螺栓联接标注

螺栓联接标注
螺栓联接标注

螺栓联接静、动态特性实验报告

专业班级 ___________ 姓名 ___________ 日期 2009-12-18

指导教师 ___________ 成绩 ___________

一、实验条件:

1、试验台型号及主要技术参数

螺栓联接实验台型号:

主要技术参数:

①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1=

16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。

②、八角环材料为40Cr,弹性模量E=206000 N/mm2。L=105mm。

③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形

计算长度L=88mm。

2、测试仪器的型号及规格

①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2

二、实验数据及计算结果

1、螺栓联接实验台试验项目:

空心螺杆

2、螺栓组静态特性实验

实测值理论值

螺栓拉力螺栓扭矩八角环挺杆螺栓拉力螺栓扭矩八角环挺杆

预紧形变值(μm) 40 89 40 89

预紧应变值(με) 156 134 45 -3 250

预紧力(N) 4846 240.4 4893.6 -47.6 7766 406.5 7766 0

预紧刚度(N/mm) 121149.9 54449.4 194150.4 87258.6

预紧标定值(με/N) 0.0321915 0.1287796 0.0091957 0.0630252 0.01983 0.3271832 0.0057944 0

加载形变值(μm) 43 85 43 85

加载应变值(με) 169 140 42 49 268.75

加载力(N) 5249.8 246.3 4472.9 776.9 8348.5 424.7 7417 931.5

加载刚度(N/mm) 121150 54449.4 194150 87258.4

加载标定值(με/N) 0.0321917 0.1287666 0.0093899 0.0630712 0.0202431 0.3296444 0.0056626 0.0526033

3、螺栓联接静、动特性应力分布曲线图 (空心螺杆)

三、实验结果分析

螺纹连接习题解答(讲解)

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力:[σ]=σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: /(4×1.3)=178 ×π×8.3762/5.2 N F′=[σ]πd2 1 =7535 N (2)求牵引力F R: =7535×0.15×2×由式(11—25)得F R=F′fzm/K f

1/1.2N=1883.8 N (取K =1.2) f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、= = σb200MPa 。 (a)确定许用剪应力

螺栓连接

实验一螺栓连接实验 Ⅰ、单个螺栓连接实验 一、实验目的 现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。本实验通过对螺栓的受力进行测试和分析,要求达到下述目的。 1、了解螺栓联接在拧紧过程中各部分的受力情况。 2、计算螺栓相对刚度,并绘制螺栓联接的受力变形图。 3、验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响。 4、通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、实验项目 LZS螺栓联接综合实验台可进行下列实验项目: 1、(空心)螺栓联接静、动态实验。(空心螺栓+ 刚性垫片+ 无锥塞) 2、改变螺栓刚度的联接静、动态实验。(空心螺栓、实心螺栓) 3 、改变垫片刚度的静、动态实验。(刚性垫片、弹性垫片) 4、改变被连接件刚度的静、动态实验。(有锥塞、无锥塞) 三、实验设备及仪器 该实验需LZS螺栓联接综合实验台一台,CQYDJ一4静动态测量仪一台,计算机及专用软件等实验设备及仪器。 1、螺栓联接实验台的结构与工作原理。如图1-1所示。 (1)螺栓部分包括M16空心螺栓、大螺母、组合垫片和M8小螺杆组成。空心螺栓贴有测拉力和扭矩的两组应变片,分别测量螺栓在拧紧时,所受预紧拉力和扭矩。空心螺栓的内孔中装有M8小螺杆,拧紧或松开其上的手柄杆,即可改变空心螺栓的实际受载面积,以达到改变联接件刚度的目的。组合垫片设汁成刚性和弹性两用的结构,用以改变被联接件系统的刚度。 (2)被联接件部分由上板、下板和八角环、锥塞组成,八角环上贴有应变片,测量被连接件受力的大小,中部有锥形孔,插入或拨出锥塞即可改变八角环的受力,以改变被连接件系统的刚度 (3)加载部分由蜗杆、蜗轮、挺杆和弹簧组成,挺杆上贴有应变片,用以测最所加工作载荷的人小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。 2、LSD-A型静、动态测量仪的工作原理及各测点应变片的组桥方式。 实验台各被测件的应变量用CQYDJ一4型静、动态测量仪测量,通过标定或计算即可换算出各部分的大小。 CQYDJ一4型静、动态测量仪是利用金属材料的特性,将非电量的变化转换成电量变化的测量仪,应变测量的转换元件——应变片是用极细的金属电阻丝绕成或用金属箔片印刷腐蚀而成,用粘接剂将应变片牢固的贴在被测物件上,当被测件受到外力作用长度发生变化时,粘贴在被测件上的应变片也相应变化,应变片的电阻值也随着发生了△R的变化,这样就把机械量转换成电量(电阻值)的变化。用灵敏的电阻测量仪——电桥,测出电阻值的变化△R/R,就可换算出相应的应变ε,并可直接在测量仪的液晶128X64点阵的大显示屏读 1

