聚乙烯醇纤维应用与研究进展

聚乙烯醇纤维应用与研究进展
聚乙烯醇纤维应用与研究进展

聚乙烯醇纤维应用与研究进展

赵 兴 张兴祥

(天津工业大学功能纤维研究所,天津 300160)

[摘 要] 回顾了PVA纤维的发展,综述了高强高模聚乙烯醇纤维、水溶性浆乙烯醇纤维、阻燃聚乙烯醇纤维等的生产制备方法和主要性能用途,并对聚乙烯醇纤维的发展做了展望。

[关键词] 高强高模;水溶性;阻燃;性能;应用

1 引言

我国早在50年代就有一些科研单位从事PVA和维纶的研究和开发工作,经过近半个世纪的发展,各相关企业不断采用新技术、新工艺,引进国外先进装置和改扩建,使我国PVA及其纤维工业在产量、质量、科研、品种开发和用途开拓、节能降耗等方面都取得了很大的进展。但在科研、品种开发和用途开拓等方面和国际先进水平还有不少差距。

聚乙烯醇(PVA)纤维的最初应用在于其性能与棉花相似,其强度、耐磨、耐晒、耐腐蚀性比棉花好,比重比棉花轻,吸湿率接近棉花。当年,日本、朝鲜、中国等大力发展PVA 纤维的主要目的都是以解决人民的衣着问题为主[1,2]。但是,随着使用性能更加优良的涤纶、锦纶和腈纶的崛起和后来居上,由于存在抗皱性差、尺寸不稳定、染色性差等缺点,使其在服用领域的应用受到限制。

目前,经过改性和新工艺生产的聚乙烯醇纤维越来越受到重视。科研人员成功研制出了阻燃聚乙烯醇纤维、高强高模聚乙烯醇纤维、水溶性聚乙烯醇纤维等一批高性能的纤维新品种。这大大提升了聚乙烯醇纤维在增强、渔业、包装等领域的使用性能并开辟了在医学及离子交换吸附等方面的应用。聚乙烯醇纤维有了良好的发展前景。

2 高强高模聚乙烯醇纤维

PVA是有潜力制得超高强纤维的柔性链聚合物之一,与根据PVA大分子主链键能理论的计算值相比,日前商品PVA纤维的最高强度仅为理论强度的10%,最高模量为理论极限值的30%[3]。因此,寻找方法开发研究高强高模PVA纤维是可行的。

纤维断裂的微观机理,一般有分子链滑移和分子链断裂两种说法,其共同点是假设纤维中的分子链是沿纤维轴平行取向排列,应力在纤维横截面上均匀分布的。所以,纤维的强度主要取决于纤维截面上大分子链数目、化学键能和链伸展的均匀性。因此高分子量、分子链高度伸直取向和充分结晶,成为制造高强高模纤维的三个基本理论条件[4]。

2.1 高强高模PVA纤维制造方法

纺丝是制造高强高模量PVA纤维的关键,因为只有结构均匀、分子间和分子内缠结少、低结晶或不结晶的初生纤维,才有好的可

9

拉伸性,从而进行高倍拉伸,使大分子充分取向和结晶,才可制成高强高模量纤维。高强高模PVA纤维的成型,一般可采用湿法加硼纺丝、凝胶纺丝、直接醇解纺丝、相分离纺丝、交联纺丝等工艺技术。

湿法加硼纺丝是日本仓敷人造丝公司在20世纪60年代提出的,是较早被采用的制备高强高模PVA纤维的技术。湿法加硼纺丝是在PVA溶液中加入硼酸作为交联剂,利用硼、钛、铜、钒等化合物,与PVA形成交联凝胶结构,从而抑制PVA分子内或分子间氢键的形成以及减少大分子缠结程度,抑制纺丝过程中大分子结晶,易于初生纤维的后拉伸。国内在湿法加硼纺丝工艺方面也取得了很大进展,采用该技术制得的PVA强度、模量以及断裂伸长可达10~13cN/dtex、200~400cN/dtex和4%~9%[1]。

直接醇解纺丝是用PVAc直接喷丝,在纺丝浴中醇解成PVA纤维,然后进行再醇解,中和、水洗、热处理[5]。

凝胶纺丝法是目前制备高性能PVA纤维的一种较理想且易于工业化的方法。凝胶纺丝法是在一定温度下,将PVA与有机溶剂配成纺丝原液,纺丝进入气体介质,经冷却浴冷却为凝胶体,使初生纤维中的大分子处于低缠结状态,经萃取后进行高倍热拉伸或不经萃取进行高倍热拉伸,从而得到高强高模PVA纤维。这种方法的优点是可以加工分子量很大的聚合物,使得到的纤维中因大分子本身末端造成的缺陷大大减少。此法常用溶剂有:DMSO、己二醇、丙三醇、萘,冷却液为石蜡油和十氢萘等。

日本可乐丽公司将高聚合度的PVA溶解在有机溶剂配制成纺丝溶液,纺丝成形后在另一有机溶剂浴中低温骤冷固化成凝胶原丝,然后经拉伸和热处理使纤维大分子高度取向和结晶,从而制得高强度的PVA纤维,并于1997年开始试销售商品名为“Kuralon -Ⅱ”的高强度PVA纤维,其强度约为

15cN/dtex。可乐丽公司将这种方法称为“溶剂湿法冷却凝胶纺丝”。国内的科研机构和厂商也在积极地探索新的纺丝工艺,如东华大学与上海石化股份有限公司合作进行的高强高模PVA凝胶纺丝工艺等,并取得了一定的进展[1]。

2.2 高强高模PVA纤维的应用

高强高模PVA纤维(维纶)由于其良好的亲水性、粘结性和抗冲击性以及加工中易于分散等性能,在工业、建筑等领域有着广泛的发展前途。

高强高模PVA纤维可以应用于建筑中混凝土的加强等方面,其用于增强水泥有很多优点[3,6,7,8]:(1)机械性能良好,可提高建筑材料的韧性和抗冲击强度:(2)耐酸碱性好,适用于各种等级的水泥;(3)分散性好,建筑材料表面可长时间保持光滑,且无剥落现象发生;(4)水泥板和水泥砖的弯曲温度和耐寒性能;(5)用量少(如PVA用量仅为石棉的1/5),因此制品的单位重量可有效减少,操作条件明显得到改善:(6)混凝土的透气性低,可阻止补强钢筋的腐蚀,因此混凝土不易风化、不易受气候影响。

高强高模PVA纤维还可以应用在玻璃纤维的替代上。玻璃纤维具有较高的强度和模量,因此建筑轻质材料一般采用玻璃纤维做为增强材料,但是由于其耐碱性不够理想,因此弯曲强度会随时间的延长而下降。此外,在施工中会刺激工作人员的皮肤并影响环保。高强高模PVA纤维因具有独特性能,可以成为玻璃纤维在建材应用中的一个比较好的替代材料。

高强高模PVA纤维还可以用于橡胶增强材料或轮胎帘子线,还可以利用其高强拉伸及耐腐蚀等特性,用于生产渔网、绳索、帆布、传送带等。

3 水溶性PVA纤维

01

水溶性PVA纤维是维纶差别化纤维的一种。日本是最早开发水溶纤维的国家,上个世纪60年代就投入了工业化生产,90年代日本可乐丽公司采用“溶剂湿法冷却凝胶纺丝法”制得水溶温度范围为5~90℃的“K -ⅡSS”聚乙烯醇水溶性纤维[9]。我国开发水溶纤维最早的是北京维纶厂,产品于1985年通过鉴定。其后各维纶厂相继开发水溶纤维。湖南湘维有限公司于1991年开始研制水溶纤维,用D P1700~1800的PVA生产出90℃左右水溶的纤维,1994年通过省级鉴定,产品除内销外,还出口韩国、美国,创造了较好的经济效益[10]。上海石化维纶厂1996年成功开发出70℃左右水溶的维纶并已开始批量生产,这些水溶纤维在溶解温度以下性能稳定,具有良好的白度、抱合力和抗静电性。四川维尼纶厂与四川大学合作,采用干湿法和湿法凝胶纺丝技术制造的水溶纤维,是10℃、50℃、60℃和70℃等系列低温水溶纤维[11]。

