塑料挤出成型工艺

塑料挤出成型工艺
塑料挤出成型工艺

塑料挤出成型工艺

塑料挤出机的挤出方法一般指的是在200度左右的高温下使塑料熔解,熔解的塑料再通过模具时形成所需要的形状。挤出成型要求具备对塑料特性的深刻理解和模具设计的丰富经验、是一种技术要求较高的成型方法。挤出成型是在挤出机中通过加热、加压而使物料以流动状态连续通过口模成型的方法,也称为“挤塑”。与其他成型方法相比,具有效率高、单位成本低的优点。挤出法主要用于热塑性塑料的成型,也可用于某些热固性塑料。

挤出的制品都是连续的型材,如管、棒、丝、板、薄膜、电线电缆包覆层等。此外,还可用于塑料的混合、塑化造粒、着色、掺合等。挤出的产品可称为“型材”,由于横截面形状大多不规则,因此又称为“异型材”。

塑料挤出机故障分析

塑料挤出机是一种常见的塑料机械设备,在日常操作挤出机的过程中,挤出机会出现各种各样的故障,影响塑料机械正常生产,下面我们就对挤出机故障分析。

塑料挤出机故障分析:主机电流不稳

1、生产原因:(1)喂料不均匀。(2)主电机轴承损坏或润滑不良。(3)某段加热器失灵,不加热。(4)螺杆调整垫不对,或相位不对,元件干涉。塑料挤出机

2、处理方法:(1)检查喂料机,排除故障。(2)检修主电机,必要时更换轴承。(3)检查各加热器是否正常工作,必要时更换加热器。(4)检查调整垫,拉出螺杆检查螺杆有无干涉现象。

塑料挤出机故障分析:主电机不能启动

1、产生原因:(1)开车程序有错。(2)主电机线程有问题,熔断丝是否被烧环。(3)与主电机相关的连锁装置起作用

2、处理方法:(1)检查程序,按正确开车顺序重新开车。(2)检查主电机电路。(3)检查润滑油泵是否启动,检查与主电机相关的连锁装置的状态。油泵不开,电机无法打开。(4)变频器感应电未放完,关闭总电源等待5分钟以后再启动。(5)检查紧急按钮是否复位。塑

料挤出机故障分析:机头出料不畅或堵塞

1、产生原因:(1)加热器某段不工作,物料塑化不良。(2)操作温度设定偏低,或塑料的分子量分布宽,不稳定。(3)可能有不容易熔化的异物。

2、处理方法:(1)检查加热器,必要时更换。(2)核实各段设定温度,必要时与工艺员协商,提高温度设定值。(3)清理检查挤压系统及机头。

塑料挤出机故障分析:主电启动电流过高

1、产生原因:(1)加热时间不足,扭矩大。(2)某段加热器不工作。

2、处理方法:(1)开车时应用手盘车,如不轻松,则延长加热时间或检查各段加热器是否正常工作。

塑料挤出机故障分析:主电机发出异常声音:

1、产生原因:(1)主电机轴承损坏。(2)主电机可控硅整流线路中某一可控硅损坏。

2、处理方法:(1)更换主电机轴承。(2)检查可控硅整流电路,必要时更换可控硅元件。

台州市黄岩宏雷模具有限公司—专业的平口挤出模具供应商,“中国模具之乡”浙江黄岩,拥有多年实际经验及先进的加工设备,已经成功开发制造了各种单层、多层片材、板材、薄膜摸头、多层挤共分配器、各种快速液压换网器(板式/柱式)、熔体计量齿轮泵、静态混

合器等。想要了解更多相关信息,欢迎来官网咨询留言。

塑料挤出成型工艺

塑料挤出成型工艺 塑料挤出机的挤出方法一般指的是在200度左右的高温下使塑料熔解,熔解的塑料再通过模具时形成所需要的形状。挤出成型要求具备对塑料特性的深刻理解和模具设计的丰富经验、是一种技术要求较高的成型方法。挤出成型是在挤出机中通过加热、加压而使物料以流动状态连续通过口模成型的方法,也称为“挤塑”。与其他成型方法相比,具有效率高、单位成本低的优点。挤出法主要用于热塑性塑料的成型,也可用于某些热固性塑料。 挤出的制品都是连续的型材,如管、棒、丝、板、薄膜、电线电缆包覆层等。此外,还可用于塑料的混合、塑化造粒、着色、掺合等。挤出的产品可称为“型材”,由于横截面形状大多不规则,因此又称为“异型材”。 塑料挤出机故障分析

塑料挤出机是一种常见的塑料机械设备,在日常操作挤出机的过程中,挤出机会出现各种各样的故障,影响塑料机械正常生产,下面我们就对挤出机故障分析。 塑料挤出机故障分析:主机电流不稳 1、生产原因:(1)喂料不均匀。(2)主电机轴承损坏或润滑不良。(3)某段加热器失灵,不加热。(4)螺杆调整垫不对,或相位不对,元件干涉。塑料挤出机 2、处理方法:(1)检查喂料机,排除故障。(2)检修主电机,必要时更换轴承。(3)检查各加热器是否正常工作,必要时更换加热器。(4)检查调整垫,拉出螺杆检查螺杆有无干涉现象。 塑料挤出机故障分析:主电机不能启动 1、产生原因:(1)开车程序有错。(2)主电机线程有问题,熔断丝是否被烧环。(3)与主电机相关的连锁装置起作用 2、处理方法:(1)检查程序,按正确开车顺序重新开车。(2)检查主电机电路。(3)检查润滑油泵是否启动,检查与主电机相关的连锁装置的状态。油泵不开,电机无法打开。(4)变频器感应电未放完,关闭总电源等待5分钟以后再启动。(5)检查紧急按钮是否复位。塑 料挤出机故障分析:机头出料不畅或堵塞