机械设计作业第5答案

第五章螺纹联接和螺旋传动 一、选择题 5—1 螺纹升角ψ增大,则联接的自锁性C,传动的效率A;牙型角增大,则联接的自锁性A,传动的效率C。 A、提高 B、不变 C、降低 5—2在常用的螺旋传动中,传动效率最高的螺纹是 D 。 A、三角形螺纹 B、梯形螺纹 C、锯齿形螺纹 D、矩形螺纹 5—3 当两个被联接件之一太厚,不宜制成通孔,且需要经常装拆时,往往采用A 。 A、双头螺柱联接 B、螺栓联接 C、螺钉联接 D、紧定螺钉联接 5—4螺纹联接防松的根本问题在于C。 A、增加螺纹联接的轴向力 B、增加螺纹联接的横向力 C、防止螺纹副的相对转动 D、增加螺纹联接的刚度 5—5对顶螺母为A防松,开口销为B防松,串联钢丝为B防松。 A、摩擦 B、机械 C、不可拆 5—6在铰制孔用螺栓联接中,螺栓杆与孔的配合为B。 A、间隙配合 B、过渡配合 C、过盈配合 5—7在承受横向工作载荷或旋转力矩的普通紧螺栓联接中,螺栓杆C作用。 A、受剪切应力 B、受拉应力 C、受扭转切应力和拉应力 D、既可能只受切应力又可能只受拉应力 5—8受横向工作载荷的普通紧螺栓联接中,依靠A来承载。 A、接合面间的摩擦力 B、螺栓的剪切和挤压 C、螺栓的剪切和被联接件的挤压 5—9受横向工作载荷的普通紧螺栓联接中,螺栓所受的载荷为B;受横向工

作载荷的铰制孔螺栓联接中,螺栓所受的载荷为A;受轴向工作载荷的普通松螺 栓联接中,螺栓所受的载荷是A;受轴向工作载荷的普通紧螺栓联接中,螺栓所 受的载荷是D。 A、工作载荷 B、预紧力 C、工作载荷+ 预紧力 D、工作载荷+残余预紧力 E、残余预紧力 5—10受轴向工作载荷的普通紧螺栓联接。假设螺栓的刚度C b与被联接件的刚度C 相等,联接的预紧力为F0,要求受载后接合面不分离,当工作载荷F等于预紧力F0 m 时,则D。 A、联接件分离,联接失效 B、被联接件即将分离,联接不 可靠 C、联接可靠,但不能再继续加载 D、联接可靠,只要螺栓强度足够,工作载荷F还可增加到接近预紧力的两 倍 5—11重要的螺栓联接直径不宜小于M12,这是因为C。 A、要求精度高 B、减少应力集中 C、防止拧紧时过载拧断 D、 便于装配 5—12紧螺栓联接强度计算时将螺栓所受的轴向拉力乘以,是由于D。 A、安全可靠 B、保证足够的预紧力 C、防止松脱 D、计入 扭转剪应力 5—13对于工作载荷是轴向变载荷的重要联接,螺栓所受总拉力在F0与F2之间变 化,则螺栓的应力变化规律按C。 A、r = 常数 B、 =常数C、min=常数 m 5—14对承受轴向变载荷的普通紧螺栓联接,在限定螺栓总拉力的情况下,提高 螺栓疲劳强度的有效措施是B。 A、增大螺栓的刚度C ,减小被联接件的刚度C m B、减小C b,增大C b m

连接螺栓的数目计算

钢板的单面连接,如下图,按等强度原则计算。钢板承受轴心拉力,钢材的钢号为Q235,采用10.9S级的M20螺栓连接,孔径d。=21.5mm;连接处钢板的接触面采用喷砂处理,求连接螺栓的数目。 受拉钢板的单面拼接(单位:mm) 解:设拼接板的截面与被拼接板的截面相同,则拼接板的受拉承载力为N= A n f c =(450-4*21.5)*20*205*10-3 =1492.4KN A n:连接板的截面有效面积(mm2) f c:连接板Q235钢材的强度设计值,205N/mm2 (1)一般情况: 一个摩擦型高强度螺栓的受剪承载力设计值为: N b v = 0.9n fμp=0.9*1*0.45*155=63KN 0.9:抗力分项系数γR的倒数,即取γR=1/0.9=1.111 n f :传力摩擦面数目,单剪时n f =1;双减时n f =2

μ:摩擦面抗滑移系数,高强度螺栓摩擦面抗滑移系数的大小与连接处构件接触面的处理方法和构件的钢号有关。试验表明,此系数值有随连接构件接触面间的压紧力减小而降低的现象,故与物理学中的摩擦系数有区别。 我国规范推荐采用的接触面处理方法有:喷砂、喷砂后涂无机富锌漆、喷砂后生赤锈和钢丝刷消除浮锈或对干净轧制表面不作处理等,各种处理方法相应的μ值详见表3.6.3和3.6.4。 由于冷弯薄壁型钢构件板壁较薄,其抗滑移系数均较普通钢结构的有所降低。 钢材表面经喷砂除锈后,表面看来光滑平整,实际上金属表面尚存在着微观的凹凸不平,高强度螺栓连接在很高的压紧力作用下,被连接构件表面相互啮合,钢材强度和硬度愈高,要使这种啮合的面产生滑移的力就愈大,因此,μ值与钢种有关。 试验证明,摩擦面涂红丹后μ<0.15,即使经处理后仍然很低,故严禁在摩擦面上涂刷红丹。另外,连接在潮湿或淋雨条件下拼装,也会

