响光合作用。 0 B ) COb/> "f / fi 連 ft* ATP 和[H] B点对应的光照强度;适当 0A段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合 随叶面积的增大,光合作用强度不再增加,原因是有很多叶被遮挡,光 2 4

光合作用和呼吸作用综合曲线分析

word 整理版 光合作用和呼吸作用综合曲线分析 生物组应中保 有关光合作用和呼吸作用关系的变化曲线图中,最典型的就是夏季的一天中CO2吸收和释放变化曲线图,如图 1 所示: 1.曲线的各点含义及形成原因分析 a 点:凌晨 3 时~ 4 时,温度降低,呼吸作用减弱,CO2 释放减少; b 点:上午 6 时左右,太阳出来,开始进行光合作用; bc 段:光合作用小于呼吸作用; c 点:上午7 时左右,光合作用等于呼吸作用; ce 段:光合作用大于呼吸作用; d点:温度过高,部分气孔关闭,出现“午休”现象; e点:下午 6 时左右,光合作用等于呼吸作用; ef 段:光合作用小于呼吸作用; fg 段:太阳落山,停止光合作用,只进行呼吸作用。 2.有关有机物情况的分析( 见图 2) (1)积累有机物时间段: ce 段; (2)制造有机物时间段: bf 段; (3)消耗有机物时间段: og 段; (4) 一天中有机物积累最多的时间点: e 点; (5)一昼夜有机物的积累量表示: Sp- SM-SN。 3.在相对密闭的环境中,一昼夜CO2含量的变化曲线图( 见图 3) (1)如果 N 点低于 M点,说明经过一昼夜,植物体内的有机物总量 增加; (2)如果 N 点高于 M点,说明经过一昼夜,植物体内的有机物总量 减少; (3)如果 N 点等于 M点,说明经过一昼夜,植物体内的有机物总量不变; (4)CO 2含量最高点为 c 点, CO2含量最低点为 e 点。 4.在相对密闭的环境下,一昼夜O2含量的变化曲线图( 见图 4) (1)如果 N点低于 M点,说明经过一昼夜,植物体内的有机物 总量减少; (2)如果 N点高于 M点,说明经过一昼夜,植物体内的有机物 总量增加; (3)如果 N点等于 M点,说明经过一昼夜,植物体内的有机物 总量不变; (4)O 2含量最高点为 e 点, O2含量最低点为 c 点。 5.用线粒体和叶绿体表示两者关系 学习参考资料

光合作用和呼吸作用图像赏析

专题《光合作用和呼吸作用图像赏析》专题 1、从细胞器的角度分析理解 某种状态下,绿色植物的叶肉细胞内外气体交换情况如下图所示: 解读:①图1表示:黑暗中,只进行细胞呼吸;②图2表示:细胞呼吸速率>光合作用速率;③图3表示:细胞呼吸速率=光合作用速率;④图4表示:细胞呼吸速率<光合作用速率。 2、从物理模型曲线图分析理解 图1 此图是分析其他曲线图的工具,要求学生能从点、线段等绝度熟练掌握其生理作用

解读:①A 点时,只进行呼吸作用;②AB 段,呼吸作用强度大于光合作用强度;③B 点时,呼吸作用强度等于光合作用强度;④BC 段及C 点以后,呼吸作用强度小于光合作用强度。 拓展曲线图:(1)植物一昼夜CO2吸收量和CO2释放量的变化 解读:图2是春末植物一昼夜CO2吸收量和CO2释放量的变化,B 点开始有光照,F 点光照消失,C 、E 点时的光照为光补偿点,光合速率与呼吸速率相等,没有“午休现象”。 图3是盛夏植物一昼夜CO2吸收量和CO2释放量的变化,B 点开始有光照,H 点光照消失,C 、G 点时的光照为光补偿点,光合速率与呼吸速率相等,DEF 为“午休现象”。 (2)植物一昼夜引起玻璃钟罩内CO2浓度变化的坐标曲线 解读:图4显示植物一昼夜引起玻璃钟罩内CO2浓度变化,B 点、C 点对应光补偿点时刻,此时光合速率与呼吸速率相等。该曲线反映植物一昼夜有有机物积累。 3、装置图分析 将某装置放在光照充足、温度适宜的环境中,装置设计情况如下图所示(注:装置的烧杯中放入NaHCO3缓冲溶液可维持装置中的CO2浓度): 春末 盛夏 图 2 图 3 . . . . 光合速率与呼吸速率相等的点 玻璃罩内的CO 2 浓度 0 24 12 18 6 . . . . A B C D 时间/h 图4 光合速率与呼吸速率相等的点