挤出工艺

挤出成型工艺 挤出成型在塑料加工中又称为挤塑,在非橡胶挤出机加工中利用液压机压力于模 具本身的挤出称压出。是指物料通过挤出机料筒和螺杆间的作用,边受热塑化, 边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。中文名挤出成型又称为挤塑 定义热塑性塑料和橡胶的加工 原理在螺杆旋转作用下 定义 在纤维化学工业中也有用挤出机向喷丝头供料,以进行熔体纺丝。挤出应用于热塑性塑料和橡胶的加工,可进行配料、造粒、胶料过滤等,可连续化生产,制造各种连续制品如管材、型材、板材(或片材)、薄膜、电线电缆包覆、橡胶轮胎胎面条、内胎胎筒、密封条等,其生产效率高。在合成树脂生产中,挤出机可作为反应器,连续完成聚合和成型加工,在橡胶工业中压缩比不同的挤出机可以用来塑炼天然胶.不同材料的挤出机器的压缩比有些不同. 原理 原料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。 1、挤出方法 按塑化方式:干法挤出与湿法挤出 按加压方式:连续挤出与间歇挤出 2、特点 生产连续、效率高、操作简单、应用范围广 设备 1、主机 挤出系统:由螺杆与料筒组成,是挤出机关键部分。其作用是塑化物料,定量、定压、定温挤出熔体 传动系统:驱动螺杆,提供所需的扭矩和转矩 加热和冷却系统:保证塑料和挤出系统在成型过程中温度达工艺要求 2、辅机 由机头、定型装置、冷却装置、牵引装置、卷取装置、切割组成 3、控制系统 由电器、仪表和执行机构组成

塑料成型工艺

塑料成型工艺 郭鹏飞 一、注射成型 1.生产工艺 注塑成型必须满足两个必要条件:一是塑料必须以熔融状态注入到模具模腔;二是注入的塑料熔体必须具有足够的压力和流动速度以完全充满模具模腔。因此注射成型必须具备塑料塑化、熔体注射和保压成型的基本功能。 (1)塑化过程 在注射成型的塑化过程中,固体塑料通过转动的螺杆的输送作用,不断地沿螺槽方向向前运动,经过加热、压实、螺杆螺纹的剪切混炼等作用而升温转化为具有均匀的密度、粘度和组分及温度分布均匀的粘流态塑料流体。固体塑料塑化所需的热量主要来自于外部机筒对塑料的加热和注射螺杆对塑料的摩擦剪切热等。在塑化过程中,塑料熔体的温度是否达到注射要求以及温度分布是否均匀等是衡量注射成型机塑化功能好坏的重要参数,而塑化功能则是指注射成型机在单位时间内所能提供的熔融塑料量的大小。 固体塑料塑化为熔体后被不断转动的螺杆推至螺杆的头部并储存在机筒前端的存料区,存料区的塑料熔体具有一定的压力,该熔体的压力作用在螺杆上推动螺杆克服各种阻力而后退。螺杆后退至一定距离后停止转动,存料区中的塑料熔体体积(称为注射量)被确定下来,塑化过程结束,进入注射过程。 (2)注射过程 已塑化好的塑化好的塑料熔体储存在机筒的存料区中,注射时,螺杆作轴向移动,在螺杆注射压力的作用下,塑料熔体以一定的速率流经安装在机筒前端的喷嘴、模具浇注系统等而注入模具模腔中。 (3)冷却定型过程 注入到模具模腔中的塑料熔体克服各种流动阻力而充满模腔,充满模腔的塑料熔体受到来自模腔的巨大压力,这种压力有驱使塑料熔体流回到机筒的驱使;而且,由于模腔的冷却作用使塑料熔体产生冷却收缩,此时注射螺杆持续提供压力,保持塑料熔体充满模腔而不回流,并适当向模腔中补充塑料熔体以填补模腔中的收缩空间,直至塑料熔体逐渐冷却固化为制品。 2.生产设备 注射成型是在高压状态下将塑料熔体以高速注射到闭合的模具型腔内,经过冷却定型后得到和模具型腔形状完全一致的塑料制品。 注射成型时,使用的设备是注射成型机,简称注射机。注射剂在结构上很像塑料挤出机,但是注射剂要求螺杆能够在机筒里前后移动。塑料在注射机里融化。随着螺杆的转动,熔体聚集在螺杆头部,产生压力使螺杆在机筒里后移。当聚集了所需要量的熔体时,螺杆停止旋转,螺杆再以机械方式或液压为动力向前迅速移动,将熔体由喷嘴挤出通过流到注入模具。当制品冷却到能够保持形状不变形时,模具沿着分模线打开,顶出制品。整个注射周期根据制品的尺寸以及注射条件来决定。一副模具可以含有一个到数个模腔(有时可以多大64个),因此在同一时间可成型数件制品。在这种情况下,均衡塑料的使用量使模具均匀充满时非常重要的。要注意在设计模具时候应该使注射模具的流道到每一个模腔的距离和几何形状应该是均等的,以使得同模的每一个制品性能一致。同时也要主义注

电缆工艺之塑料挤出的基本原理

挤塑机的工作原理是:利用特定形状的螺杆,在加热的机筒中旋转,将由料斗中送来的塑料向前挤压,使塑料均匀的塑化(即熔融),通过机头和不同形状的模具,使塑料挤压成连续性的所需要的各种形状的塑料层,挤包在线芯和电缆上。塑料挤出过程 电线电缆的塑料绝缘和护套使是采用连续挤压方式进行的,挤出设备一般是单螺杆挤塑机。塑料在挤出前,要事先检查塑料是否潮湿或有无其它杂物,然后把螺杆预热后加入料斗内。在挤出过程中,装入料斗中的塑料借助重力或加料螺旋进入机筒中,在旋转螺杆的推力作用下,不断向前推进,从预热段开始逐渐的向均化段运动;同时,塑料受到螺杆的搅拌和挤压作用,并且在机筒的外热及塑料与设备之间的剪切摩擦的作用下转变为粘流态,在螺槽中形成连续均匀的料流。在工艺规定的温度作用下,塑料从固体状态转变为熔融状态的可塑物体,再经由螺杆的推动或搅拌,将完全塑化好的塑料推入机头;到达机头的料流,经模芯和模套间的环形间隙,从模套口挤出,挤包于导体或线芯周围,形成连续密实的绝缘层或护套层,然后经冷却和固化,制成电线电缆产品。挤出过程的三个阶段 塑料挤出最主要的依据是塑料所具有的可塑态。塑料在挤出机中完成可塑过程成型是一个复杂的物理过程,即包括了混合、破碎、熔融、塑化、排气、压实并最后成型定型。大家值的注意的是这一过程是连续实现的。然而习惯上,人们往往按塑料的不同反应将挤塑过程这一连续过程,人为的分成不同阶段,即为:塑化阶段(塑料的混合、熔融和均化);成型阶段(塑料的挤压成型);定型阶段(塑料层的冷却和固化)。 第一阶段是塑化阶段。也称为压缩阶段。它是在挤塑机机筒内完成的,经过螺杆的旋转作用,使塑料由颗粒状固体变为可塑性的粘流体。塑料在塑化阶段取得热量的来源有两个方面:一是机筒外部的电加热;二是螺杆旋转时产生的摩擦热。起初的热量是由机筒外部的电加热产生的,当正常开车后,热量的取得则是由螺杆选装物料在压缩、剪切、搅拌过程中与机筒内壁的摩擦和物料分子间的内摩擦而产生的。 第二阶段是成型阶段。它是在机头内进行的,由于螺杆旋转和压力作用,把粘流体推向机头,经机头内的模具,使粘流体成型为所需要的各种尺寸形状的挤包材料,并包覆在线芯或导体外。 第三阶段是定型阶段。它是在冷却水槽或冷却管道中进行的,塑料挤包层经过冷却后,由无定型的塑性状态变为定型的固体状态。 塑化阶段塑料流动的变化 在塑化阶段,塑料沿螺杆轴向被螺杆推向机头的移动过程中,经历着温度、压力、粘度,甚至化学结构的变化,这些变化在螺杆的不同区段情况是不同的。塑化阶段根据塑料流动时的物态变化过程又人为的分成三个阶段,即加料段、熔融段、均化段,这也是人们习惯上对挤出螺杆的分段方法,各段对塑料挤出产生不同的作用,塑料在各段呈现不同的形态,从而表现出塑料的挤出特性。 在加料段,首先就是为颗粒状的固体塑料提供软化温度,其次是以螺杆的旋转与固定的机筒之间产生的剪切应力作用在塑料颗粒上,实现对软化塑料的破碎。而最主要的则是以螺杆旋转产生足够大的连续而稳定的推力和反向摩擦力,以形成连续而稳定的挤出压力,进而实现对破碎塑料的搅拌与均匀混合,并初步实行热交换,从而为连续而稳定的挤出提供基础。在此阶段产生的推力是否连续均匀稳定、剪切应变率的高低,破碎与搅拌是否均匀都直接影响着挤出质量和产量。 在熔融段,经破碎、软化并初步搅拌混合的故态塑料,由于螺杆的推挤作用,沿螺槽向机头移动,自加料段进入熔融段。在此段塑料遇到了较高温度的热作用,这是的热源,除机筒外部的点加热外,螺杆旋转的摩擦热也在起着作用。而来自加料段的推力和来自均化段的反作用力,使塑料在前进中形成了回流,这