机械设计_连接部分习题答案

机械设计-连接部分测试题 一、填空: 1、按照联接类型不同,常用的不可拆卸联接类型分为焊接、铆接、粘接和过盈量大的配合。 2、按照螺纹牙型不同,常见的螺纹分为三角螺纹、梯形螺纹、矩形螺纹和锯齿形螺纹等。 其中三角螺纹主要用于联接,梯形螺纹主要用于传动。 3、根据螺纹联接防松原理的不同,它可分为摩擦防松和机械防松。螺纹联接的防松, 其根本问题在于防止螺纹副转动。 4、对于螺纹联接,当两被联接件中其一较厚不能使用螺栓时,则应用双头螺柱联接 或螺钉联接,其中经常拆卸时选用双头螺柱联接。 5、普通螺栓联接中螺栓所受的力为轴向(拉)力,而铰制孔螺栓联接中螺栓所受的 力为轴向和剪切力。 6、在振动、冲击或变载荷作用下的螺栓联接,应采用防松装置,以保证联接的可靠。 7、在螺纹中,单线螺纹主要用于联接,其原因是自锁,多线螺纹用于传动,其原因 是效率高。 8、在螺纹联接中,被联接上应加工出凸台或沉头座,这主要是为了避免螺纹产生附加弯 曲应力。 楔键的工作面是上下面,而半圆键的工作面是(两)侧面。平键的工作面是(两)侧面。 9、花键联接由内花键和外花键组成。 10、根据采用的标准制度不同,螺纹分为米制和英制,我国除管螺纹外,一般都采用米制螺纹。圆柱普通螺纹的公称直径是指大径,强度计算多用螺纹的()径。圆柱普通螺纹的牙型角为60 度,管螺纹的牙型角为()度。 二、判断: 1、销联接属可拆卸联接的一种。(√) 2、键联接用在轴和轴上支承零件相联接的场合。(√) 3、半圆键是平键中的一种。(×) 4、焊接是一种不可以拆卸的联接。(√) 5、铆接是一种可以拆卸的联接。(×)

一般联接多用细牙螺纹。(×) 6、圆柱普通螺纹的公称直径就是螺纹的最大直径。(√) 7、管螺纹是用于管件联接的一种螺纹。(√) 8、三角形螺纹主要用于传动。(×) 9、梯形螺纹主要用于联接。(×) 10、金属切削机床上丝杠的螺纹通常都是采用三角螺纹。(×) 11、双头螺柱联接适用于被联接件厚度不大的联接。(×) 12、平键联接可承受单方向轴向力。(×) 13、普通平键联接能够使轴上零件周向固定和轴向固定。(×) 14、键联接主要用来联接轴和轴上的传动零件,实现周向固定并传递转矩。(√) 15、紧键联接中键的两侧面是工作面。(×) 16、紧键联接定心较差。(√) 17、单圆头普通平键多用于轴的端部。(√) 18、半圆键联接,由于轴上的键槽较深,故对轴的强度削弱较大。(√) 19、键联接和花键联接是最常用的轴向固定方法。(×) 20、周向固定的目的是防止轴与轴上零件产生相对转动。(√) 三、选择: 1、在常用的螺旋传动中,传动效率最高的螺纹是( D )。 A 三角形螺纹; B 梯形螺纹; C 锯齿形螺纹; D 矩形螺纹 2、当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆卸时,往往采用( B )。 A 螺栓联接; B 螺钉联接; C 双头螺柱联接; D 紧定螺钉联接 3、在常用的螺纹联接中,自锁性能最好的螺纹是( A )。 A 三角形螺纹; B 梯形螺纹; C 锯齿形螺纹; D 矩形螺纹

螺栓组受力分析与计算

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 "1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接 合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的 最小距离,应根 据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距to 不得大于下表所推荐的数值 扳手空间尺寸 螺栓间距t o 注:表中d 为螺纹公称直径。 4) 分布在同一圆周上的螺栓数目,应取成 4, 6, 8等偶数,以便在圆周上钻孔时的分度和画 线。同一螺栓 组中螺栓的材料,直径和长度均应相同。 5) 避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保 证被联接件,螺 母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图2)等。 1 ? 6*-4 4* 10 10* 1? 14-20 3W

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T= 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩 擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T= 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面 一般工表面 表面氧化 镀锌 粗加工表面- 取K=,则预紧力 F=T/*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2 外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm

计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ= =17500N/58*10-6m 2=302MPa 剪切应力: =1σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =*302= MPa 强度条件: =≤*=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 4、 倾覆力矩 倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。作用在底板两侧的合力矩与倾覆力矩M 平衡。 已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定, () 2031 tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσ π =≤