水溶性PVA纤维可由常规湿法纺丝法、有机溶剂湿法纺丝、干湿法纺丝、干法纺丝、半熔融法纺丝等工艺来生产[12]。

目前,水溶性PVA纤维广泛应用在造纸、非织造织物开发、用即弃产品生产等领域。水溶性PVA纤维也可用于传统纺织领域。

水溶纤维与羊毛混纺技术是日本可乐丽公司与国际羊毛局(IWS)在1993年共同开发利用的[13,14]。该技术利用水溶性纤维的低温水溶性,以约10%~20%的比例和羊毛混合中进行混纺或交捻进行纺纱、织造,然后在染色、整理阶段将水溶性纤维溶解除去,其结果可以使羊毛支数提高20%左右,并增加羊毛纤维间的空隙,使羊毛织物轻量化、柔软化,更具蓬松性和保暖性。由于PVA纤维的增强效果使羊毛的纺织生产工艺性得到提高,从而使羊毛的原料使用范围扩大。

水溶性PVA纤维还可以用于无捻织物的开发[11,13,14],可以制造无捻毛巾、浴巾、婴幼儿用品、宾馆用品、体育用品织物等。普通织物中棉纱形成的茸毛被加捻,在后处理过程中茸毛变形、变硬致使吸水性变差。采用将水溶性PVA纤维与其它单纱合股逆捻或包缠纱生产技术,其中用水溶性PVA纤维作为包缠纤维包缠短纤维纱条,织成织物后再溶去水溶性PVA纤维部分即可得到织物中纱线的无捻效果,这样获得的织物具有手感丰满、柔和,高吸水性等特点。

水溶性PVA纤维还可以应用于皱效应面料、桃绒毛面料、镂空面料等方面的生产。今后还将有更多的应用领域被发掘出来,水溶性PVA纤维将获得更大的发展空间。

4 阻燃PVA纤维

阻燃维纶又称维氯纶,维氯纶是阻燃PVA纤维中最主要的产品,日本于1968年试制成功,其化学名称又叫聚乙烯醇-氯乙烯接枝共聚纤维。日本兴人公司制造的阻燃维纶商品名为柯泰伦(Cordelan)。

阻燃维纶的制造方法主要有三种[15,16],一种是先在低分子量聚乙烯醇的水溶液中,加入引发剂和氯乙烯单体,使氯乙烯在聚乙烯醇上发生接枝共聚。反应终了可获得外观为青蓝色的半透明状液体,随后再混以适量常规聚乙烯醇的水溶液使之增稠。用湿法进行纺丝,得到初生纤维后,经拉伸、热处理和缩醛化等加工得到成品纤维。利用接枝共聚,然后共混制取阻燃维纶方法的优点是所得阻燃纤维具有永久性,燃烧时不熔融,纤维手感柔软,而且纤维成本低。另一种是将聚乙烯醇和聚氯乙烯乳液混合后纺丝制备维氯纶纤维,天津工业大学开展了该方面的研究工作。再一种是在常规聚乙烯醇中添加阻燃剂,常用的阻燃剂有磷酸铵、聚磷酸铵、聚磷酰胺、溴代磷酸酯、三氧化二锑等。

另外,还可以通过对普通PVA织物进

11

行阻燃整理来使织物获得阻燃性能。其主要方法有两类:一类是刮胶法,常用的刮胶布主要是PVC刮胶布和PVC加阻燃剂的刮胶布;另一类是通过浸轧阻燃剂对维纶织物进行阻燃整理。

阻燃维纶具有燃烧无熔滴物,强力较高,防霉、防蛀等优点,可用于军工、消防、冶金、森林等部门。

5 研究新进展

近年来,国内外聚乙烯醇纤维的研究日渐活跃,并取得了一定的成果[17-29]。

杨国成等人应用电纺丝技术(elect ro2 spinning technique)成功制得了具有对光反应变色性质的PVA/H4SiW12O40超细纤维聚集体(ultrafine fiber aggregates),并研究了H4SiW12O40组分含量的作用、该纤维集合体的照射时间及其对光反应变色的机理。

江雷研究小组在超疏水性纳米界面材料方面的研究又取得了突破性的进展,他们利用一种双亲性的高分子聚乙烯醇为原料,制备了具有超疏水性表面的纳米纤维。曹惠等通过凝胶纺丝获得聚乙烯醇/乙烯—乙烯醇(PVA/EVO H)纤维,经拉伸可获得不同机械性能的纤维。另外,在PVA中加入少量的EVO H可以提高拉伸倍数,适当的PVA/ EVO H配比及适当的拉伸倍数可获得机械性能较好的纤维。四川大学徐僖等以丙烯腈与醋酸乙烯酯共聚后经水解制成丙烯腈一乙烯醇聚合物,并制成纤维。薛华育等用不同聚合度聚乙烯醇与少量氯化钠盐混合物水溶液的静电纺丝,由于离子的作用可以使喷射流表面电荷密度增大,静电纺丝可得到比单纯聚乙烯醇更细的纳米纤维。梁列峰等研究了壳聚糖与聚乙烯醇的共混成纤的条件,为工业化制备壳聚糖/聚乙烯醇复合纤维提供可参考的工艺技术路线。彭志勤等研究了纳米级的无机晶须对聚乙烯醇纤维的改性,发现无机晶须可提高聚乙烯醇纤维的强度、模量。

张华等以高强高模聚乙烯醇纤维为原料,通过控制缩醛化和半碳化工艺及条件对原料纤维进行缩苯甲醛化和半碳化处理,制备出具有适宜交联度的纤维,然后用硫酸对交联纤维进行磺化处理,制备了高强度高容量聚乙烯醇基阳离子交换纤维。张华等还应用缩苯甲醛化及半碳化处理后的高强聚乙烯醇纤维为原料,利用它与巯基乙酸的酯化反应将-SH基团引入合成纤维骨架,制成一种新型的巯基聚乙烯醇整合纤维。邓新华等以部分中和的丙烯酸(AA)为单体,在聚乙烯醇(PVA)水溶液中共聚,由聚合液进行溶液纺丝制备了PAA-AANa/PVA高吸水纤维。张春雪等人由电纺制备聚乙烯醇(PVA)超细纤维膜等等。

随着我国科研水平的不断提高,通过大力开拓产业用途,尤其是在建材和包装材料领域,聚乙烯醇纤维将有广阔的应用前景。另外,要根据市场的需求不断开发高性能高附加值的聚乙烯醇纤维品种,我国的聚乙烯醇纤维市场将再次辉煌。

参考文献:

[1]肖长发,高强度聚乙烯醇纤维结构与性能研究,高科技纤维与应用,2005,(2):11~16。

[2]林伯樵,高强高模PVA纤维开发方案探讨,维纶通讯,1996,16(2):14~18。

[3]李明星,王恺,高强高模聚乙烯醇(PVA)纤维的研究进展,合成纤维,2003, (1):21~23。

[4]朱本松,蔡夫柳等,高强高模聚乙烯醇纤维的制造技术,维纶通讯,1992,12(4): 14~18。

[5]钱文华等,聚乙烯醇高强高模纤维的应用开发,金山油化纤,1998,17(3):12~14。

[6]薛福连,高强度聚乙烯醇纤维在建材中的应用,江西建材,2004,(1):18~19。

21

[7]高强度聚乙烯醇纤维,化学文摘, 2002,(2)。

[8]金洪生,陈学军,高强高模聚乙烯醇纤维的应用开发,维纶通讯,2001,21(1): 106。

[9]胡绍华,章悦庭,常温可溶的水溶性聚乙烯醇强力纤维,维纶通讯,1997,17(4): 22~35。

[10]尹哲等,水溶性聚乙烯醇纤维的开发与应用,产业用纺织品,1998,(1):25~27。

[11]何云,聚乙烯醇水溶长丝的应用,四川纺织科技,2004,(1):29~32。

[12]李盛林,秦峰,水溶性聚乙烯醇纤维和聚乙烯醇干法纺丝,维纶通讯,2004,24 (4):7~11。

[13]巩清建,聚乙烯醇水溶性纤维的应用,四川纺织科技,2203,(4):32~35。

[14]敖利民,唐雯,李向红,王联军,水溶性聚乙烯醇纤维在传统纺织领域的应用,山东纺织科技,2003,(1):8~11。

[15]于永忠,吴启鸿,葛世成等,《阻燃材料手册》,北京:群众出版社,1991.6。

[16]郭新章,丁文瑶等,阻燃维纶的研究概况。

[17]Guocheng Yang,Yan Pan,Feng2 mei Gao,Jian G ong,Xiujun Cui,Changlu Shao,Y ihang Guo,L unyu Qu.(2005)A no2 vel p hotochromic PVA fiber aggregates con2 tained H4SiW12O40.Materials Lettes59:450~455.