塑料挤出成型过程中存在的质量问题及解决方法

塑料挤出存在问题及解决方法 第一节塑料挤出的基本原理 塑料加工业是一项综合性很强的技术型产业。它涉及到高分子化学,高分子物理,界面理论,塑料机械,塑料加工模具,配方设计原理及工艺控制等方面。挤出理论主要研究塑料在挤出机内的运动情况与变化规律。挤出机中塑料在一定外力作用下,于不同温度范围内出现的高聚物的三种物理状态,与螺杆结构,塑料性能,加工条件之间的关系。从而进行合理工艺控制。以达到提高塑料制品产量与质量的目的。塑料高分子材料,在恒定的压力下受热时,于不同温度范围内,出现玻璃态,高弹态,粘流态三种物理状态。一般塑料的成型温度在粘流温度以上。 第二节聚烯烃管道挤出成型工艺控制 挤出成型工艺的控制参数包括成型温度,挤出机工作压力,螺杆转速,挤出速度和牵引速度,加料速度,冷却定型等。 1.原材料的预处理 聚烯烃是非吸水性材料,通常水分含量很低,可以满足挤出的需要,但当聚烯烃含吸水性颜料,如炭黑时,对湿度敏感。另外,在使用回料及填充料时,含水量会增大。水分不但导致管材内外表面粗糙,而且可能导致熔体中出现气泡。通常应对原料进行预处理。一般采用干燥处理,也可加相应的具有除湿功能的助剂。如消泡剂等。PE的干温度一般在60-90度。在此温度下,产量可提高10%--25%。 2.温度控制 挤出成型温度是促使成型物料塑化和塑料熔体流动的必要条件。对物料的

塑化及制品的质量和产量有着十分重要的影响。塑料挤出理论温度窗口是在粘流温度和降解温度之间。对于聚烯烃来说温度范围较宽。通常在熔点以上,280度以下均可加工。要正确控制挤出成型温度,必先了解被加工物料的承温限度与其物理性能的相互关系。找出其特点和规律,才能选择一个较佳的温度范围进行挤出成型。因此,在各段温度设定应考虑以下几个方面:一是聚合物本身的性能,如熔点,分子量大小和分布,熔体指数等。其次考虑设备的性能。有的设备,进料段的温度对主机电流的影响很大。再次,通过观察管模头挤出管坯表面是否光滑。有无气泡等现象来判断。 挤出温度包括加热器的设定温度和熔体温度。加热温度是指外加热器所提供的温度。熔体温度是指螺杆前段与机头连接间物料的温度。 机筒温度分布,从喂料区到模头可能是平坦分布,递增分布,递减分布及混合分布。主要取决于材料物点和挤出机的结构。 机头设置温度,为了获得较好的外观及力学性能,以及减小熔体出口膨胀,一般控制机身温度较低,机头温度较高。机头温度偏高,可使物料顺利进入模具,但挤出物的形状稳定性差,收缩率增加。机头温度低,则物料塑料不良,熔体粘度大,机头压力上升。虽然这样会使制品太得较密实,后收缩率小,产品形状稳定性好,但是加工较困难,离模膨胀较大,产品表面粗糙。还会导致挤出机背压增加,设备负荷大,功率消耗也随之增加。 口模设置温度,口模和芯模的温度对管子表面光洁度有影响,在一定的范围内,口模与芯模温度高,管子表面光洁度高。通常来讲,口模出口的温度不应超过220度,机头入口的熔体温度为200度,机头入口和出口熔体温差不应超过20度。因为熔体与金属间较高的温度差将导致鲨鱼皮现象。过高的熔体温度

塑料制品生产工艺过程

塑料制品的生产工艺流程 根据塑料的固有性能,使其成为具有一定形状和使用价值的塑料制品,是一个复杂而繁重的过程。塑料制品工业生产中,塑料制品的生产系统主要是由塑料的成型、机械加工、装饰和装配四个连续的过程组成的。 在这四个过程中,塑料成型是塑料加工的关键。成型的方法多达三十几种,主要是将各种形态的塑料(粉、粒料、溶液或分散体)制成所需形状的制品或坯件。成型方法主要决定于塑料的类型(热塑性还是热固性)、起始形态以及制品的外形和尺寸。塑料加工热塑性塑料常用的方法有挤出、注射成型、压延、吹塑和热成型等,塑料加工热固性塑料一般采用模压、传递模塑,也用注射成型。层压、模压和热成型是使塑料在平面上成型。上述塑料加工的方法,均可用于橡胶加工。此外,还有以液态单体或聚合物为原料的浇铸等。在这些方法中,以挤出和注射成型用得最多,也是最基本的成型方法。 塑料制品生产之机械加工是借用金属和木材等的塑料加工方法,制造尺寸很精确或数量不多的塑料制品,也可作为成型的辅助工序,如挤出型材的锯切。由于塑料的性能与金属和木材不同,塑料的热导性差,热膨胀系数、弹性模量低,当夹具或刀具加压太大时,易于引起变形,切削时受热易熔化,且易粘附在刀具上。因此,塑料进行机械加工时,所用的刀具及相应的切削速度等都要适应塑料特点。常用的机械加工方法有锯、剪、冲、车、刨、钻、磨、抛光、螺纹加工等。此外,塑料也可用激光截断、打孔和焊接。