光合作用的化学式

光合作用的化学式 光合作用是绿色植物在光的照射下,将二氧化碳或硫化氢和水转化成有机物和氧气的过程。绿色植物利用光的照射,在叶绿体等光和色素内,经过一系列的化学反应,将二氧化碳、水等转化成有机物和自然界生物赖以生存的氧气。可以说,地球上的氧气全部来源于绿色植物的光合作用。 光合作用既然是一种化学作用,那么我们就可以求出它的化学方程式和产物的化学式,而且我们已经了解到光合作用的“原料”是CO2和H2O,产物之一是O2。 大部分人列出来的公式是2H2O+CO2====CH4+2O2。不过很明显这个式子是完全不正确的,因为光合作用所产生的有机物是葡萄糖和淀粉,而不可能是甲烷(CH4)。 其实错误的原因在于,光合作用实际上时一系列的化学反应,而不是仅仅反应一次,也就是说,二氧化碳和水反应后生成的产物继续与其他物质反应,经过的多次反应后生成的有机物(葡萄糖、淀粉)等。 CO2+H2O→(CH2O)+O2(反应条件:光能和叶绿体) 12H2O + 6CO2+ 阳光→(与叶绿素产生化学作用);C6H12O6(葡萄糖)+ 6O2+ 6H2O H2O→2H+ 2e- + 1/2O2(水的光解) NADP+ + 2e- + H+ →NADPH(递氢) ADP+Pi+能量→ATP (递能) CO2+C5化合物→2C3化合物(二氧化碳的固定) 2C3化合物+4NADPH→C3糖(有机物的生成或称为C3的还原) C3糖(一部分)→C5化合物(C3糖再生C5) C3糖(一部分)→其他糖(如葡萄糖、蔗糖、淀粉,有的还生成脂肪) ATP→ADP+Pi+能量(耗能) 能量转化过程:光能→电能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(淀粉等糖类的合成) 这就是复杂而又奇妙的光合作用,是具有叶绿体的生物特有的一项功能,至今人类仍无法利用技术来自行完成这一作用,所以,绿色植物在自然界中的位置仍是无可替代的。也许在不久的将来,人们可以领略到这一作用的真理,来摆脱一些有害的环境污染,摆脱现在的困境。

光合作用和呼吸作用有关曲线图像题解题技巧

光合作用和呼吸作用有关曲线图像题解题技巧 A、搞清楚“量”的关系: 凡是曲线图,总是反映一定变量的关系、在有关光合作用和呼吸作用曲线题中,尽管牵涉到的量不多,但由于生化反应是一个复杂的过程,不像一般的数学函数,所牵涉到的“量”往往都有它的特殊含义,而且含义很容易混淆。如吸收量和利用量,释放量和产生量,有机物产生量、净生产量(或积累量)和消耗量等等。如果这些量的区别和关系搞不清楚,解题可就很容易出差错。 B、“黑暗”条件的理解: 凡是有光合作用、呼吸作用的曲线图的题中,光照的有无或强弱也往往是形影不离的。当题目给出黑暗条件(或光照强度为零)时,我们脑子里就要考虑到什么生理活动在进行什么生命活动不再进行为什么有的实验要在黑暗条件下进行 我们应十分注意黑暗条件:①植物光合作用和呼吸作用的生理过程中.光合作用必须要有光的条件下才能进行,而呼吸作用有光无光都能进行;②光合作用的光反应也必须要有光的情况下才能进行,而暗反应有光无光都能进行(只要有足够的[H]和ATP):③黑暗时释放CO2,吸收O2。消耗体内的有机物;④长时间黑暗时植物不能正常生长;⑤黑暗是测定呼吸速率和光合速率实验中的关键条件之一。 C、理解“零值”的含义: 在分析曲线图时,十分关键的是要理解CO2吸收值为零值的生物学含义。CO2的吸收量为零值,这并不是表示此时不进行光合作用和呼吸作用,而是表示光合作用强度和呼吸作用强度相当,表现为环境中CO2的量没有发生变化。对“零值”的理解有以下几个方面:①光照情况下,吸收CO2的量为零量,表示光合作用强度与呼吸作用强度相当,并不是说植物不进行光合作用和呼吸作用;②零值以下,表示光合作用强度<呼吸作用强度,吸收CO2量为负值(即释放CO2)。吸收O2,消耗体内的有机物,异化作用>同化作用。长时间为零或负值,植物不能正常生长;③零值以上,表示光合作用强度>呼吸作用强度,吸收CO2,释放O2,光合作用产物有积累,同化作用>异化作用。植物能正常生长。 D、曲线“极限”点分析:

光反应暗反应光合作用

光反应暗反应光合作用 【学习目标】 (4)分析人类对光合作用的探究历程,形成光合作用的概念,并能简述出光合作用的原料、产物、条件和反应场所。理解科学过程,领会技术(同位素示踪法)与科学的关系,学习科学家质疑、创新、勇于实践的科学精神和科学态度。 (5)尝试探究环境因素对光合作用强度的影响,说出光合作用原理的应用,理解光合作用是生物界乃至整个自然界最基本的物质代谢和能量代谢。(6)简述化能合成作用。【自主学习】 (三)光合作用的探究历程 1.光合作用概念:是指绿色植物通过________,利用____能,把___________转化成储存能量的_____________,并且释放出________的过程。 2.探究历程:(1)1771年,英国科学家普利斯特利实验证实:________________________________。(2)荷兰科学家英格豪斯发现:只有在______________下,只有_____________才能更新空气。1785年明确了:绿叶在光下吸收__________,释放_______________。(3)1845年,德国科学家梅耶指出:植物进行光合作用时,把_______能转换成________能储存起来。(4)1864年,德国科学家萨克斯实验证明:光合作用产生________。①、饥饿处理:将绿叶置于_____数小时,耗尽其____________________。②、遮光处理:绿叶一半________,一半_________________。③、光照数小时:将绿叶放在光下,使之能进行光合作用。④、碘蒸汽处理:遮光的一半____________,暴光的一侧边__________。实验证明:光合作用产生________。(5)1939年,美国科学家鲁宾和卡门用____________法实验证明:光合作用释放的氧气来自_____:①、用18O标记H2O和CO2,得到H218O和C18O2。②、将植物分成两组,一组提供___________和CO2,另一组提供H2O和______________。③、在其他条件都相同的情况下,分别检测植物释放的O2。④、实验结果:只有提供_________时,植物释放出18O2。结论:光合作用释放的氧气来自_________。(6)卡尔文循环——卡尔文实验:小球藻提供用14C标记的14CO ,追踪光和作用过程中C的运动途径,结论:光合作用产生的有机物中的碳来自2 _______________。 (四)光合作用过程 反应式:其中(2)表示的(五)光合作用原理的应用

光合作用和呼吸作用综合曲线分析

光合作用和呼吸作用综合曲线分析 生物组应中保 有关光合作用和呼吸作用关系的变化曲线图中,最典型的就是夏季的一天中CO2吸收和释放变化曲线图,如图1所示: 1.曲线的各点含义及形成原因分析 a点:凌晨3时~4时,温度降低,呼吸作用减弱,CO2 释放减少; b点:上午6时左右,太阳出来,开始进行光合作用; bc段:光合作用小于呼吸作用; c点:上午7时左右,光合作用等于呼吸作用; ce段:光合作用大于呼吸作用; d点:温度过高,部分气孔关闭,出现“午休”现象; e点:下午6时左右,光合作用等于呼吸作用; ef段:光合作用小于呼吸作用; fg段:太阳落山,停止光合作用,只进行呼吸作用。 2.有关有机物情况的分析(见图2) (1)积累有机物时间段:ce段; (2)制造有机物时间段:bf段; (3)消耗有机物时间段:og段; (4)一天中有机物积累最多的时间点:e点; (5)一昼夜有机物的积累量表示:Sp-SM-SN。 3.在相对密闭的环境中,一昼夜CO2含量的变化曲线图 (见图3) (1)如果N点低于M点,说明经过一昼夜,植物体内的有机物总量 增加; (2)如果N点高于M点,说明经过一昼夜,植物体内的有机物总量 减少; (3)如果N点等于M点,说明经过一昼夜,植物体内的有机物总量不变; (4)CO2含量最高点为c点,CO2含量最低点为e点。 4.在相对密闭的环境下,一昼夜O 2含量的变化曲线图(见图 4) (1)如果N点低于M点,说明经过一昼夜,植物体内的有机物 总量减少; (2)如果N点高于M点,说明经过一昼夜,植物体内的有机物 总量增加; (3)如果N点等于M点,说明经过一昼夜,植物体内的有机物 总量不变; (4)O2含量最高点为e点,O2含量最低点为c点。 5.用线粒体和叶绿体表示两者关系