[18]中科院化学所制备成功聚乙烯醇超疏水性纳米纤维,国内外石油化工快报, 2003,(5):18。

[19]逯阳,张华,高强聚乙烯醇离子交换纤维的制备和应用,天津工业大学学报, 2004,(6):5~8。

[20]曹惠,戴礼兴,PVA/EVO H纤维力学性能研究,苏州大学学报(工科版),2004,(4):30~33。

[21]W.XIAO,L.XIAO,K.XU,K. CH EN,X.XU.(2001)St udies on Fibers Sp un from Poly(vinyl alcohol-bacryloni2 trile)Emulsions Prepared by Ultrasonic Technique.I.Characterization of Fiber St ruct ure.Journal of Applied Polymer Sci2 ence79:979~988.

[22]W.XIAO,L.XIAO,K.XU,K. CH EN,X.XU.(2001)St udies on Fibers Sp un from Poly(vinyl alcohol-bacryloni2 trile)Emulsions Prepared by Ultrasonic Technique.II.Properties of t he Fibers.Jour2 nal of Applied Polymer Science79:989~994.

[23]张华,逯阳,巯基聚乙烯醇纤维的制备及其吸附性能的研究,天津工业大学学报, 2005,24(6):1~4。

[24]薛华育,刘芸,戴礼兴,含氯化钠的聚乙烯醇静电纺丝研究,合成技术及应用, 2006,21(1):12~14。

[25]彭志勤,章倩,章悦庭,陈大俊,纳米无机晶须改性聚乙烯醇纤维的研究,维纶通讯,2005,4:16~18。

[26]梁列峰,张霞,邹传勇,壳聚糖与聚乙烯醇共混成纤的可行性研究,现代纺织技术,2006,(1):1~4。

[27]邓新华,孙元,吴世臻,PAA-AA2 Na/PVA高吸水纤维的制备及性能测试,高分子材料科学与工程,2006,22(1):182~185。

[28]江镇海,胶原蛋白/聚乙烯醇复合纤维具有良好的市场前景,合成材料老化与应用,2006,35(1):57。

[29]张春雪,袁晓燕,邬丽丽,盛京,电纺聚乙烯醇超细纤维膜的性能研究,高分子学报,2006,(2):294~296。

(下转第45页)

废水的污染程度严重;此外染整加工采用大量的染化药剂,在纺织品上残留的某些化学品对人体危害严重。目前纺织品染整加工对环境和人体的安全性已引起人们的广泛关注,制订了许多关于生态纺织品的标准和要求。作为未来染整行业的工程师,学生在学习专业知识的同时,必须树立环境保护和生态加工的观念。因此,在课程设计过程中,要求学生将环保和生态加工作为制订生产工艺和选择染化料的重要依据,同时也将其作为判定学生设计水平的一个重要指标。通过这些措施,使学生树立了生态加工的观念,提高了环境保护的意识。

(4)提高学生的经济效益意识

在理论课程的学习过程中,学生关注的重点是如何更好地理解所学的知识,对于生产成本和经济效益的考虑较少,但是对于课程设计来讲,生产成本是必须要考虑的一个重要因素。因此,在课程设计中要求学生不应片面地追求高质量加工,而应在保证加工质量的前提下,采取多种措施尽量降低生产成本,如在多种染化料都能满足要求的情况下,选择成本低、污染小的品种;生产加工尽可能采用短流程工艺等。

通过课程设计,学生认识到经济效益是企业生存的关键,生产成本是技术人员制订生产工艺、选择染化料的重要依据,加深了对专业知识的理解。

(5)提高学生的学习主动性

课程设计是培养学生综合能力的一个教学环节。对于在设计过程中遇到的许多问题,学生通过查阅资料和教师答疑来解决;小样实验的方案设计和操作都由学生自己完成;在课程设计的汇报交流阶段,学生之间相互讨论、相互学习。通过这些教学方式,调动了学生的学习积极性,提高了学生分析问题和解决问题的能力,获得了良好的教学效果。

5 结论

课程设计是一门综合性的实践课程,我们通过对轻化工程专业课程设计内容和教学方法的改革,加深了学生对所学知识的理解,提高了学生分析问题和解决问题的能力,为学生参加工作后能尽快适应工厂生产实际奠定了基础,获得了良好的教学效果。

(上接第13页)

R esearch and application status of PVA f ibers

Zhao Xing Zhang Xing-xiang

(Instit ute of Functional Fiber,Tianjin Polytechnic University,Tianjin300160)

Abstract:The p roducing met hod and performance of high-stengt h and high-modulus poly(vinyl alcohol)fibers,water soluble poly(vinyl alcohol)fibers and flame retardant poly (vinyl alcohol)fibers etc are reviewed in t his paper.Pro spect s are also made wit h t he develop2 ment of PVA fibers.

K ey w ords:high-st rengt h and high-modulus;water soluble;flame retardant;perform2 ance;application.

聚乙烯醇pva的用途和应用

聚乙烯醇 PVA 的用途和应用 【新海湾-徐江】 聚乙烯醇(简称PVA)外观为白色粉末,是一种用途相当广泛的水溶性高分子聚合物,性能介于塑料和橡胶之间,它的用途可分为纤维和非纤维两大用途。 由于PVA具有独特的强力粘接性、皮膜柔韧性、平滑性、耐油性、耐溶剂性、保护胶体性、气体阻绝性、耐磨性以及经特殊处理具有的耐水性,因此除了作纤维原料外,还被大量用于生产涂料、粘合剂、纸品加工剂、乳化剂、分散剂、薄膜等产品,应用范围遍及纺织、食品、医药、建筑、木材加工、造纸、印刷、农业、钢铁、高分子化工等行业。 产品性能:聚乙烯醇树脂系列产品系白色固体,外型分絮状、颗粒状、粉状三种;无毒无味、无污染,可在80--90℃水中溶解。其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具有长链多元醇酯化、醚化、缩醛化等化学性质。 产品用途:主要用于纺织行业经纱浆料、织物整理剂、维尼纶纤维原料;建筑装潢行业107胶、内外墙涂料、粘合剂;化工行业用作聚合乳化剂、分散剂及聚乙烯醇缩甲醛、缩乙醛、缩丁醛树脂;

造纸行业用作纸品粘合剂;农业方面用于土壤改良剂、农药粘附增效剂和聚乙烯醇薄膜;还可用于日用化妆品及高频淬火剂等方面。 使用方法:聚乙烯醇树脂系列产品均可以在95℃以下的热水中溶解,但由于聚合度、醇解度高低的不同,醇解方式等不同在溶解时间、温度上有一定的差异,因此在使用不同品牌聚乙烯醇树脂时,溶解方法和时间需要进行摸索。溶解时,可边搅拌边将本品缓缓加入20℃左右的冷水中充分溶胀、分散和挥发性物资的逸出(切勿在40℃以上的水中加入该产品直接进行溶解,以避免出现包状和皮溶内生现象),而后升温到95℃左右加速溶解,并保温2~小时,直到溶液不再含有微小颗粒,再经过28目不锈钢过滤杂质后,即可备用。 搅拌速度 70~100转/分,升温时,可采用夹套、水浴等间接加热方式,也可采用水蒸汽直接加热;但是,不可用明火直接加热,以免局部过热而分解,若没有搅拌机,可用蒸汽以切线方向吹入的方法,进行溶解。 聚乙烯醇树脂系列产品水溶液浓度一般在12~14%以下;低醇解度聚乙烯醇树脂产品水溶液浓度一般可在20%左右。