塑料制品生产之接合塑料加工把塑料件接合起来的方法有焊接和 粘接。焊接法是使用焊条的热风焊接,使用热极的热熔焊接,以及高频焊接、摩擦焊接、感应焊接、超声焊接等。粘接法可按所用的胶粘剂,分为熔剂、树脂溶液和热熔胶粘接。 塑料制品生产表面修饰的目的是美化塑料制品表面,通常包括:机械修饰,即用锉、磨、抛光等工艺,去除制件上毛边、毛刺,以及修正尺寸等;涂饰,包括用涂料涂敷制件表面,用溶剂使表面增亮,用带花纹薄膜贴覆制品表面等;施彩,包括彩绘、印刷和烫印;镀金属,包括真空镀膜、电镀以及化学法镀银等。塑料加工烫印是在加热、加压下,将烫印膜上的彩色铝箔层(或其他花纹膜层)转移到制件上。许多家用电器及建筑制品、日用品等都用此法获得金属光泽或木纹等图案。 装配是用粘合、焊接以及机械连接等方法,使制成的塑料件组装成完整制品的作业。例如:塑料型材,经过锯切、焊接、钻孔等步骤组装成塑料窗框和塑料门。

塑料挤出模具设计(doc 9页)

塑料挤出模具设计(doc 9页)

第9章挤出模具设计 9.1 概述 塑料挤出成型是用加热的方法使塑料成为流动状态,然后在一定压力的作用下使它通过塑模,经定型后制得连续的型材。挤出法加工的塑料制品种类很多,如管材、薄膜、棒材、板材、电缆敷层、单丝以及异形截面型材等。挤出机还可以对塑料进行混合、塑化、脱水、造粒和喂料等准备工序或半成品加工。因此,挤出成型已成为最普通的塑料成型加工方法之一。 用挤出法生产的塑料制品大多使用热塑性塑料,也有使用热固性塑料的。如聚氯乙烯、聚乙烯、聚丙烯、尼龙、ABS、聚碳酸酯、聚砜、聚甲醛、氯化聚醚等热塑性塑料以及酚醛、脲醛等热固性塑料。 挤出成型具有效率高、投资少、制造简便,可以连续化生产,占地面积少,环境清洁等优点。通过挤出成型生产的塑料制品得到了广泛的应用,其产量占

状,便于进一步加热和塑化。大型挤出机的分流器内部还装有加热装置。 分流器支架主要用来支撑分流器和芯棒,同时也使料流分束以加强搅拌作用。小型机头的分流器支架可与分流器设计成整体。 4.调节螺钉 用来调节口模与芯棒之间的间隙,保证制品壁厚均匀。 5.机头体 用来组装机头各零件及挤出机连接。 6.定径套 使制品通过定径套获得良好的表面粗糙度,正确的尺寸和几何形状。 7.堵塞 防止压缩空气泄漏,保证管内一定的压力。 二、挤出成型机头分类及其设计原则 1.分类 由于挤出制品的形状和要求不同,因此要有相应的机头满足制品的要求,机头种类很多,大致可按以下三种特征来进行分类: (1)按机头用途分类

可分为挤管机头、吹管机头、挤板机头等; (2)按制品出口方向分类 可分为直向机头和横向机头,前者机头内料流方向与挤出机螺杆轴向一致,如硬管机头;后者机头内料流方向与挤出机螺杆轴向成某一角度,如电缆机头; (3)按机头内压力大小分类 可分为低压机头(料流压力为MPa)、中压机头(料流压力为4-10MPa)和高压机头(料流压力在10MPa以上)。 2.设计原则 (1)流道呈流线型 为使物料能沿着机头的流道充满并均匀地被挤出,同时避免物料发生过热分解,机头内流道应呈流线型,不能急剧地扩大或缩小,更不能有死角和停滞区,流道应加工得十分光滑,表面粗糙度应在Ra 0.4um以下。 (2)足够的压缩比 为使制品密实和消除因分流器支架造成的结合缝,根据制品和塑料种类不同,应设计足够的压缩比。 (3)正确的断面形状 机头的成型部分的设计应保证物料挤出后具有