螺栓组联接实验指导

实验二螺栓组联接实验指导书 一、实验目的 1.测试螺栓组联接在翻转力矩作用下各螺栓所受的载荷; 2.深化课程学习中对螺栓组联接受力分析的认识; 3.初步掌握电阻应变仪的工作原理和使用方法。 二、实验设备及工具 1.CQL-B多功能螺栓组联接综合实验台; 2.CQYJ-12静态电阻应变仪一台; 3.其它仪器工具:螺丝刀、扳手。 三、实验台结构及工作原理 图1 多功能螺栓组联接实验台结构 1.机座 2.测试螺栓 3.测试梁 4.托架 5.测试齿块 6.杠杆系统 7.砝码 8.齿板接线柱 9.螺栓1—5接线柱 10.螺栓6—10接线柱 11.垫片 多功能螺栓组联接实验台结构如图l所示,被联接件机座1和托架4被双排共10个螺栓2联接,联接面间加入垫片11(硬橡胶板),砝码7的重力通过双级杠杆加载系统6(1:75)增力作用到托架4上,托架受到翻转力矩的作用,螺栓组联接受横向载荷和倾覆力矩联合作用,各个螺栓所受轴向力不同,它们的轴向变形也就不同。在各个螺栓上贴有电阻应变片,可在螺栓中段测试部位的任一侧贴一片,或在对称的两侧各贴一片,如图2所示。各个螺栓的受力可通过贴在其上的电阻应变片的变形,用电阻应变仪测得。 实验台主要技术参数: 1.联接螺栓中段直径Φ6.5mm,两端螺纹M10,螺栓材料40Gr,其弹性模量E=206GPa; 2.加载杠杆比:1:75; 3.托架悬臂长L=214mm; 4.砝码:共3块(两块1Kg,一块0.5Kg)

静态电阻应变仪的工作原理如图3所示,主要由:测量桥、桥压、滤波器、 A /D 转换器、MCU 、键盘、显示屏组成。测量方法:由DC2.5V 高精度稳定桥压供电,通过高精度放大器,把测量桥桥臂压差(μV 信号)放大,后经过数字滤波器,滤去杂波信号,通过24位A /D 模数转换送入MCU(即CPU)处理,调零点方式采用计算机内部自动调零。送显示屏显示测量数据,同时配有RS232通讯口,可以与计算机通讯。 εK E U BD 4=? 式中: BD U ? ——工作片平衡电压差; E ——电阻应变系数; ε——应变值。 当工作电阻片由于螺栓受力变形,长度变化L ?时,其电阻也要变化 R ? ,并且R R ?正比于 L L ? , R ?使测量桥失去平衡。通过应变仪测 量出BD U ?的变化,测量出螺栓的应变量。电阻应变仪的工作原理如图3所示, 主要有测量桥、读数桥、毫安表等。工作电阻应变片和补偿电阻应变片分别接入电阻应变仪测量桥的一个臂,当工作电阻片由于螺栓受力变形,长度变化l ? 时,其电阻值也要变化R ? ,并且R R ? ,正比于l l ? ;R ?使测量桥失 去平衡,使毫安表恢复零点,读出读数桥的调节量,及为被测螺栓的应变量。

钢结构的螺栓连接-附答案

钢结构练习四螺栓连接 一、选择题(××不做要求) 1.单个螺栓的承压承载力中,[N]= d∑t·f y,其中∑t为( D )。 A)a+c+e B)b+d C)max{a+c+e,b+d} D)min{a+c+e,b+d} 2.每个受剪拉作用的摩擦型高强度螺栓所受的拉力应低于其预拉力的( C )。 A)倍 B)倍 C)倍 D)倍 3.摩擦型高强度螺栓连接与承压型高强度螺栓连接的主要区别是( D )。 A)摩擦面处理不同 B)材料不同 C)预拉力不同 D)设计计算不同 4.承压型高强度螺栓可用于( D )。 A)直接承受动力荷载 B)承受反复荷载作用的结构的连接 C)冷弯薄壁型钢结构的连接 D)承受静力荷载或间接承受动力荷载结构的连接 5.一个普通剪力螺栓在抗剪连接中的承载力是( D )。 A)螺杆的抗剪承载力 B)被连接构件(板)的承压承载力 C)前两者中的较大值 D)A、B中的较小值 6.摩擦型高强度螺栓在杆轴方向受拉的连接计算时,( C )。 A)与摩擦面处理方法有关 B)与摩擦面的数量有关 C)与螺栓直径有关 D)与螺栓性能等级无关 7.图示为粗制螺栓连接,螺栓和钢板均为Q235钢,则该连接中螺栓的受剪面有( C )个。 A)1 B)2 C)3 D)不能确定 8.图示为粗制螺栓连接,螺栓和钢板均为Q235钢,连接板厚度如图示,则该连接中承压板厚度为( B )mm。 A)10 B)20 C)30 D)40