光合作用的过程

光合作用的过程 ?光合作用过程: 1、光合作用的概念: 绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。 2、光合作用图解: 3、光合作用的总反应式及各元素去向 ?光反应与暗反应的比较:

? ?易错点拨: 1、光合作用总反应式两边的水不可轻易约去,因为反应物中的水在光反应阶段消耗,而产 物中的水则在暗反应阶段产生。

2、催化光反应与暗反应的酶的分布场所不同,前者分布在类囊体薄膜上,后者分布在叶绿 体基质中。 知识拓展: 1、氮能够提高光合作用的效率的原因是:氮是许多种酶的组成成分光合作用的场所:光合 作用第一个阶段中的化学反应,必须有光才能进行。在类囊体的薄膜上进行;光合作用的第二个阶段中的化学反应,有没有光都可以进行。在叶绿体基质中进行。 2、玉米是C4植物,其维管束鞘细胞中含有没有基粒的叶绿体,能够进行光合作用的暗反 应。C4植物主要是那些生活在干旱热带地区的植物。 ①四碳植物能利用强日光下产生的ATP推动PEP与CO2的结合,提高强光、高温下的光合 速率,在干旱时可以部分地收缩气孔孔径,减少蒸腾失水,而光合速率降低的程度就相对较小,从而提高了水分在四碳植物中的利用率。 ②二氧化碳固定效率比C3高很多,有利于植物在干旱环境生长。C3植物行光合作用所得的 淀粉会贮存在叶肉细胞中;而C4植物的淀粉将会贮存于维管束鞘细胞内,维管束鞘细胞不含叶绿体。 3、光合细菌:利用光能和二氧化碳维持自养生活的有色细菌。光合细菌(简称PSB)是地球 上出现最早、自然界中普遍存在、具有原始光能合成体系的原核生物,是在厌氧条件下进行不放氧光合作用的细菌的总称,是一类没有形成芽孢能力的革兰氏阴性菌,是一类以光作为

高中生物《光合作用过程》课例分析

高中生物《光合作用过程》课例分析 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 高中生物《光合作用的过程》课例分析 1教材分析 本节课内容是苏教版高中生物教材必修一《分子与细胞》第四章第二节第一部分内容。该部分在高中生物教材中的重要性与难度都是很高的,由于涉及到植物生理和部分生化方面的知识,而且较为微观,学生理解起来比较困难;加上“光合作用的过程”为高中生物学的核心概念,整节课的知识性较强,学生要从化学反应的角度去审视植物生命现象的实质,也为学习光合作用原理的应用奠定了基础。 2教学目标 知识目标: ①阐明光合作用的光反应、暗反应过程,比较二者的区别和联系 ②小组合作完成光合作用的过程简图 ③总结出光合作用的总反应式,概述光合作用的概念 能力目标:①学会阅读资料并从中提取、分析、

处理相关信息 ②学会通过表格进行归纳总结 情感目标:①通过对叶绿体和光合作用关系的学习,形成结构与功能相统一的观点 ②通过科学家探究光合作用资料的分析,培养探究意识和科学态度,体会科学实验的严谨。 3教学重点光合作用的光反应、暗反应过程 4教学难点如何比较光反应和暗反应,构建光合作用的过程简图 5教学过程 导入 让学生朗诵一首小诗,回顾光合作用的探究历程,引出新课。 “流传千年的真理,在不经意间蜕变,一个简单的实验,开启了光合作用发现史的新纪元。亚里士多德的哲言,由定论转为铺垫,一个个学者,因为踏上了巨人的肩,他们的视野才更高更远。 氧气如何产生?怎样更新二氧化碳?……光合作用的无数谜题,逐一揭示出答案。每一个新的发现,都足以让生物学界震撼。更多的奇迹,无穷的奥秘,等待我们去探索,等待我们去发现……” 设计意图:设疑激趣,激发学生的学习兴趣。小