塑料的工艺性能

塑料的工艺性能 1.1 聚合物的热力学性能与加工工艺 1 .聚合物的热力学性能 聚合物的物理、力学性能与温度密切相关,当温度变化时,聚合物的受力行为发生变化,呈现出不同的力学状态,表现出分阶段的力学性能特点。图2 一2 所示为线型无定形聚合物在恒应力作用下变形量与温度的关系曲线,也称为热力学曲线。此曲线明显分为三个阶段,即线型无定形聚合物常存在的三种物理状态:玻璃态、高弹态和猫流态。 在温度较低时(温度低于T : ) ,曲线基本上是水平的,变形量小,而且是可逆的;但弹性模量较高,聚合物处于此状态时表现为玻璃态。此时,物体受力的变形符合胡克定律,应变与应力成正比,并在瞬时达到平衡。当温度上升时(温度在T 。至T ,间),曲线开始急剧变化,但很快趋于水平。聚合物的体积膨胀,表现为柔软而富有弹性的高弹态(或橡胶态)。此时,变形量很大,而弹性模量显著降低,外力去除后变形量可以回复,弹性是可逆的。如果温度继续上升(温度高于Tf ) ,变形迅速发展,弹性模量再次很快下降,聚合物即产生私性流动,成为勃流态。此时变形是不可逆的,物质成为液体。这里,T :为玻璃态与高弹态间的转变温度,称为玻璃化温度;T .为高弹态与猫流态的转变温度,称为猫流沮度。在常温下,玻璃态的典型材料是有机玻璃,高弹态的典型材料是橡胶,勃流态的典型材料是熔融树脂(如猫合剂)。 聚合物处于玻璃态时硬而不脆,可作为结构件使用。但塑料的使用温度不能太低,当温度低于T 卜时,物理性能发生变化,在很小的外力作用下就会发生断裂,使塑料失去使用价值。通常称T ‘为脆化温度,它是塑料使用的下限温度。当温度高于T .时,塑料不能保持其尺寸的稳定性和使用性能,因此,几是塑料使用的上限温度.显然,从使用的角度看,TL 与T 。间的范围越宽越好。当聚合物的温度升到如图2 一2 所示中的Td 温度时,便开始分解,所以称Td 为分解温度。聚合物在T 「一Td 温度范围内是猫流态,塑料的成型加工就是在这个范围内进行的。这个范围越宽,塑料成型加工就越容易进行。聚苯乙烯、聚乙烯、聚丙烯的T ,一Td 范围相当宽,可在相当宽的温度范围里呈私流态,不易分解,因而易于操作。硬聚氯乙烯则不然,它的赫流温度与分解温度很接近,而且即使在接近Td 的温度下,虽经高压作用,其流动性仍然很小,成型加工就很困难。 聚合物的成型加工是在勃流状态中实现的,要使聚合物达到私流态,加热只是方法之一;加入溶剂使聚合物达到砧流态则是另外的一种方式。通过加入增塑剂可以降低聚合物的勒流温度。粘流温度T ,是塑料成型加工的最低温度,猫流温度不仅与聚合物的化学结构有关,而且与相对分子质量的大小有关。勃流温度随相对分子质量的增高而升高。在塑料的成型加工过程中,首先要化验聚合物的猫度与熔融指数(熔融指数是指聚合物在挤压力作用下产生变形和流动的能力),然后确定成型加工的温度。猫度值小,熔融指数大的树脂(即相对分子质量低的树脂)成型加工温度可选择低一些,但相对分子质量低的树脂制成的塑件强度较差。因此,塑料的使用性能与成型加工工艺必须科学、合理地选择。以上叙述的是热塑性线型无定形聚合物的热力学性能,而常用热固性树脂在成型前分子结构是线型的或带有支链型的,成型时在热和压力的作用下可达到一定的高弹态甚至翁流态,具有变形和可成型的能力。但在热力作用下,大分子间的交联化学反应也同时进行,直至形成高度交联的体型聚合物,此时,由于分子运动的阻力很大,随温度发生的力学状态变化很小,高弹态和勃流态基本消失,即转变成遇热不熔、高温时分解的物体。因此,热固性树脂成型时,应注意成型温度和成型时间的控制。

塑料成型工艺及模具设计--史上最全期末复习资料保证不挂科

塑料成型工艺与模具设计自编期末复习资料 湖南大学叶久新王群版 第一- - 三章 1、塑料成型方法: 注射成型有浇注系统成型热塑性塑料 压缩成型无浇注系统成型热固性塑料 压注成型有浇注系统 挤出成型有浇注系统 2、塑料模具分为:注射模具、压缩模具、传递模具、挤出模具、中空吹塑模具、热成型模 具 3、不同温度时聚合物呈现的三种状态: 低温态温度较低时呈玻璃态(固体态),在外力的作用下,有一定的变形,但变形可逆,即外力消失后,其变形也随之消失。 高弹态是橡胶态的弹性体。其变形能力显著增加,但变形仍可逆。 黏流态是粘性流体,常称为熔体。加工不可逆,一经成型冷却,形状保留。 4、聚合物单体经过聚合反应生成的高分子聚合物 5、塑料是以合成树脂为主要成分,加入适量的添加剂而组成的混合物。 优点:密度小、质量轻;比强度、比刚度高;电气性能好;光学性能好;化 学稳定性高;减摩、耐磨及减振、隔音性能好;多种防护性能 合成树脂的分子及结构分类:热固性塑料热塑性塑料 6、添加剂包括填充剂(增量作用又有改性效果)、稳定剂、润滑剂、着色剂和固化剂等。 7、交联------聚合物由线型结构转变为体型结构的反应. 8、降解——聚合物分子可能由于受到热和应力的作用或微量水分、酸、碱等杂质及空气 中氧的作用而导致其相对分子质量降低的现象. 9、塑化-------加入的塑料在料筒中进行加热由固体颗粒转化成粘流态并且具有良好的可塑 性过程. 10、流动性塑料熔体在一定的温度、压力作用下填充模具型腔的能力 热塑性塑料检测:熔融流动指数测定法、螺旋线长度试验法 影响塑料流动性的因素有以下三个: 温度料温高,则流动性大。 压力注射压力增大,则熔体收剪切作用越大,流动性也越大。 模具结构浇注系统的形式,尺寸,布置,冷却系统的设计,溶料的流动阻力等因素流动性较好的塑料有:聚乙烯、聚丙烯、聚苯乙烯、醋酸纤维等 流动性一般的塑料有:ABS(不透明)、AS、有机玻璃、聚甲醛等截面形状分流道较小流动性较差的塑料有:聚碳酸酯、硬聚氯乙烯等截面形状分流道较大11、热塑性塑料的种类有: 通用塑料 聚乙烯(PE)线型结晶,是塑料工业中产量最大的品种,无毒、无味、呈乳白色。 聚氯乙烯(PVC)线型无定型,是世界上产量最大的品种之一,价格便宜、应用广泛。

塑料成型工艺学之塑料挤出实验指导书070319

《塑料挤出成型》 实验指导书 岑兰 广东工业大学材料与能源学院 二00七年二月印刷 实验项目名称:塑料挤出成型 实验项目性质:综合性 所属课程名称:塑料成型工艺学 实验计划学时:4 一、实验目的 1、了解双螺杆挤出机的结构和工作原理,学会正确操作挤出机; 2、掌握塑料挤出成型原理,挤出过程中塑料的物理化学变化,正确选择挤出工艺 参数; 3、了解填充剂对塑料流动性和物理机械性能的影响。 二、实验内容和要求 挤出成型是塑料主要成型工艺之一,在塑料工业中占主要地位,可应用于挤出造粒、成型板、管、丝、膜、中空制品、异型材等制品。其基本原理是使塑料熔体在挤出机螺杆的挤压作用下,通过一定形状的口模(机头),使之在熔融状态下成型,然后再用牵引装置将它们连续地从口模中拉出,并同时进行冷却定型处理,而得到具有一定断面形状的制品。 塑料在熔融状态下成型,熔融时的流动性是非常重要的性质,而熔体粘度是表示流动性的基本物性。大多数塑料熔体属于假塑性流体,粘性剪切流动中,粘度受多种因素的影响,如剪切速率、温度、相对分子质量、相对分子质量分布和添加剂等的影响。填料的加入,一般会使塑料的流动性降低,影响程度与填充剂类型、粒径大小、用量、表面性质及填充剂与塑料基体之间界面作用等有关。因此对材料流动和变形性质进行测定,分析有关流变参数,确定其与加工参量之间的关系,这对材料成型加工极其重要。 三、实验主要仪器设备和材料 1、原材料