9.普通螺栓和承压型高强螺栓受剪连接的五种可能破坏形式是:I .螺栓剪断;Ⅱ.孔壁承压破坏;Ⅲ.板件端部剪坏;Ⅳ.板件拉断;Ⅴ.螺栓弯曲变形。其中( B )种形式是通过计算来保证的。 A )I 、Ⅱ、Ⅲ B )I 、Ⅱ、Ⅳ C )I 、Ⅱ、Ⅴ D )Ⅱ、Ⅲ、Ⅳ 10.摩擦型高强度螺栓受拉时,螺栓的抗剪承载力( B )。 A )提高 B )降低 C )按普通螺栓计算 D )按承压型高强度螺栓计算 11.高强度螺栓的抗拉承载力( B )。 A )与作用拉力大小有关 B )与预拉力大小有关 C )与连接件表面处理情况有关 D )与A ,B 和C 都无关 12.一宽度为b ,厚度为t 的钢板上有一直径为d 0的孔,则钢板的净截面面积为( C )。 A )t d t b A n ?-?=2 B )t d t b A n ?-?=420π C )t d t b A n ?-?=0 D )t d t b A n ?-?=2 0π 13.剪力螺栓在破坏时,若栓杆细而连接板较厚时易发生( A )破坏;若栓杆粗而连接板较薄时,易发生( B )破坏。 A )栓杆受弯破坏 B )构件挤压破坏 C )构件受拉破坏 D )构件冲剪破坏 14.摩擦型高强度螺栓的计算公式)25.1(9.0t f b v N P n N -?=μ中符号的意义,下述何项为正确 ( D )。 A )对同一种直径的螺栓,P 值应根据连接要求计算确定 B )是考虑连接可能存在偏心,承载力的降低系数 C )是拉力的分项系数 D )是用来提高拉力N t ,以考虑摩擦系数在预压力减小时变小使承载力降低的不利因素。 15.在直接受动力荷载作用的情况下,下列情况中采用( A )连接方式最为适合。 A )角焊缝 B )普通螺栓 C )对接焊缝 D )高强螺栓 16.在正常情况下,根据普通螺栓群连接设计的假定,在M≠0时,构件B ( D )。 A )必绕形心d 转动 B )绕哪根轴转动与N 无关,仅取决于M 的大小 C )绕哪根轴转动与M 无关,仅取决于N 的大小 D )当N=0时,必绕c 转动

螺栓组连接实验报告

螺栓组联接实验报告 专业班级: 姓名: 日期: 指导教师: 成绩: 一、实验条件: ⑴、实验台型号及主要规格 ⑵、测试仪器的型号及规格 ①静态应变仪 CQYJ-12 ②应变片:R=120,灵敏系数=2.2 二、实验数据及计算结果 ⒈螺栓组静态特性实验 螺栓号 1 2 3 4 5 6 7 8 9 10 零点应变0 0 0 0 0 0 0 0 0 0 预紧应变267 229 280 253 263 240 246 281 244 244 第一组με300 241 278 241 227 278 258 278 227 205 第二组με0 0 0 0 0 0 0 0 0 0 第三组με0 0 0 0 0 0 0 0 0 0 平均值με300 241 278 241 227 278 258 278 227 205 负荷应变33 12 -2 -12 -36 38 12 -3 -17 -39 应力/1000 δ61800 49646 57268 49646 46762 57268 53148 57268 46762 42230 预紧拉力 F1[N] 1824 1565 1913 1729 1797 1640 1681 1920 1667 1667 实验拉力 F2[N] 2050 1647 1899 1647 1551 1899 1763 1899 1551 1401 负荷拉力△F[N] 225 82 -14 -82 -246 260 82 -20 -116 -266 理论拉力 PN[N] 486 243 0 -243 -486 486 243 0 -243 -486 ⒉应力分布图

(完整版)螺纹联接练习试题与答案9

螺纹连接练习 第一节 螺纹基础知识 1、标记为螺栓GB5782-86 M16×80的六角头螺栓的螺纹是 形,牙形角等于 60 度,线数等于 1 ,16代表 公称直径 , 80代表 螺栓长度 。 2、双头螺柱的两被联接件之一是 螺纹 孔,另一是 光 孔。 3、采用螺纹联接时,若被联接件之一厚度较大,且材料较软,强度 较低,需要经常装拆,则一般宜采用 B 。 A 、螺栓联接 B 、双头螺柱联接 C 、螺钉联接 4、螺纹副在摩擦系数一定时,螺纹的牙型角越大,则 D 。 A 、当量摩擦系数越小,自锁性能越好 B 、当量摩擦系数越小,自锁性能越差 C 、当量摩擦系数越大,自锁性能越差 D 、当量摩擦系数越大,自锁性能越好 5、螺纹的公称直径是指螺纹的 大 径,螺纹的升角是指螺纹 中 径处的升角。螺旋的自锁条件为 ?< ?v ,拧紧螺母时效率公式为) tan(tan v ???+。 6、三角形螺纹主要用于 连接 ,而矩形、梯形和锯齿形螺纹主 要用于 传动 。

(1)普通螺栓连接 1)螺栓安装方向不对,装不进去,应掉过头来安装;

2)普通螺栓连接的被联接件孔要大于螺栓大径,而下部被连接件孔与螺栓杆间无间隙; 3)被连接件表面没加工,应做出沉头座并刮平,以保证螺栓头及螺母支承面平整且垂直于螺栓轴线,避免拧紧螺母时螺栓产生附加弯曲应力; 4)一般连接;不应采用扁螺母; 5)弹簧垫圈尺寸不对,缺口方向也不对; 6)螺栓长度不标准,应取标准长z=60 mm; 7)螺栓中螺纹部分长度短了,应取长30 mm。 (2)螺钉连接 主要错误有: 1)采用螺钉连接时,被连接件之一应有大于螺栓大径的光孔,而另一被连接件上应有与螺钉相旋合的螺纹孔。而图中上边被连接件没有做成大于螺栓大径的光孔,下边被连接件的螺纹孔又过大,与螺钉尺寸不符,而且螺纹画法不对,小径不应为细实线; 2)若上边被连接件是铸件,则缺少沉头座孔,表面也没有加工。 (3)双头螺柱连接 主要错误有: 双头螺柱的光杆部分不能拧进被连接件的螺纹孔内,M12不能标注在光杆部分; 锥孔角度应为120。,而且应从螺纹孔的小径(粗实线)处画锥孔角的两边;