影响光合作用的因素及曲线分析

影响光合作用的因素及 曲线分析 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

【一】影响光合作用的环境因素及其在生产上的应用 1.单因子因素 (1)光照强度 ①原理分析:光照强度影响光合速率的原理是通过影响光反应阶段,制约ATP和[H]的产生,进而制约暗反应阶段。 ②图像分析:A点时只进行细胞呼吸;AB段随着光照强度的增强,光合作用强度也增强,但是仍然小于细胞呼吸强度;B点时代谢特点为光合作用强度等于细胞呼吸强度;BC段随着光照强度的增强,光合作用强度也不断增强;C点对应的光照强度为光饱和点,限制C点的环境因素可能有温度或二氧化碳浓度等。 ③应用分析:欲使植物正常生长,则必须使光照强度大于B点对应的光照强度;适当提高光照强度可增加大棚作物产量。 (2)光照面积 ①图像分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用面积的饱和点。随叶面积的增大,光合作用强度不再增加,原因是有很多叶被遮挡,光照不足。 OB段表明干物质量随光合作用增加而增加,而由于A点以后光合作用强度不再增加,但叶片随叶面积的不断增加,呼吸量(OC段)不断增加,所以干物质积累量不断降低(BC段)。 ②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。 (3)CO2浓度 ①原理分析:CO2浓度影响光合作用的原理是通过影响暗反应阶段,制约C3生成。 ②图像分析:图1中A点表示光合作用速率等于细胞呼吸速率时的CO2浓度,即CO2补偿点,而图2中的A′点表示进行光合作用所需CO2的最低浓度;两图中的B和B′点都表示CO2饱和点,两图都表示在一定范围内,光合作用速率随CO2浓度增加而增大。 ③应用分析:大气中的CO2浓度处于OA′段时,植物无法进行光合作用;在农业生产中可通过“正其行,通其风”和增施农家肥等措施增加CO2浓度,提高光合作用速率。 (4)温度 ①原理分析:是通过影响酶活性进而影响光合作用。 ②图像分析:低温导致酶的活性降低,引起植物的光合作用速率降低,在一定范围内随着温度的升高酶活性升高进而引起光合速率也增强;温度过高会引起酶活性降低,植物光合速率降低。 ③应用分析:温室中白天调到光合作用最适温度,以提高光合作用速率;晚上适当降低温室的温度,以降低细胞呼吸,保证植物有机物积累。 (5)必需矿质元素 ①图像分析:在一定浓度范围内,增大必需矿质元素的供应,可提高光合作用速率,但当超过一定浓度后,会因土壤溶液浓度过高而导致植物光合作用速率下降。 ②应用分析:在农业生产上,根据植物的需肥规律,适时、适量地增施肥料,可以提高作物的光能利用率。 2.多因子因素 (1)曲线分析:P点时,限制光合速率的因素应为横坐标所表示的因子,随其因子的不断加强,光合速率不断提高。当到Q点时,横坐标所表示的因子不再是影响光合速率的因素,要想提高光合速率,可采取适当提高图示中的其他因子的方法。 (2)应用:温室栽培时,在一定光照强度下,白天适当提高温度,增加光合作用酶的活性,提高光合速率,也可同时充入适量的CO2进一步提高光合速率,当温度适宜时,要适当提高光照强度和CO2浓度以提高光合速率。 易错警示光合作用影响因素中的2个易忽略点 (1)易忽略温度改变对光合作用的影响。温度改变时,不管是光反应还是暗反应均会 受影响,但主要影响暗反应,因为参与暗反应的酶的种类和数量都比参与光反应的多。 (2)易忽略CO2浓度对光合作用的影响。CO2浓度很低时,光合作用不能进行;当