聚乙烯、聚丙烯、碳酸钙、木粉、高岭土、偶联剂等。 2、实验设备 双螺杆挤出机、高速混合机、熔体流动速率仪、拉伸试验机、硬度计、天平、秒表。 四、实验方法、步骤及结构测试 1、设计配方和配料 配方设计是树脂成型过程的重要步骤,为了提高塑料的成型性能,材料的稳定性和获得良好的制品性能并降低成本,必须在树脂基体中配以各种助剂。按所设计的配方称量树脂及各种助剂。 2、混料 混合过程是使多相不均态的各组分转变为多相均态的混合料,常用混合设备有高速混合器。 (1)加料及混合;将混合器清扫干净,将已称量好的树脂及助剂倒入混合器中,盖上釜盖,按启动按钮。 (2)出料;到达所要求的混合时间,马达停止转动,打开出料阀,点动按钮出料。 3、挤出 (1)开车前准备工作。 ①安装机头、口模、过滤网、多孔板、机头法兰; ②按规定加注润滑油; ③检查水、电、气,连接情况; ④检查整个系统的中心线,间隙调整; ⑤启动各运转设备,检查运转是否正常,有无异常声音; ⑥开启各部分加热电源,恒温30-60分钟。 (2)开车。 ①低速开车,空转,检查电动机、压力表等; ②逐渐加料,待物料挤出口模后再大量投料; ③开动辅助设备,将挤出物引上冷却、牵引设备,调整各参数到操作状态正常; ④开动切粒装置,得到挤出粒料。 (3)停车。 ①停止加料,将挤出机内的物料挤光,关闭料筒和机头口模的加热电源; ②关闭主机和辅机电源;打开机头连接法兰,清理滤网、多孔板和机头口模,清理 时用铜刷等;

挤出机过滤网对塑料挤出成型的影响

挤出机过滤网对塑料挤出成型的影响 在挤出机的挤出过程中,熔融物料通过过滤网被输送给模具。过滤网使物料得到过滤,并能改进物料的混合效果。但是,过滤网也能使工艺过程产生波动,导致背压和熔融物料温度上升,有时还会减少. 挤出机的过滤网被固定在一个多孔或槽的保护板上,这样可以使挤出机和模具之间形成密封。干净的过滤网所产生的压力较小,可能只有50~ 100lb/in2(1lb=0.4536Kg,1in=25.4mm)。随着压力的增加,过滤网上所截留的树脂中的杂质数量就变多,从而阻塞过滤网。 过滤网会影响熔融物料的温度 当更换阻塞的过滤网时,压力会突然下降,熔融物料的温度也可能会下降,从而造成产品的尺寸发生变化。为了保持产品的同一尺寸,可以调整挤出机的螺杆转速,也可以调整挤出机的线性速度。在挤出圆形产品时,这些变化可能不会导致严重的问题,但在挤出扁平或者外形不规则的产品时,熔融物料温度的变化可能会影响产品的外形尺寸。比如,在一个扁平模具里,较冷的熔融物料可能使片材中心偏薄,而使周边偏厚。这种情况可以通过对模具的自动或手动调整得到校正。 在过滤网变换器后面,配备一个能够保证熔融物料稳定地进入模具的齿轮泵,可以防止上述问题的发生。但是,熔融物料在过滤网更换后所发生的温度变化仍然需要通过对模具的调整来解决。同时,由于齿轮泵容易被坚硬的杂质损坏,因此,齿轮泵也需要得到精细的过滤网的保护。 有些硬质PVC加工商不愿使用过滤网的原因是,过滤网会使PVC熔融物料温度升高而易发生降解,这样就需要热稳定性更好的物料,从而增加了材料的成本。若使用PVC专用的过滤网变换器,也会增加成本。所以大多数硬质PVC加工商要么回避使用过滤网,要么使用不带变换器的粗过滤装置,只过滤较大颗粒的杂质。 如何选择过滤网 钢丝是挤出机最常用的金属过滤网材料。不锈钢虽然比较昂贵,但可用于某些PVC 生产线或其他场合以避免出现生锈。镍合金过滤网被应用于避免被氟聚合物或者PVDC所腐蚀的场合。

几种常用塑料的成型工艺介绍

几种常用塑料的成型工艺 ABS丙烯腈-丁二烯-苯乙烯共聚物?典型应用范围: 汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。 注塑模工艺条件: ?干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件?为80~90C下最少干燥2小时。材料温度应保证小于0.1%。?熔化温度:210~280C;建议温度:245C。?模具温度:25…70C。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。?注射压力:500~1000bar。?注射速度:中高速度。 化学和物理特性: ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。 三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的A BS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。 ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。?PA12 聚酰胺12或尼龙12 ?典型应用范围: 水量表和其他商业设备,电缆套,机械凸轮,滑动机构以及轴承等。 注塑模工艺条件: 干燥处理:加工之前应保证湿度在0.1%以下。如果材料是暴露在空气中储存,建议要在85C热空气中干燥4~5小时。如果材料是在密闭容器中储存,那么经过3小时温度平衡即可直接使用。 熔化温度:240~300C;对于普通特性材料不要超过310C,对于有阻燃特性材料不要超过270C。 模具温度:对于未增强型材料为30~40C,对于薄壁或大面积元件为80~90C,对100C。增加温度将增加材料的结晶度。精确地控制模具温~ 于增强型材料为? 90 度对PA12来说是很重要的。?注射压力:最大可到1000bar(建议使用低保压压力和高熔化温度)。?注射速度:高速(对于有玻璃添加剂的材料更好些)。 流道和浇口: 对于未加添加剂的材料,由于材料粘性较低,流道直径应在30mm左右。对于增强型材料要求5~8mm的大流道直径。流道形状应当全部为圆形。注入口应尽可能的短。可以使用多种形式的浇口。大型塑件不要使用小浇口,这是为了避免对塑件过高的压力或过大的