螺栓组联接中螺栓的受力和相对刚性系数

螺栓组联接中螺栓的受力和相对刚性系数 一、实验目的 1.了解在受倾覆力矩时螺栓组联接中各螺栓的受力情况; 2.了解螺栓相对刚度系数即被联接件间垫片材料对螺栓受力的影响; 3.了解单个螺栓预紧力的大小对螺栓组中其它各螺栓受力的影响; 3.根据实验结果计算出螺栓相对刚性系数,填入实验报告。 4.了解和部分掌握电阻应变片技术、计算机技术在力测量中的应用。从而验证螺栓组联接受力分析理论和现代测量技术在机械设计中的应用。 二.实验要求: 1.实验前预习实验指导书和教科书中有关本实验的相关内容; 2.实验中按指导教师要求和实验指导书中实验步骤进行实验,注意观察实验中各螺栓载荷变化情况,并能用螺栓组联接受力分析理论解释其现象; 3.根据实验结果计算出螺栓相对刚性系数,填入实验报告。 4.按指导教师要求完成指定思考题。 三、实验设备: 1. 螺栓组实验台一台 2. 计算机一台 3. 10通道A/D转换板(包括放大器)一块 4. 调零接线盒一个 5. 25线联接电缆一条 四、实验原理 1. 机械部分: 当将砝码加上后通过杠杆增力系统可作用在被联接件上一个力P,该力对被联接件上的作用效果可产生一个力矩,为平衡该力矩,已加上预紧力的螺栓组中各螺栓受力状况会发生变化,且受力情况会因垫片材料不同而不同;螺栓所处位置不同而不同。测出各螺栓受力变化(如图11-2),即可检验螺栓组受力理论。 螺栓实验台(如图一)本体由①机座、②螺栓(10个)、③被联接件、④1 75的杠杆增力系统、⑤砝码(2—2kg,1—1kg)、⑥垫片六部分组成。 各螺栓的工作拉力F i可根据支架静力平衡条件和变形协调条件求出。设在M(PL)作用下接触面仍保持为平面,且被联接件④在M作用下有绕O-O线翻转的趋势(如图11-3)。为平衡该翻转力矩M,各螺栓将承受工作拉力F i;此时,O-O 线上侧的螺栓进一步受拉,螺栓拉力加大;O-O 线下侧的螺栓则被放松,螺栓拉力减小。

螺栓连接的有限元分析

1 概述螺栓是机载设备设计中常用的联接件之一。其具有结构简单, 拆装方便,调整容易等优点, 被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节( 如应力集中、应力分布) 等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件 MSC.Patran/MSC.Nastran 提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent) ,另外一个节点为主节点(Independent) 。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1, 使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图 1 所示组合装配体,底部约束。两圆筒连接法兰通过8 颗螺栓固定。端面受联合载荷作用。

螺栓联接习题及解答

习题与参考答案 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 当螺纹公称直径、牙型角、螺纹线数相同时,细牙螺纹的自锁性能比粗牙螺纹的自锁性能。 A. 好 B. 差 C. 相同 D. 不一定 2 用于连接的螺纹牙型为三角形,这是因为三角形螺纹。 A. 牙根强度高,自锁性能好 B. 传动效率高 C. 防振性能好 D. 自锁性能差 3 若螺纹的直径和螺旋副的摩擦系数一定,则拧紧螺母时的效率取决于螺纹的。 A. 螺距和牙型角 B. 升角和头数 C. 导程和牙形斜角 D. 螺距和升角 4 对于连接用螺纹,主要要求连接可靠,自锁性能好,故常选用。 A. 升角小,单线三角形螺纹 B. 升角大,双线三角形螺纹 C. 升角小,单线梯形螺纹 D. 升角大,双线矩形螺纹 5 用于薄壁零件连接的螺纹,应采用。 A. 三角形细牙螺纹 B. 梯形螺纹 C. 锯齿形螺纹 D. 多线的三角形粗牙螺纹 6 当铰制孔用螺栓组连接承受横向载荷或旋转力矩时,该螺栓组中的螺栓。 A. 必受剪切力作用 B. 必受拉力作用 C. 同时受到剪切与拉伸 D. 既可能受剪切,也可能受挤压作用 7 计算紧螺栓连接的拉伸强度时,考虑到拉伸与扭转的复合作用,应将拉伸载荷增加到原来的 倍。 A. 1.1 B. 1.3 C. 1.25 D. 0.3 8 采用普通螺栓连接的凸缘联轴器,在传递转矩时,。 A. 螺栓的横截面受剪切 B. 螺栓与螺栓孔配合面受挤压 C. 螺栓同时受剪切与挤压 D. 螺栓受拉伸与扭转作用 9 在下列四种具有相同公称直径和螺距,并采用相同配对材料的传动螺旋副中,传动效率最高的是。 A. 单线矩形螺旋副 B. 单线梯形螺旋副 C. 双线矩形螺旋副 D. 双线梯形螺旋副 10 在螺栓连接中,有时在一个螺栓上采用双螺母,其目的是。 A. 提高强度 B. 提高刚度 C. 防松 D. 减小每圈螺纹牙上的受力 11 在同一螺栓组中,螺栓的材料、直径和长度均应相同,这是为了。 A. 受力均匀 B. 便于装配. C. 外形美观 D. 降低成本