水溶性聚乙烯醇纤维

我公司生产的“V”牌水溶性聚乙烯醇短纤维性能良好,先后荣获湖南省名牌产品、湖南省出口名牌产品等荣誉称号。 产品特点: 水溶性聚乙烯醇短纤维是以聚乙烯醇为原料,经湿法纺丝、热处理、常温水卷曲上油制得的纤维。它具有较好的物理和机械性能,能够在一定温度下溶解于水,干热稳定性较好。其缺点是:弹性和染色性能差。 主要用途: 由于水溶性聚乙烯醇短纤维具有溶于水的特殊性能,可广泛用作无纺布、造纸、纺织、医疗卫生用品等行业的原料。采用水溶性聚乙烯醇短纤维作原料进行纺织加工成薄纱或通过非织造加工成无纺布,可用作绣花底布,绣制出各种图案的花边;也可用作妇女卫生巾、小儿尿布、医疗卫生用品,还可用作甜菜育苗、农作物和果树栽培的覆盖物。水溶性聚乙烯醇短纤维在纺织过程中应用可提高纺纱支数、改善上浆均匀性和纺制无捻纱等。 品种规格: 产品规格主要有1.44dtex×44mm、1.56dtex×38mm、2.00dtex×38mm,同时也可以生产线密度为 1.11dtex~8.89dtex,长度为4mm~70mm的水溶性聚乙烯醇短纤维。 使用环境条件: 使用温度为20°C~0°C,相对湿度60%~0%。 质量要求(执行标准:Q/OWAL030-2007) 包装: 该产品包装袋采用涂塑丙纶编织袋 该产品成包规格为1040mm×700mm×600mm 该产品每包重量为(160±10)Kg 贮运: 1、在运输和贮存中不得使产品污损和受潮。 2、贮存包装件的仓库应做到防潮、防湿、防水、防火,并注意适当通风。 供货价格: 产品价格随行就市,双方协商确定。 Characteristic:

this product is a kind of fiber made from PVA through wet spinning,heat treatment and crimping-oiling in water at normal temperature.it is good in dry heat stability,physical and mechanical properties.the remarkable characteristic is its total dissolving in water at a range of temperature. Application: water soluble PVA cutting fiber has many special uses for its water solubility.it is widely used in non-woven fabric,papermaking,spinning and weaving,medical treatment and health care,etc.Especially,woven or non-woven fabrics made from it are used as embroidery linings,on which various lace designs can be embroidered,and after it is dissolved,all kinds of beautiful laces come into being.besides,it can extensively be used to produce sanitary sheets for women,baby napkins,medical and sanitary articles.in addition,it can also be used for vegetable seedings,planting crops and fruit trees to improve the output.this fiber can be used in textile to increase yarn count,level sizing and spin twistless yarn,etc. Specification: the major specification are 1.44dtex x 44mm,1.56dtex x 38kmm and 2.0dtex x 38mm.the fiber with line density of 1.11-8.89detex and length 4-70mm can be made. Condition for use this fiber the temperature for its use is between 20-30℃,and the relative humidity is 60-70% quality standard Packing: packing with p.p woven bag and standard weight for each bag is 165kg

聚乙烯醇纤维在水泥基复合材料中的分散性表征及调控

第43卷第8期2015年8月 硅 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/0c11807744.html, 聚乙烯醇纤维在水泥基复合材料中的分散性表征及调控 刘建忠1,2,张丽辉1,2,李长风1,2,刘加平1,2 (1. 高性能土木工程材料国家重点实验室江苏省建筑科学研究院,南京210008; 2. 江苏苏博特新材料股份有限公司,南京211103) 摘要:为了建立聚乙烯醇(PV A)纤维在水泥基复合材料(FRCC)中的分散性表征技术和调控方法,采用荧光光谱仪和荧光显微镜+图像分析软件分别对PV A纤维的荧光特性及其在FRCC中的荧光图像进行获取和分析,再研究搅拌工艺、纤维长径比及体积掺量、分散剂对PV A纤维分散性的影响。结果表明:PV A纤维最佳激发和发射波长范围分别为415~460 nm及480~ 540 nm,荧光图像获取时应选择绿色荧光蛋白(GFP)滤波器;基于荧光图像分析,建立荧光分析技术,利用纤维分散系数和有效利用率两个评价指标对PV A纤维的分散性能进行定量表征;采用同掺法和搅拌时间6 min,再掺入分散剂可使PV A纤维(长度12 mm、直径27 μm、体积掺量0.3%)在FRCC中的有效利用率较基准提高了32.9%。 关键词:聚乙烯醇纤维;分散性;荧光分析技术;分散剂 中图分类号:TU528 文献标志码:A 文章编号:0454–5648(2015)08–0000–06 网络出版时间:网络出版地址: Dispersive characterization and control of fiber in polyvinyl alcohol fiber cement composites LIU Jianzhong1,2, ZHANG Lihui1,2, LI Changfeng1,2, LIU Jiaping1,2 (1. State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing 210008; 2. Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103) Abstract: To clarify the dispersive characterization of fibers in polyvinyl alcohol (PV A) fiber cement composites, the fluorescence characteristics and image of PV A fibers in the PV A fiber cement composites were determined by fluorescence spectrometer and fluorescence microscope coupled with image-processing software, respectively. The influences of mixing method, aspect ratio and volume fraction of fibers and dispersing agent on the dispersion of PV A fibers were investigated. The experimental results show that the optimum wavelength ranges of excitation and emission wave of PV A fibers are 415 -460 nm and 480 -540 nm, respectively. Thus, a GFP filter can be chosen for fluorescence image analysis. Also, the dispersion of PV A fibers was quantitatively evaluated by the distribution coefficient and effective utilization percentage in the fluorescence microscopy technique based on fluorescence image analysis. Compared to the control sample in the absence of a dispersing agent, the effective utilization percentage of fibers with 12 mm length, 27 μm diameters and 0.3% volume fraction in the PV A fiber cement composites in the presence of a dispersing agent after the synchronous mixing for 6 min is increased by 32.9%. Key words: polyvinyl alcohol fiber; dispersion; fluorescence microscopy technique; dispersing agent 传统水泥基复合材料存在抗拉强度低、韧性差和易开裂等缺点。为了提高其韧性和抗开裂能力,吴中伟提出了基于材料“超叠加效应”的“复合化”技术途径,而“复合化”技术的核心是纤维增强[1]。大量研究也发现纤维在水泥基复合材料(FRCC)中均匀分散是其增韧阻裂作用充分发挥的必要条件[2-7],如果纤维未能在水泥基材中均匀分散,不仅影响FRCC工作性能,而且会形成应力集中点,成 收稿日期:2015–01–20。修订日期:2015-05-20。 基金项目:国家自然科学基金重点项目(51438003);江苏省科技计划青年基金项目(BK20141012)。 第一作者:刘建忠(1976—),男,博士,教授级高级工程师。Received date: 2015–01–20.Approved date: 2015–05–20. First author: LIU Jianzhong(1976–), male, Ph. D., Professor. E-mail: ljz@https://www.360docs.net/doc/0c11807744.html,.