塑料水杯的成型工艺过程

水杯调研报告书 高分子 组长: 主讲人: 1、塑料水杯的发展现状

塑料水杯由当初的一次性水杯到如今的绿色环保塑料杯各式各样的塑料杯出现在我们的生活中,在此期间,塑料水杯的造型也由原来的单调造型到如今的造型丰富多彩美观大方,体现了工艺与艺术的结合。到如今,除了它的基本使用功能,塑料杯生产还要考虑健康、无毒、美观等。 塑料水杯通常分一次性的和可以重复使用的两大类。由于塑料水杯的使用方便,使用材料少,一半价格都很便宜。而对于一次性的塑料水杯一半都是采用的PET(聚对苯二甲酸乙二醇酯)。该塑料不能装热水。耐热至70℃。而对于可以重复使用的水杯一半采用耐高温无毒的高性能塑料如一般市场上常卖的都PP塑料杯,这种树脂本身来讲是不含有害物质,使用起来比较安全。在市场上也有很好的销售。 时代的发展人们开始追求个性化与人性化,因塑料水杯多变的造型、鲜艳的颜色、不怕摔打的特性,受到许多人喜爱。随着塑料水杯材料的不断进步,随着无毒无害环保材料的推广。塑料水杯在近五年还是有长足发展。 常见塑料水杯主要包括杯盖、杯体、密封圈和手柄四个部件。下面主要根据原材料选择、配方设计和加工工艺等方面介绍各杯体的成型过程。 1、选择聚合物及助剂的原因 PP是聚丙烯,PC是聚碳酸酯。 首先,从理论上讲二者都是无毒的,但是从耐老化和耐候性方面讲,PP更适合做水杯。其次从合成方法上讲,PC一般是用双酚A型方法合成的,分子内含有苯环,虽然PC本身耐热性很好,但是作为高分子材料,其内部仍然含有一些低分子物质,这些物质在受热见光的情况下,会挥发分解,并且大多是致癌的。 因此通常情况下PP水杯更安全。但是为什么市面上有很多PC水杯呢?这是因为,PC 的透明性更好,更有玻璃的质感,所以商家为了取悦消费者也会生产PC的水杯。 (1)pp聚丙烯材料有催化剂,分子质量调节剂做成水杯的话加颜料。透明剂最好不能加无机盐的透明剂。 使用特性:耐130℃高温,透明度差,可重复使用。 强度刚度、硬度耐热性均优于低压聚乙烯,可在100℃左右使用。但低温时变脆,不耐磨、易老化。 PP在加工时要添加金属钝化剂和抗氧剂助剂,这些助剂对人的身体没有好处。但是与其他塑料相比,PP是无毒的,添加的助剂对人的危害最小,加上PP可以在110℃以下的水里进行沸煮消毒。 危害分析:是唯一可放入微波炉盛装食品加热的塑料容器,清洁后可重复使用。特别提醒:一些微波炉餐盒的盒体用05PP制成,盖却用不耐高温的06PS制成,决不可以与

塑料挤出技术

第五章挤出成型 5.0 本章介绍 1、主要内容:概论、单螺杆挤出机的基本结构、挤出理论和几种制品的挤出工艺。 2、重点:挤出理论、粒料的制备 3、难点:挤出理论。 4、教学要求: (1)掌握挤出理论,单螺杆挤出机的结构。 (2)掌握几种制品的挤出工艺。 挤出成型又称挤出模塑,是塑料重要的成型方法之一,绝大多数热塑性塑料均可用此法成型。 这种成型方法的特点是具有很高的生产率且能生产连续的型材,如管、棒、板、薄膜、丝、电线、电缆以及各种型材,还可用来混合、塑化、造粒和着色等。 挤出成型过程分两个阶段进行。 第一阶段将物料加热塑化,使呈粘流状态并在加压下通过一定形状的口模而成为截面与口模形状相仿的连续体; 第二阶段将这种连续体用适当的方法冷却、定型为所需产品。 物料的塑化和加压过程一般都是在挤出机内进行。挤出机按其加压方式可分为螺杆式和柱塞式两种。前者的特点是,借助螺杆旋转时螺纹所产生的推动力将物料推向口模。这种挤出机中通过螺杆强烈的剪切作用,促进物料的塑化和均匀分散,同时使挤出过程连续进行,因此可以提高挤出制品的质量和产量,它适用于绝大多数热塑性塑料的挤出。柱塞式挤出机中,通过粒筒加热塑化的物料,由柱塞推向口模。这种挤出机能够产生较大的压力,一般来说,其操作是间歇进行,物料的塑化程度和均匀性不如螺杆式挤出机,因此应用范围受限制。它适用于聚四氟乙烯,超高相对分子质量聚乙烯等塑料的挤出。 本章以螺杆式挤出机的挤出工艺及有关辅助设备为重点加以介绍。 5.1 单螺杆挤出机的基本结构和辅机

一、单螺杆挤出机基本结构 单螺杆挤出机基本结构,主要由传动系统、加料系统、挤压系统、加热系统、冷却系统以及机头和口模等部分组成 1、传动系统 传动系统是挤出机的重要组成部分之一。它的作用是在给定的工艺条件(如机头压力、螺杆转数、挤出量、温度等)下使螺杆具有必要的扭矩和转数均匀地回转而完成挤出过程。 传动系统由电动机、减速装置、变速器及轴承系统组成。 常用的挤出机电动机有交流整流子电动机和直流电动机。减速器一般为定轴轮系减速器、齿轮减速器和涡轮减速器。国产挤出机有采用摆线针轮减速器的。三相整流子电动机和普通齿轮减速器和涡轮减速箱组成的传动系统,运转可 靠、性能稳定,控制、维修方便。电动机得到合理的利用,启动性能也很好,其调速范围有1:3, 1:6;1:160但由于调速范围大于1:3后电动机体积显著增大,成本也相应提高,故国内大都采用1:3的整流子电动机。 直流电动机和一般齿轮减速箱组成的传动系统的调速范围较宽。改变电枢电压时得到的是恒扭矩调速;改变激磁电压得到的是恒功率调速,此时随着转数的增加功率保持不变,而扭矩相应减少。为充分利用直流电动机这一特性,可用其恒扭矩调速段来加上硬Pvc等硬料,用恒功率调速段来加工较软的物料,这样可以合理利用电动机。但当直流电动机的转速低于100 - 200r /min时,其工作性能是不稳定的,而且在低速时电动机冷却能力也相应下降。为此,可以另加鼓风机进行强力冷却。 用直流电动机和摆线针轮减速器或行星齿轮减速器组成的传动系统具有紧凑、轻便、效率高、声响小的特点。