普通螺栓连接施工工艺标准

6 普通螺栓连接施工工艺标准 6.1 适用范围 本工艺标准规定了普通螺栓的施工要求、方法和质量标准等,适用于钢结构安装工程,普通螺栓连接的施工技术。 6.2 编制依据的标准、规范 GB50300-2001 建筑工程施工质量验收统一标准 GB50205-2001 钢结构工程施工质量验收规范 GB3098-2000 紧固件机械性能螺栓、螺钉和螺柱 6.3术语和符号 普通螺栓:螺栓按照性能等级分 3.6、4.6、4.8、5.6、5.8、6.8、8.8、9.8、10.9、12.9等十个等级,8.8级以下(不含8.8级)通称普通螺栓。 6.4 施工准备 6.4.1 技术准备 1.由项目技术负责人组织专业技术人员熟悉图纸,组织好图纸会审,领会设计意图。 2.针对工程作法及结构设计图纸,熟悉施工规范,提前作好技术管理人员的技术培训工作。 3.组织施工人员进行技术、安全交底。 4.编制材料供应计划、按计划供应材料。 5.编制施工过程、材料进场检验计划,按计划施检。 6.4.2 材料准备

1. 螺栓、螺母、垫圈均应附有质量证明书,并应符合设计要求和国家标准的规定; 2.螺栓验收入库后应按规格分类存放。应防雨、防潮,遇有螺纹损伤或螺栓、螺母不配套时不得使用。 3. 螺栓不得粘染泥土、油污,必须清理干净。 6.4.3 施工机具准备 开口(套筒)、钢丝刷、冲子、锤子 6.4.4 作业条件准备 1. 施工部位应防止被油污等污染,如有污染必须彻底清理干净。 2. 检查螺栓孔的孔径尺寸,孔边毛刺必须彻底清理。 3. 将同一批号、规格的螺栓、螺母、垫圈配好套,装箱待用。 6.5 施工工艺 6.5.1

螺栓连接的知识点

3.6 螺栓连接的构造 螺栓的排列应考虑以下要求: (1) 受力要求 (2) 构造要求螺栓间距不能太大,避免压不紧潮气进入导致腐蚀 (3) 施工要求螺栓间距不能太近,满足净空要求,便于安装 螺栓或铆钉的最大、最小容许距离见P52,表3.4~3.7 3.7 普通螺栓连接的工作性能和计算 普通螺栓按加工精度可分为: 1. 粗制螺栓(C 级) 优点:安装简单,便于拆装 缺点:螺杆与钢板孔壁不够紧密,传递剪力时,连接变形较大。宜用于承受拉力的连接中,或用于次要结构和可拆卸结构的受剪连接及安装时的临时固定。 2. 精制螺栓( A 、B 级) 优点:受力性能好 缺点:安装费时费工,且费用较高。 目前建筑结构中已较少使用。 剪力螺栓(抗剪螺栓):螺栓杆垂直于力线 按受力情况分为 拉力螺栓(抗拉螺栓): 螺栓杆平行于力线 既受剪又受拉的螺栓 抗剪连接——板件之间有相互错动的趋势 抗拉连接——板件之间有相互脱开的趋势 一、 普通螺栓的抗剪连接 (1)单个螺栓的受剪工作性能 1)弹性阶段(0~1): 板件间相互挤压,靠摩擦阻力传力; 2)滑移阶段(1~2): 摩擦阻力被克服后,板件间产生滑移,栓杆与孔壁相接触, 滑移量取决于栓杆与孔的间距; 3)栓杆直接传力的弹性阶段(2~3): 螺栓杆既受剪又受弯,孔壁受到挤压; 4)弹塑性阶段(3~ 4): 连接的剪切变形迅速增大,直至破坏。 (2)受剪螺栓的破坏形式 1)栓杆被剪断 2)钢板被挤压破坏(螺栓承压破坏) 3)钢板被拉断 4)钢板被剪坏 5)杆身弯曲破坏 (3)针对以上破坏形式,应采取以下措施 1)通过计算保证螺栓抗剪 2)通过计算保证螺栓抗挤压 3)通过计算保证板件有足够的拉压强度 4)螺栓端距≥ 2d 。 ——避免钢板被拉豁 级、级8.4)6.0,/400(6.40.3~5.120=≥+=u y u f f mm N f mm d d —螺杆直径 ——螺孔直径—d d 0级、级6.5)8.0,/800(8.85.0~3.02 =≥+=u y u f f mm N f mm d d