聚乙烯醇纤维应用与研究进展

聚乙烯醇纤维应用与研究进展 赵 兴 张兴祥 (天津工业大学功能纤维研究所,天津 300160) [摘 要] 回顾了PVA纤维的发展,综述了高强高模聚乙烯醇纤维、水溶性浆乙烯醇纤维、阻燃聚乙烯醇纤维等的生产制备方法和主要性能用途,并对聚乙烯醇纤维的发展做了展望。 [关键词] 高强高模;水溶性;阻燃;性能;应用 1 引言 我国早在50年代就有一些科研单位从事PVA和维纶的研究和开发工作,经过近半个世纪的发展,各相关企业不断采用新技术、新工艺,引进国外先进装置和改扩建,使我国PVA及其纤维工业在产量、质量、科研、品种开发和用途开拓、节能降耗等方面都取得了很大的进展。但在科研、品种开发和用途开拓等方面和国际先进水平还有不少差距。 聚乙烯醇(PVA)纤维的最初应用在于其性能与棉花相似,其强度、耐磨、耐晒、耐腐蚀性比棉花好,比重比棉花轻,吸湿率接近棉花。当年,日本、朝鲜、中国等大力发展PVA 纤维的主要目的都是以解决人民的衣着问题为主[1,2]。但是,随着使用性能更加优良的涤纶、锦纶和腈纶的崛起和后来居上,由于存在抗皱性差、尺寸不稳定、染色性差等缺点,使其在服用领域的应用受到限制。 目前,经过改性和新工艺生产的聚乙烯醇纤维越来越受到重视。科研人员成功研制出了阻燃聚乙烯醇纤维、高强高模聚乙烯醇纤维、水溶性聚乙烯醇纤维等一批高性能的纤维新品种。这大大提升了聚乙烯醇纤维在增强、渔业、包装等领域的使用性能并开辟了在医学及离子交换吸附等方面的应用。聚乙烯醇纤维有了良好的发展前景。 2 高强高模聚乙烯醇纤维 PVA是有潜力制得超高强纤维的柔性链聚合物之一,与根据PVA大分子主链键能理论的计算值相比,日前商品PVA纤维的最高强度仅为理论强度的10%,最高模量为理论极限值的30%[3]。因此,寻找方法开发研究高强高模PVA纤维是可行的。 纤维断裂的微观机理,一般有分子链滑移和分子链断裂两种说法,其共同点是假设纤维中的分子链是沿纤维轴平行取向排列,应力在纤维横截面上均匀分布的。所以,纤维的强度主要取决于纤维截面上大分子链数目、化学键能和链伸展的均匀性。因此高分子量、分子链高度伸直取向和充分结晶,成为制造高强高模纤维的三个基本理论条件[4]。 2.1 高强高模PVA纤维制造方法 纺丝是制造高强高模量PVA纤维的关键,因为只有结构均匀、分子间和分子内缠结少、低结晶或不结晶的初生纤维,才有好的可 9

聚乙烯醇薄膜的性能和用途图文稿

聚乙烯醇薄膜的性能和 用途 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

聚乙烯醇薄膜的性能和用途 聚乙烯醇薄膜的性能和用途 1 概述 聚乙烯醇(PVA)是一种水溶性聚合物,特点是致密性好、结晶度高,粘接力强、制成的薄膜柔韧平滑、耐油、耐溶剂、耐磨耗、气体阻透性好,以及经特殊处理具有的耐水性,用途广泛。 聚乙烯醇对人体无毒、无味、无害,与自然环境具有良好的亲和性,不累积,无污染。 聚乙烯醇薄膜是以聚乙烯醇为主体,加入改性剂等助剂,经过特殊工艺加工、可以被土壤中的微生物完全降解的绿色环保功能性材料。它可在短时间内降解为二氧化碳和水,并有改良土地的作用。 聚乙烯醇薄膜最大的优点是水溶性,最大的缺点是耐水性差。之所以耐水性差,是由于其分子中带有亲水性的羟基(-OH)。如果能将羟基适当封闭,接上耐水性基团,就可提高PVA薄膜的耐水性。PVA含有羟基,可发生多元醇的一切典型反应,选用适当的缩聚物,在添加量不大的情况下,就能与PVA中的羟基适度交朕,使PVA形成一种强韧的三维结构,稳定了PVA在湿态条件下的气密性,提高了耐水能力。 实际应用中,可以通过调整原料、配方和工艺来控制聚乙烯醇薄膜的水溶性和吸潮性,以此来满足不同使用目的的需要。 2 分类 聚乙烯醇薄膜按照溶解特性分为以下几类: 常温溶薄膜(NT型,又称快溶薄膜、冷溶薄膜):溶解温度25℃

中温溶薄膜(IT型,又称中溶薄膜、热熔薄膜):溶解温度65℃ 高温溶薄膜(HT型,又称难溶薄膜、耐溶薄膜):溶解温度85℃ 特种薄膜:可以根据具体用途设计配方和工艺,达到特殊使用的要求。 3 性能 3.1 环保性 PVA薄膜产品属于绿色环保材料。有关部门测得PVA生物耗氧量(BOD)比淀粉小得多,美国空气产品公司把Airvol公司的PVA产品进行生物降解5天后,测得的BOD量低于最初BOD总量的1%。经过生物试验证明PVA既无毒。 就降解机理而言,PVA材料具有水和生物两种降解属性,首先溶于水形成胶液渗入土壤中,可增加土壤的团粘化、透气性和保水性,特别适合于沙土改造。在土壤中的PVA材料可被土壤中的细菌分解,最终可降解为CO2和H2O。 3.2 水溶性 PVA的溶剂是水,但对水的溶解性很大程度上受聚合度的影响,特别是受醇解度的支配。醇解度在88%以下时,在20℃常温的常温水中几乎完全溶解。随着醇解度的上升溶解度大幅度下降,完全醇解的PVA在水中的溶解极微。 PVA薄膜的水溶性与薄膜的厚度和水的温度有关,相关数据表如下: 溶解水温开始溶解时间 (分钟)完全溶解时间 (分钟)

抗菌包装薄膜的研究进展

包装学报Packaging Journal Vol.3 No.3July 2011 第3卷 第3期2011年7月抗菌包装薄膜的研究进展 孙 淼1,郝喜海1,2,邓 靖1,2,李 菲1,史翠平1,李慧敏1 (1. 湖南工业大学包装新材料与技术重点实验室,湖南株洲412007; 2. 湖南工业大学包装与材料工程学院,湖南株洲412007) 摘要:抗菌包装薄膜是一种加入抗菌剂后具有抑制或杀灭表面细菌能力的功能性薄膜。根据所添加抗菌剂的不同,抗菌包装薄膜可分为有机抗菌膜、无机抗菌膜和天然抗菌膜3类。抗菌包装薄膜能通过不断释放抗菌剂来抑制微生物生长,从而延长被包装食品的货架寿命。目前,抗菌包装薄膜只有解决好安全与环境保护2个问题才能更好地发展。 关键词:抗菌膜;安全性;环境保护中图分类号:TB484.3 文献标志码:A 文章编号:1674-7100(2011)03-0006-05 Research Progress of Antibacterial Film for Packaging Sun Miao 1,Hao Xihai 1.2,Deng Jing 1.2,Li Fei 1,Shi Cuiping 1,Li Huimin 1 (1.Key Laboratory of New Packaging Materials and Technology, Hunan University of Technology, Zhuzhou Hunan 412007, China ; 2.School of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China ) Abstract :Antibacterial Film for packaging is a kind of new functional material containing antimicrobial which has the ability to restrain or sterilize the bacteria that accretes on the surface of object. According to the different antimicrobial added, the Antibacterial Film for packaging can be divided into three types, that is, organic antibacterial films, inorganic antibacterial films and natural antibacterial films and they can inhibit the growth of the microorganisms by constantly releasing antibacterial agent to extend the shelf life of food packaged. At present two main problems of safety and the environmental protection are still to be resolved to achieve a better development for Antibacterial Film for packaging. Key words :antibacterial film; safety; environmental protection 收稿日期:2010-12-22 基金项目:湖南省科技厅基金资助项目(2009CK3028)作者简介:孙 淼(1986-),女,辽宁阜新人,湖南工业大学硕士生,主要研究方向为抗菌性PVA 薄膜的研究与应用, E-mail :sm5418@https://www.360docs.net/doc/0c11807744.html, 0 引言 具有抗菌作用的塑料称为抗菌塑料。它是在塑料中添加一定量的抗菌剂,以起到抗菌与抑菌的作用,从而保持其自身及所包装产品的清洁 [1-2] 。在塑 料制品的生产中采用抗菌技术,不仅能减少因使用这些制品而发生的交叉污染,并且能在保持塑料常规性能和加工性能不变的前提下,起到杀菌的功效, 对塑料制品的发展起着十分重要的作用。抗菌塑料在包装领域的应用十分广泛,抗菌包装薄膜是其重 要应用领域之一[3]。抗菌包装薄膜的应用,可以减少对人类健康和环境造成危害的化学杀菌剂的使用量[4]。因此,开发天然防腐的抗菌剂,制作安全的抗菌包装薄膜,将成为今后食品用包装材料方面的研究热点。 用于塑料添加的抗菌剂,可依据其形态分为气