BMC塑料及其成型工艺讲解

BMC材料及成型工艺 BMC(bulk molding compound)或DMC(dough molding compound)称为团状模塑料(以前也称BT-3),和片状模塑料一样,都是短切纤维增强的热固性模塑料。如今在美国、日本和我国,通常BMC和DMC是指同一种材料,根据美国SPI的定义,BMC 即为化学增稠了的DMC。具有抗冲、抗压、抗弯曲、抗拉伸,高电容量,高表面电阻,高绝缘强度,高耐电弧性,以及无毒耐腐蚀,阻燃等一系列优异的物理性能,尤其具有流动性好、模塑压力低、成型时间短、模塑温度低等优良成型特性。它在以下领域被广泛的应用: 一、电器和电子元器件:各类高低压电器开关的外壳及结构部件,化工和矿用防爆型电器零部件,电机,电磁阀整体封装,母线框,接线柱板,绝缘杆,绝缘子各种规格绝缘板材等。 二、汽车工业:汽车壳体、保险杠,车灯架、车灯碗、后备箱等车内外制件和功能件等。 三、仪表工业:仪表架、仪表壳,操纵杆等。 四、民用产品:卫生洁具,装饰品、洗碗机内胆、器皿等。(66-10MW微波炉器皿专用BMC材料,无毒耐热) 五、其他方面:电子复印机,印刷机械,办公机械的结构部件,电子计算机零件等。 BMC的基本特征是:大多经化学增稠;玻纤含量在9%~25%之间比SMC(Sheet molding compound的缩写,有优越的电气性能,耐腐蚀性能,质轻及工程设计容易、灵活等优点,其机械性能可以与部分金属材料相媲美,因而广泛应用于运输车辆、建筑、电子/电气等行业中。)少,故物理机械性能稍低;短切长

度范围为3~25mm;填料含量大多比SMC高;物料流动性、成型工艺性及制品表观质量会比SMC好;成型薄壁、狭窄等精细复杂结构的制品突显优势。但成型条件、工序管理、缺陷对策及模具要领等都和SMC工艺相似。 BMC模塑料的制备流程 第一步:将配方中的液体组份和其它助剂先在 高速打浆机中充分分散、搅拌制备成糊料; 第二步:将配方中的粉体填料投入sigma捏合 机中稍加拌和,然后将上述准备好的糊 料倒入sigma机中,进行充分的捏合拌 和,大致30~45分完成液~固两相的均匀 混合; 第三步:将配方中的短切玻纤,在开机状态下撒 落在已拌匀的膏体上,大致5~8分钟强 力拌和,至玻纤都被膏体包覆浸渍即可, 不宜过久而折断玻纤引起降解; 第四步:倾倒出料,称重分装入不透气的薄膜包装袋中,口部扎紧,常温下自然熟化3~5天即可使用。 混练用的捏合机 一般采用Z形捏合机又称双臂捏合机或sigma桨叶捏合机,桨叶形状可有多种类型,两根桨叶的速比最好无公约数,浆叶外缘与室壁间隙约为5~8mm。 制品所能实现或达到的尺寸要求和几何精度及尺寸误差的累积原理 项目达到的水

塑料挤出工艺原则

塑料挤出工艺原则 挤出的基本机理: (1)一个螺杆在筒体中转动并把塑料向前推动 螺杆实际上是一个斜面或者斜坡,缠绕在中心层上。其目的是增加压力以便克服较大的阻力。就一台挤出机而言,有3种阻力需要克服:固体颗粒(进料)对筒壁的摩擦力和螺杆转动前几圈时(进料区)它们之 间的相互摩擦力;熔体在筒壁上的附着力;熔体被向前推动时其内部的物流阻力。牛顿曾解释说,如果一个物体没有向一个给定的方向运动,那么这个物体上的力就在这个方向中平衡。螺杆不是以轴向运动的,虽然在圆周附近它可能横向快速转动。因此,螺杆上的轴向力被平衡了,而且如果它给塑料熔体施加了一个很大的向前推力那么它也同时给某物体施加了一个相同向后推力。在这里,它施加的推力是作用在进料口后面的轴承,止推轴承上。 多数单螺杆是右旋螺纹,像木工和机器中使用的螺杆和螺栓。如果从后面看,它们是反向转动,因为它们要尽力向后旋出筒体。在一些双螺杆挤出机中,两个螺杆在两个筒体中反向转动并相互交*,因此一个必须是右向的,另一个必须是左向的。在其它咬合双螺杆中,两个螺杆以相同的方向转动因而必须有相同的取向。然而,不管是哪种情况都有吸收向后力的止推轴承,牛顿的原理依然适用。可挤出的塑料是热塑料,它们在加热时熔化并在冷却时再次凝固。熔化塑料的热量从何而来,进料预热和筒体/模具加热器可能起作用而且在启动时非常重要,但是,电机输入能量--电机克服粘稠熔体的阻力转动螺杆时生成于筒体内的摩擦热量--是所有塑料最重要的热源,小系统、低速螺杆、高熔体温度塑料和挤出涂层应用除外。

对于所有其他操作,认识到筒体加热器不是操作中的主要热源是很重要的,因而对挤出的作用比我们预计的可能要小(见第11条原则)。后筒体温度可能依然重要,因为它影响齿合或者进料中的固体物输送速度。模头和模具温度通常应该是想要的熔体温度或者接近于这一温度,除非它们用于某具体目的像上光、流体分配或者压力控制。 (3)减速原则 在多数挤出机中,螺杆速度的变化通过调整电机速度实现。电机通常以大约1750rpm的全速转动,但是这对一个挤出机螺杆来说太快了。如果以如此快的速度转动,就会产生太多的摩擦热量而且塑料的滞留时间也太短而不能制备均匀的、很好搅拌的熔体。典型的减速比率在10:1到20:1之间。第一阶段既可以用齿轮也可以滑轮组,但是第二阶段都用齿轮而且螺杆定位在最后一个大齿轮中心。在一些慢速运行的机器中(比如用于UPVC的双螺杆),可能有3个减速阶段并且最大速度可能会低到30rpm或更低(比率达60:1)。另一个极端是,一些用于搅拌的很长的双螺杆可以以600rpm或更快的速度运行, 因此需要一个非常低的减速率以及很多深冷却。 有时减速率与任务匹配有误--会有太多的能量不能使用,而且有可能在电机和改变最大速度的第一个减速阶段之间增加一个滑轮组。这要么使螺杆速度增加到超过先前极限或者降低最大速度允许该系统以最大速度更大的百分比运行。这将增加可获得能量、减少安培数并避免电机问题。在两种情况中,根据材料和其冷却需要,输出可能会增加。 (4)进料担当冷却剂 挤出是把电机的能量--有时是加热器的--传送到冷塑料上,从而把它从固体转换成熔体。输入进料比给料区中的筒体和螺杆表面温度低。然而,给料区中的筒体表面几乎总是在塑料熔化范围之上。它通过与进料颗粒接触而冷却,但热量由热前

相关文档
最新文档