常用连接和轴的作业及答案

机械设计基础作业及答案 第7章常用连接 1、按螺纹牙型不同,常用的螺纹分哪几种? 答:有四种:矩形螺纹、三角形螺纹、梯形螺纹、锯齿形螺纹。 2、螺纹的旋向如何判定? 答:螺纹的旋向可用右手法则来判别:手心对着自己,四指沿螺纹轴线方向伸直,螺纹的旋向与右手大拇指指向一致则为右旋螺纹;反之为左旋螺纹。 3、螺纹连接有那几种类型?各应用在什么场合? 答:螺纹连接有螺栓联接、双头螺柱联接、螺钉联接、紧定螺钉联接。 应用:螺纹连接结构简单,装拆方便,应用广泛; 双头螺柱联接用于被连接件之一太厚不便穿孔,结构要求紧凑或经常拆卸的场合; 螺钉联接用于被连接件之一较厚,不便加工通孔的场合; 紧定螺钉联接用于传递不大的的载荷的场合。 4、常用螺纹连接件有哪些?各个连接件有何应用? 答:参见P10 5、为什么螺纹连接要采用防松措施?常用的防松方法有哪些? 答:松动是螺纹连接中最常见的失效形式之一,一般的螺纹连接都有自锁性能,在受静载荷和工作温度变化不大时,不会自行脱落。但是在高温、变载荷、冲击或振动载荷作用下,连接可能发生松动或脱落现象,影响正常工作,甚至发生事故。为了保证螺纹连接安全可靠,必须采取有效的防松措施。 1.增大摩擦力放松, 2.利用机械方法放松, 3.破坏螺纹副关系的防松。 6、大多数螺纹连接为什么要预紧?是否拧紧力矩越大越好? 答:预紧的目的在于增强连接的可靠性,紧密性和防松能力,提高螺栓的疲劳强度。 预紧力的数值应根据载荷的性质、连接刚度等具体工作条件而确定。 7、在螺纹连接的结构设计时,应注意哪些问题? 答:1.结合面的几何形状为成轴对称的简单形状; 2.分布在同一圆周上的螺栓数目应取偶数; 3.螺栓的布置应使各螺栓的受力合理; 4.同一螺栓组紧固件的形状、尺寸、材料等均应相同,以便于加工和装配; 5.螺栓排列应有合理的间距、边距,以便在装配时能安放和转动扳手; 6.双头螺栓的装配,必须保证双头螺栓与机体螺纹的配合有足够的紧固性。 8、键连接有哪些类型?各有何特点? 答:平键连接;半圆键连接;揳键连接;切向键连接。 平键连接靠侧面传递扭矩,对中良好,结构简单,轴上零件课沿轴向移动,装拆方便; 半圆键连接靠侧面传递扭矩,键在轴槽中能摆动,装配方便,但键槽较深,对轴的削弱较大;只适用于轻载联接。 揳键连接上下两个面是工作面,键的两侧为非工作面,传递转矩,能轴向固定零件和传递单向的轴向力。键的上表面有1:100的斜度,轮毂槽的底面也有1:100的斜度。定心精度不高。 切向键连接上下两个面是工作面,传递转矩。 9、键连接的主要失效形式是什么?若校核时发现强度不够,可采用什么措施加以解决? 答:键的主要失效形式:压溃、磨损(动联接)、剪断。 若强度不时,可采用两个键按180布置。考虑到载荷分布的不均匀性,校核强度时按1.5个键计算。 10、花键连接有何特点?它有哪几种类型? 答:结构特点:沿周向均布多个键齿。齿侧为工作面。优点:承载能力高、对轴的削弱程度小、定心好、导向性好。 类型:矩形花键、键开线花键、三角形花键。

机械设计 习题+答案 联接

联 接 一、判断题 1. 在轴端的轴毂联接,为了便于安装最好采用C 型平键,而不是A 型或B 型平键。( 对) 2. 与矩形花键相比,渐开线花键的强度高。(对 ) 3. 采用两个普通平键时,为使轴与轮毂对中良好,两键通常布置成相隔180°。(对 ) 4. 受轴向外载荷的紧螺栓联接,螺栓在该轴向外载荷作用下所受的总拉力一定不与轴向外载荷相等。( 错) 5. 受横向变载荷的普通螺栓联接中,螺栓所受的力为静载荷。(错 ) 6. 双向传力的滑动螺旋采用的螺纹类型中,以梯形和锯齿形螺纹应用最广。(错 ) 7. 承受横向载荷作用的螺栓联接中,螺栓一定是受剪切作用的。(错 ) 二、单项选择题 1.键的长度主要根据____B__来选择。 (a )传递转矩的大小 (b )轮毂的长度 (c )轴的直径 2.键的剖面尺寸通常是根据____D__按标准选择。 (a )传递转矩的大小 (b )传递功率的大小 (c )轮毂的长度 (d )轴的直径 3.轴的键槽通常是由_D_____加工而得到的。 (a )插削 (b )拉削 (c )钻及铰 (d )铣削 4.过盈联接传递转矩或轴向力,主要是依靠配合面的___B___。 (a )变形 (b )摩擦力 (c )附着力 5.当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用___D___。 (a )螺栓联接 (b )螺钉联接 (c )双头螺柱联接 (d )紧定螺钉联接 6.当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆装时,往往采用__B____。 (a )螺栓联接 (b )螺钉联接 (c )双头螺柱联接 (d )紧定螺钉联接 7.承受预紧力p Q 的紧螺栓联接在受工作拉力F 时,残余预紧力为 p Q ,则螺栓所受的总拉力Q 为____B__。

螺栓组受力分析与计算汇总

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

相关文档
最新文档