绿色环保PVA薄膜

绿色环保PVA薄膜 PVA 薄膜具有优异的阻隔性、水溶性和对环境的友好性,是近年来国内外开发最为成功的绿色环保材料之一。它已经获得国内外环保权威机构和广大用户的普遍认可,正在愈来愈广泛地应用于包装、纺织刺绣和水转印刷等领域。例如:农药、化肥、染料、清洁剂、水处理剂、矿物质添加剂、洗涤剂、园林护理用化学试剂等,亦可作为菜籽、植物种子袋、服装包装袋、食品以及医院洗涤袋等多种产品的包装上,同时也可用于纺织刺绣垫付用料和水转印刷及脱膜上。 由于水溶性PVA薄膜产品可设计选择水溶速度,无毒无污染;拉伸强度、张力等均等同于或优于传统塑料薄膜;透明度高、光泽好;柔软度高、触感好;耐油、耐溶剂性好、可热封、可印刷;透气系数低、阻气性好;抗静电性能优良,不吸尘等特性,对产品的应用极大地提高了产品的质量和档次。外包装水溶性薄膜主要以全透明高温水溶性PVA薄膜为主,用途在高级纺织品,胶装包装袋、包装缓冲气垫、书籍/纸张保护膜、假发、食品、化妆品包装袋等。外包装袋(全透明PVA水溶性薄膜)可加子母塑料扣,全透明水溶性PVA薄膜具有不带静电、透明度、光泽度均优于其它薄膜的特点,包装物体呈现出更鲜明的美化外观,提高了商品的价值。另水溶性PVA薄膜对空气具有高阻隔性,在用于纺织品时包装时,能阻隔空气里的氮气,避免氮气令纺织品发黄,还可吸收纺织品中致癌物如甲醛,在使用完毕方便销毁处理(在80℃水温可全部溶解),因此水溶性PVA薄膜是理想的纺织物包装材料。 PVA薄膜产品品种项目分类用途:品种分类:常温溶薄膜(NT型) 中温溶薄膜(IT型) 高温溶薄膜(HT 型) 用途:刺绣品、农药包装、清洁用品包装、水转印膜农用种子袋、除草剂包装袋、假发刺绣暂用载体、食品复合膜高级纺织品、胶袋包装袋、包装缓冲气垫、医院用洗涤袋等一次性包装袋。 一、 PVA薄膜概括 PVA薄膜市场分布 PVA薄膜主要集中在日本生產,約占世界產量的75%左右。日本以合成化學、尤尼吉卡,可樂麗三家公司為主,電氣化學、信越、生物材料通用公司等也有生產。其他如美國杜邦、Christ-Cralt (C.C.L.P公司),W.T.P公司,德國赫司特公司,法国的GRENSOL公司也有生產。產品主要用于纖維制品包裝,其次為食品包裝、婦女衛生用品、農藥、除草劑包裝等。世界總產量約在2.5萬~2.7萬噸間 其用户也是一些著名的大公司,例如Bayer(拜耳)、Henkel(汉高)、Shell(壳牌)、Agr.Eva(艾格福)等大公司都已开始使用水溶性薄膜包装其产品。 一, PVA原料在世界范围的分布 PVA是用途相當廣泛、性能十分良好的水溶性高分子聚合物,它的性能介于 橡膠和塑料之間。自1926年工業化以來,生產能力發展較快,1970年為70萬噸/年,1980年達到166.5萬噸/年,10年間翻了一番多,年均增長率達12.17%﹔1990年超過了80萬噸/年,1996年達90萬噸/

聚乙烯醇产品用途的新进展

Development and Application 开发与应用 聚乙烯醇产品用途的新进展 徐惠富1 杨炳贤1 成国祥2 (1上海石油化工股份有限公司,上海,200540;2天津大学材料学院,天津,300072) 提 要 介绍了近年来聚乙烯醇产品在各个工业领域中的新用途,说明这种化工原料仍有广泛的使用价值。 关键词 聚乙烯醇,用途,进展 聚乙烯醇(PVA)是一种用途相当广泛的水溶性高分子聚合物,最初它仅作为织物上浆剂使用。不久,就用聚乙烯醇制成纤维。并命名为Vinylon,即维尼纶或维纶。近年来由于维纶性能及价格上的局限,使PVA的生产逐渐向非纤维方向发展。目前除了作维纶原料之外,聚乙烯醇还广泛用于纺织浆料、涂料、粘合剂、乳化剂、纸加工助剂、薄膜等方面。研究表明,在自然环境中广泛存在着可降解PVA的微生物。因此,PVA及其衍生物的生产和使用符合当今环境保护的要求。 1 聚乙烯醇的用途 1.1 维纶原料 PVA的重要用途之一就是用来生产维纶。目前世界上生产维纶的国家只有中国、朝鲜和日本,每年消费PVA总产量的20%。但由于它的价格、用途及某些性能等原因,常规产品的维纶纤维产品逐渐被其他纤维(如涤纶)所代替。正因为如此,目前的维纶纤维已渐渐地转向功能性、特殊性的方向发展[1],如耐热、抗湿的纤维,用于橡胶和水泥纤维[2];耐光、不变型有色PVA纤维[3];聚乙烯醇纤维无纺网膜及其制品,该纤维大体上没有硬粒,该网膜具有吸水性、柔软性和坚固性,可用作抹布、卫生巾、手巾等[4];高强高模聚乙烯醇纤维[5,6]、抗菌聚乙烯醇纤维[7]、经过特殊处理的聚乙烯醇纤维还可用作橡胶的增强材料[8]。 日本可乐丽已研制成功溶剂湿法冷却凝胶纺丝方法(C OS MOS:Customer Oriented Method with Organic S olvent),并已实现了工业化生产[9]。把这类以聚乙烯醇为主原料或与其他高分子组合起来制得的纤维商品名为“K2Ⅱ”纤维[10]。 1.2 经纱浆料 PVA具有优良的上浆性能,用于疏水性合成纤维及其混纺纱上浆,能够获得满意的效果。它在各类高分子合成浆料中占主要地位,在PVA非纤维应用中,浆料耗用量已占40%。PVA浆料的粘度、pH值稳定,与其他浆料和各类表面粘性剂都有良好的混溶性和乳化能力,能适应各类纤维上浆的工艺要求。PVA浆料具有良好的粘附力,能使纱线上的毛茸集束,是理想的被覆材料;且它的成膜性好,具有优异的机械性能。 但PVA浆料也有一些缺点,如浆液结皮,调浆时易起泡,浆纱在分纱时阻力大等。因此有人研究出了一些新型的浆料和一些特殊用途的浆料:如用于细经纱的上浆。用这种浆料给机械细经纱上浆后,用喷气织机制成无纺布时,不会发生断丝和停机[11];良好稳定性和混合性的纺织浆料,这种浆料在90℃时粘度≤1000mPa?s。在90℃下装置4h 无变化,单棉纱用该混合物上浆16.7%,稳定性良好[12];浆洗织物用耐热喷射上浆剂。用此上浆剂所获得的上浆织物具有良好的手感,发黄指数(J IS Z28722)为3.6,而淀粉的发黄指数则高达13.2[13]。 1.3 纸加工 PVA代替淀粉作纸张表面施胶剂可使纸张质量如印刷适应性、平滑性、耐磨擦性、耐折度、耐油性和耐化学品性显著提高,适用于各种纸张的表面施胶。它可以在印刷面上经液压涂刷上一层可印制的水溶性或水可溶性的薄膜,然后固化薄膜,形成保护涂层[14]。甚至可直接制作可循环性聚氯乙烯