有关光合作用的曲线图的分析

相关光合作用的曲线图的分析 1.光照强度对光合作用强度的影响 (1)、纵坐标代表实际光合作用强度还是净光合作用强度? 光合总产量和光合净产量常用的判定方法: ①如果CO2 吸收量出现负值,则纵坐标为光合净产量; ②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量; ③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。 所以本图纵坐标代表的是净光合作用强度。 (2)、几个点、几个线段的生物学含义: A点:A点时光照强度为0,光合作用强度为0,植物只实行呼吸作用,不实行光合作用。净光合强度为负值由此点获得的信息是:呼吸速率为OA的绝对值。 B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。表现为既不释放CO2也不吸收CO2(此点为光合作用补偿点) C点:当光照强度增加到一定值时,光合作用强度达到最大值。此值为纵坐标(此点为光合作用饱和点) N点:为光合作用强度达到最大值(CM)时所对应的最低的光照强度。(先描述纵轴后横轴) AC段:在一定的光照强度范围内,随着光照强度的增加,光合作用强度逐渐增加 AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。净光合强度仍为负值。此时呼吸作用产生的CO2除了用于光合作用外还有剩余。表现为释放CO2。 BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。 CD段:当光照强度超过一定值时,净光合作用强度已达到最大值,光合作用强度不随光照强度的增加而增加。 (3)、AC段、CD段限制光合作用强度的主要因素 在纵坐标没有达到最大值之前,主要受横坐标的限制,当达到最大值之后,限制因素主要是其它因素了 AC段:限制AC段光合作用强度的因素主要是光照强度。 CD段:限制CD段光合作用强度的因素主要是外因有:CO2浓度、温度等。内因有:酶、叶绿体色素、C5 (4)、什么光照强度,植物能正常生长? 净光合作用强度> 0,植物才能正常生长。 BC段(不包括b点)和CD段光合作用强度大于呼吸作用强度,所以白天光照强度大于B点,植物能正常生长。 在一昼夜中,白天的光照强度需要满足白天的光合净产量 > 晚上的呼吸消耗量,植物才能正常生长。

光合作用曲线分析教学讲义

一、用曲线模型分析影响光合作用的环境因素1.光照强度 曲线模 型 模型分析 曲线对应点细胞生理活动 ATP产生场 所 植物组织 外观表现 图示 A点只进行细胞呼吸, 不进行光合作用 只在细胞质 基质和线粒 体 从外界吸收O2,向 外界排出CO2 AB段 (不含A、 B点) 呼吸量>光合量 细胞质基质、 线粒体、 叶绿体从外界吸收O2,向外界排出CO2 B点光合量=呼吸量与外界不发生气体交换 B点之后光合量>呼吸量从外界吸收CO2,向外界释放O2。此时植物可更新空气 应用 ①温室生产中,适当增强光照强度,以提高光合速率,使作物增产 ②阴生植物的光补偿点和光饱和点都较阳生植物低,如图中虚线所示,间作套种 农作物,可合理利用光能 2 原理CO2影响暗反应阶段,制约C3的形成 曲线模型及分析图1中A点表示CO2补偿点,即光合速率等于呼吸速率时的CO2浓度,图2中A′点表示进行光合作用所需CO2的最低浓度。B 和B′点都表示CO2饱和点 应用在农业生产上可以通过“正其行,通其风”,增施农家肥等增大CO2浓度,提高光合速率

3.温度 原理温度通过影响酶的活性影响光合作用 曲线模型及分析AB段:在B点之前,随着温度升高,光合速率增大B点:酶的最适温度,光合速率最大 BC段:随着温度升高,酶的活性下降,光合速率减小,50 ℃左右光合速率几乎为零 应用温室栽培植物时,白天调到光合作用最适温度,以提高光合速率;晚上适当降低温室内温度,以降低细胞呼吸速率,提高植物有机物的积累量 4.矿质元素 曲线模型原理 矿质元素是参与光合作用的许多重要化合物 的组成成分,缺乏会影响光合作用的进行。 例如,N是酶的组成元素,N、P是ATP的 组成元素,Mg是叶绿素的组成元素等 曲线分析应用 在一定浓度范围内,增大必需矿质元素的供 应,可提高光合作用强度;但当超过一定浓度后,会因土壤溶液浓度过高,植物发生渗透失水而导致植物光合作用强度下降在农业生产上,根据植物的需肥规律,适时、适量地增施肥料,可以提高光能利用率 2 常见 曲线 模型 曲线分析P点:限制光合速率的因素应为横坐标所表示的因子,随着因子的不断加强,光合速率不断提高 Q点:横坐标所表示的因子不再是影响光合速率的因素,影响因素主要为各曲线所表示的因子(图1为温度,图2为CO2浓度,图3为光照强度) 应用温室栽培时,在一定光照强度下,白天适当提高温度,增加光合酶的活性,提高光合速率,也可同时适当增加CO2,进一步提高光合速率;当温度适宜时,可适当增加光照强度和CO2浓度以提高光合速率

相关文档
最新文档