水溶性高分子聚乙烯醇的制备及其应用

水溶性高分子聚乙烯醇的制备及其应用 * 中山大学化学与化学工程学院应用化学广州 510275 摘要:本实验采用溶液聚合法,以AIBN作为引发剂合成聚乙酸乙烯酯,然后用NaOH的甲醇溶液进行醇解,得到聚乙烯醇5.527 g,产率54.0%,之后利用红外对聚乙酸乙烯酯与聚乙烯醇进行表征。之后利用聚乙 烯醇的缩醛化反应制备胶水,利用聚乙烯醇的性质制备面膜。 关键词:水溶性高分子聚乙烯醇聚乙酸乙烯酯红外光谱法 1.引言 水溶性高分子化合物又称水溶性树脂或水溶性聚合物,是一种亲水性的高分子材料,在水中能溶胀而形成溶液或分散液。1924年,德国化学家WO. Hermann和WW. Haehel首次将碱液加入到聚乙酸乙烯酯的甲醇溶液中,得到聚乙烯醇(PV A)。聚乙烯醇为白色絮状固体或片状固体,无毒无味,是使用最广泛的合成水溶性高分子,具有优良的力学性能和可调节的表面活性。PV A具有多羟基强氢键,以及单一的-C-C-单键结构,这样的结构不但使PV A具有亲水性,还有黏合性、成膜性、分散性、润滑性、增稠性等良好性能。 PV A的制备首先由乙酸乙烯酯聚合成聚乙酸乙烯酯,然后将其醇解生成PV A,其反应式如下: PVA的结构可以看成是交替相隔的碳原子上带有羟基的多元醇,因此,其发生的反应为多元醇反应,如醚化、酯化、缩醛化。聚乙烯醇和羰基化合物反应可得到缩醛化合物。本实验利用聚乙烯醇和甲醛反应,生产聚乙烯醇缩甲醛,作为胶水使用。 2.实验过程 2.1 实验仪器 三颈瓶,回流冷凝管,水浴锅,蒸汽蒸馏装置,滴液漏斗,pH试纸,培养皿,抽滤装置,滤纸,真空烘箱。2.2 实验试剂 偶氮二异丁腈(AIBN),甲醇,乙酸乙烯酯,NaOH,聚乙烯醇,甲酸,40%甲醛水溶液,盐酸,羧甲基纤维素,丙二醇,乙醇。 2.3 实验步骤

聚乙烯醇(PVA)新纤维研究与应用进展

聚乙烯醇(PVA)新纤维研究与应用进展 赵兴 张兴祥* 张华 天津工业大学功能纤维研究所, 天津(300160) 摘要:回顾了PVA纤维的发展,综述了高强高模聚乙烯醇纤维、水溶性聚乙烯醇纤维、阻燃聚乙烯醇纤维、疏水性聚乙烯醇纤维等的制备方法和主要性能用途,并对聚乙烯醇纤维的发展做了展望。 关键词:高强高模 水溶性 阻燃 性能 应用 1.引言 我国早在50年代就有一些科研单位从事PVA和维纶的研究和开发工作,经过近半个世纪的发展,各相关企业不断采用新技术、新工艺,引进国外先进装置和改扩建,使我国PVA 及其纤维工业在产量、质量、科研、品种开发和用途开拓、节能降耗等方面都取得了很大的进展。但在科研、品种开发和用途开拓等方面和国际先进水平还有不少差距。 聚乙烯醇(PVA)纤维的最初应用在于其性能与棉花相似,其强度、耐磨、耐晒、耐腐蚀性比棉花好,比重比棉花轻,吸湿率接近棉花。当年,日本、朝鲜、中国等大力发展PVA 纤维的主要目的都是以解决人民的衣着问题为主[1,2]。但是,随着使用性能更加优良的涤纶、锦纶和腈纶的崛起和后来居上,由于存在抗皱性差、尺寸不稳定、染色性差等缺点,使其在服用领域的应用受到限制。 目前,经过改性和新工艺生产的聚乙烯醇纤维越来越受到重视。科研人员成功研制出了阻燃聚乙烯醇纤维、高强高模聚乙烯醇纤维、水溶性聚乙烯醇纤维等一批高性能的纤维新品种。这大大提升了聚乙烯醇纤维在增强、渔业、包装等领域的使用性能并开辟了在医学及离子交换吸附等方面的应用。聚乙烯醇纤维有了良好的发展前景。 2.高强高模聚乙烯醇纤维 PVA是有潜力制得超高强纤维的柔性链聚合物之一,与根据PVA大分子主链键能理论的计算值相比,目前商品PVA纤维的最高强度仅为理论强度的10%,最高模量为理论极限值的30%[3]。因此,寻找方法开发研究高强高模PVA纤维是可行的。 纤维断裂的微观机理,一般有分子链滑移和分子链断裂两种说法,其共同点是假设纤维中的分子链是沿纤维轴平行取向排列,应力在纤维横截面上均匀分布的。所以,纤维的强度主要取决于纤维截面上大分子链数目、化学键能和链伸展的均匀性。因此高分子量、分子链高度伸直取向和充分结晶,成为制造高强高模纤维的三个基本理论条件[4,5]。 2.1 高强高模PVA纤维制造方法 纺丝是制造高强高模量PVA纤维的关键,因为只有结构均匀、分子间和分子内缠结少、低结晶或不结晶的初生纤维,才有好的可拉伸性,从而进行高倍拉伸,使大分子充分取向和结晶,才可制成高强高模量纤维。高强高模PVA纤维的成型[1,4,6,7],一般可采用湿法加硼纺丝、凝胶纺丝、直接醇解纺丝、相分离纺丝、交联纺丝等工艺技术。 - 1 -

聚乙烯醇PVA在各领域的应用

PVA自工业化生产以来,经过几十年的发展,其用途得到了极大的拓展,由最初的只用于维纶生产,逐步发展到用于纺织、造纸、建筑、化工、电子等行业,目前PVA新的用途仍在不断地被开发出来,PVA已经成为一个重要的、必不可少的材料。同时,PVA作为“最生态友好产品”,在环保和安全方面也得到了广泛的重视和应用。由于PVA具有许多优异的物理和化学性能,其在实际生产中具有十分广泛的用途,并且近些年得到了长足的发展,在各个新领域的应用开发如火如荼。

(1)织物及织物加工由于分子间的高黏着性,PVA具有良好的拉丝、成膜性,曾经奠定了PVA作为维纶纤维原料的地位。用PVA 制造的维纶纤维可与棉、毛、黏胶纤维混纺或纯纺,用于衣着及篷布、帘子线、绳索等生产,是石棉的理想代用品。近年开发的水溶性纤维具有水溶性、耐酸性、耐碱性、耐有机溶剂性以及良好的耐盐、耐化学药品性,可以根据需要在不同的水温中得以溶解,其废液经活性污泥处理后,完全降解而无公害,是一种极有应用前景、使用较广的环保材料。水溶性纤维主要作为造纸原料、无纺布原料、生产水溶性纱线或与其它纤维混纺后织成高档纺织品,以及制作军工用品的纺织材料。 织物加工对PVA的需求量最大,使用范围大致如下:浆料——经纱浆、印染浆、织物整理;改性剂——织物树脂整理;黏合剂——毡和无纺布等的黏合剂。 在上述应用中作为经纱浆料用的比例最大。PVA是一种能使经纱的抱合力,上浆纱强力、耐磨性、可挠性以及对大气条件变化的保护性等得以提高的一种理想的低成本经纱浆料。国外PVA浆料上百种,主要区别在于醇解度和聚合度,最常用的是1799和1788。 (2)纸加工PVA在造纸工业中主要用于表面施胶剂、颜料黏合剂和打浆机添加剂等。用PVA制作的纸张表面施胶剂,可增强纸品表面强度和内部张力、耐破裂度、耐折和耐磨强度,改善纸张的光泽及平滑性,提高纸张耐水性、耐油及耐有机溶剂性。由于PVA水溶液对纸的黏合力强,成膜性好,可代替价格昂贵、容易腐败的干酪素制作颜料胶黏剂,涂布纸的白度和光泽度好,不易卷曲,成本低,因此在美术纸、

PVA纤维

目前,工程上用纤维主要包括无机纤维、有机纤维和金属纤维三类。国内外实际工程应用中已经使用的纤维增强水泥基复合材料所用纤维主要品种有钢纤维、碳纤维、玻璃纤维、尼龙纤维、聚乙烯纤维(PE)、高模量聚乙烯醇纤维(PV A)、聚丙烯腈(PAN)和聚丙烯纤维(PP)等等。 表1 常用纤维参数比较 纤维种类相对密度抗拉强度 (MPa)弹性模量 (GPa) 直径 (μm) 极限延伸率 (%) 低碳钢纤维7.8 400-1500 200 300~800 3.5-4.0 不锈钢纤维7.8 2100 154-168 300~800 3.0 抗碱玻璃纤维 2.7 1400-2800 70-90 8 2-3.5 聚丙烯单丝 (PP) 0.91 400-650 5-8 43 18 尼龙纤维 1.16 900-960 4-6 30 18-20 聚乙烯单丝 (PE) 0.96 2850 73.9 35 10 聚乙烯醇纤维 (PV A) 1.2 1600-2500 40-80 39 6 碳纤维 1.76 2450-3150 205 7-8 1 钢纤维由于制作工艺的局限,直径相对较大,限制了其使用。玻璃纤维没有足够的耐碱性,只能在低碱水泥中应用。聚丙烯纤维和尼龙纤维弹性模量太低,对提高抗弯强度作用有限,有时甚至有副作用(有研究表明,当纤维掺量低于1.0%时,纤维混凝土平均抗弯强度下降了20%左右)。碳纤维虽然弹性模量较高,但极限拉应变小,且比较脆,不能受弯。PE 纤维各项性能都很优良,但是其价格相当昂贵,限制了它的工程应用。因此,近些年来,价格低廉、强度较高的PV A 纤维被广泛应用于纤维增强水泥基复合材料中。 作为一种新型纤维,PV A纤维有以下几个优点: 1.机械性能好、抗拉强度(一般为1600-2500MPa)、弹模高,可提高基材的韧性和抗冲击 强度; 2.耐酸碱性能好,与波特兰水泥有良好的相容性; 3.亲水性好,能均匀地分散在水泥基材中; 4.高强度PV A 纤维与水泥基材之间具有良好的界面键合力,因为PV A纤维的非环形和不 规则截面有利于增加纤维与水泥基材的成键面;PV A分子结构是-(CH2-CHOH-)n,其中的-C-OH 基团可与水泥水化物中-OH基团形成牢固的基键; 5.直径适中,可达39μm。 钢纤维增强水泥基复合材料 钢纤维是发展最早的一种增强用水泥基复合材料纤维。早在1910年美国Porter就提出把钢纤维均匀地撒入混凝土中,以强化材料的设想,随后俄国学者伏·波·涅克拉索夫首先提出了钢纤维增强混凝土的概念。1963 年美国Romuldi 等发表了一系列研究成果,从理论上阐述了钢纤维对水泥基复合材料的增强机理。我国对钢纤维的应用研究相对于其它几种纤维也比较早。赵国藩等人出版的《钢纤维混凝土结构》中,对组成材料与工艺特性、基本性能、结构强度计算、抗剪承载力计算、复杂应力下钢纤维混凝土的性能和计算、正常使用极限状态验算方法以及其应用施工等内容都作了较完整的说明。目前,钢纤维水泥基复合材料因其具有高抗拉强度和弹性模量而得到广泛应用,但其价格较贵、比重大且在基体中不易于分散。碳纤维增强水泥基复合材料 碳纤维是20世纪60年代开发研制的一种高性能纤维,具有超高的抗拉强度和弹性模量、化

一种包装用聚乙烯醇薄膜及其制备方法

(10)授权公告号 (45)授权公告日 2014.02.19 C N 102702654 B (21)申请号 201210141653.2 (22)申请日 2012.05.09 C08L 29/04(2006.01) C08K 5/053(2006.01) C08F 16/06(2006.01) C08F 8/00(2006.01) C08J 5/18(2006.01) (73)专利权人江苏申乾食品包装有限公司 地址214262 江苏省无锡市宜兴市周铁分水 湖光路48号 (72)发明人李红梅 东为富 (74)专利代理机构江苏圣典律师事务所 32237 代理人黄振华 (54)发明名称 一种包装用聚乙烯醇薄膜及其制备方法 (57)摘要 本发明公开了一种包装用聚乙烯醇薄膜,它 包括以下重量百分比的组分:80~90%的聚乙烯醇 树脂、5~15%的改性聚乙烯醇、1~5%的1,2-亚乙基 二醇、0.5~2%的硅油和0.5~2%的丙二醇。同时, 本发明还公开了上述包装用聚乙烯醇薄膜的制备 方法。本发明通过加入改性聚乙烯醇获得较宽的 熔融加工窗口,实现热塑性加工,制备综合性能优 异的低成本PVA 薄膜,既克服添加大量的传统改 性剂造成PVA 综合性能下降的问题,又避免小分 子增塑剂的迁移带来的诸多问题。 (51)Int.Cl. 审查员 田恩涛 权利要求书1页 说明书2页 (19)中华人民共和国国家知识产权局(12)发明专利权利要求书1页 说明书2页(10)授权公告号CN 102702654 B

1/1页 1.一种包装用聚乙烯醇薄膜,其特征在于,它包括以下重量百分比的组分:80~90%的聚乙烯醇树脂、5~15%的改性聚乙烯醇、1~5%的1,2-亚乙基二醇、0.5~2%的硅油和0.5~2%的丙二醇;所述改性聚乙烯醇为天然多酚、氧化钙复配改性聚乙烯醇,包括重量百分比为20~30%的聚乙烯醇、10~15%的天然多酚、10~15%的氧化钙和50~60%的水。 2.根据权利要求1所述的包装用聚乙烯醇薄膜,其特征在于,所述丙二醇由甲醇、乙醇或异丙醇代替。 3.根据权利要求1所述的包装用聚乙烯醇薄膜,其特征在于,所述天然多酚包括茶黄素、茄红素、原花青素、安石榴苷、咖啡多酚、橄榄多酚、柑橘多酚、碧萝芷、姜黄素、阿魏酸或根皮素。 4.根据权利要求3所述的包装用聚乙烯醇薄膜,其特征在于,所述改性聚乙烯醇的制备方法为:将氧化钙加入水中搅拌10~15分钟,后加入聚乙烯醇和天然多酚,继续搅拌,并加热,待温度达到90~95℃后保温,使聚乙烯醇溶解后降至常温既得。 5.制备权利要求1所述包装用聚乙烯醇薄膜的方法,其特征在于,包括以下步骤: (1)按配方量取各组分,混合,并搅拌,采用回馏方式,控制温度100~150℃,使物料彻底溶解,得到混合液; (2)将混合液在100~130℃下静置1~2小时,倒入预热至90~100℃的平流模具,流延到室温的镜面钢板上,使混合液急冷迅速凝胶,将其从钢板上剥离制得聚乙烯醇薄膜。权 利 要 求 书CN 102702654 B

聚乙烯醇

聚乙烯醇的合成与应用 08206020222 08高分子<2>班吴家彬 【摘要】本文介绍聚乙烯醇的基本性质以及合成和应用,从不同方面说明聚乙烯醇的制备方法,同时介绍聚乙烯醇在工业以及生活上的应用和发展前景。【关键字】聚乙烯醇制备前景 聚乙烯醇,英文名称: polyvinyl alcohol,vinylalcohol polymer,poval,简称PVA 有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。 聚乙烯醇的制备方法 聚乙烯醇的制备方法原料路线聚乙烯醇是由醋酸乙烯(VAc)经聚合醇解而制成,生产 PVA 通常有两种原料路线,一种是以乙烯为原料制备醋酸乙烯,再制得聚乙烯醇;另外一种是以乙炔 (分为电石乙炔和天然气乙炔)为原料制备醋酸乙烯,再制得聚乙烯醇。 ( 1)乙烯直接合成法)石油裂解乙烯直接合成法。目前,国际上生产聚乙烯醇的工艺路线以乙烯法占主导地位,其数量约占总生产能力的 72%。美国已完成了乙炔法向乙烯法的转变,日本的乙烯法也占 70%以上,而中国的生产企业只有两家为乙烯法。其工艺流程包括:乙烯的获取及醋酸乙烯(VAc)合成、精馏、聚合、聚醋酸乙烯(PVAc)醇解、醋酸和甲醇回收五个工序。石油乙烯法的工艺特点:生产规模较乙炔法大,产品质量好,设备易于维护、管理和清洗、热利用率高,能量节约明显,生产成本较乙炔法低 30%以上。 (2)电石乙炔合成法)电石乙炔合成法,最早实现工业化生产,其工艺特点是操作比较简单、产率高、副产物易于分离,因而国内至今仍有 1O 家工厂沿用此法生产,且大部分应用高碱法生产聚乙烯醇。但由于乙炔高碱法工艺路线产品能耗高、质量差、成本高,生产过程产生的杂质污染环境亦较为严重,缺乏市场竞争力,属逐渐淘汰工艺。国外先进国家早于 20 世纪 7O 年代已全部用低碱法生产工艺。 (3)天然气乙炔合成法)天然气乙炔为原料的 Borden 法,不但技术成熟,

相关文档
最新文档