高等传热学相变导热解(移动边界)

高等传热学相变导热解(移动边界)
高等传热学相变导热解(移动边界)

高等传热学导热理论——相变导热(移动边界问题)讨论

第五讲:相变导热(移动边界问题):

移动边界的导热问题有许多种,本讲只讲固液相变时的导热模型。

5.1 相变换热特点与分类: 特点:

(1) 相变处存在一个界面把不同相的物质分成两个区间(实际不是一个面,

而是一个区)。

(2) 相变面随时间移动,移动规律时问题的一部分。

(3) 移动面可作为边界,决定了相变问题是非线性问题。 分类:

(1) 半无限大体单区域问题(Stefan Question ) (2) 半无限大体双区域问题(Neumman Question ) (3) 有限双区域问题

5.2 相变导热的数学描述和解: 假定:固液两相内部只有导热,没有对流(适用于深空中相变)。 物性为常量。不考虑密度变化引起的体积变化。 控制方程:

对固相:

2

21s s s t t a x

τ

??=?? 对液相:

2

2

1l l l t t a x

τ

??=

??

初值条件:0:s l t t t τ∞=== 边界条件:

0:::s l w l s l s x t ort t x t ort or

x t ort t ∞

===∞≠∞

=?=

在相变界面,热量守恒,温度连续,Q l 为相变潜热:

()():s l s

l

l l

s l p t t d x Q and

t t t x

x

d δτδτλλρτ

??==+==??

5.2.1 半无限大体单区域问题(Stefan Question )的简化解:

以融解过程为例:

忽略液相显热,

2

210l l l t t a x

τ

??==??,方程解为一直线,由边界条件得:

()/l w p w t t t t x δ

=+-

对固相,忽略温差:w p t t t ∞==,即固相温度恒等于相变温度等于初始温度。 由相变处得换热条件求δ的变化规律:

()()():0()l l l

l l

p w l l

t d d x Q t t Q x

dx

d λδτδτδτλρρδ

τ

δ?==+=

-+?=

=

式中:()/l l p w l Ste c t t Q =-叫Stefan ’s Number ,物理意义是相变时液相显热和液固潜热比。液体厚度与时间的开平方成正比。所以:

进入物体的融解热流密度为:0

)l l

x w p t q t t x

λ=?=-=

-?,

热流密度与时间的开平方成反比。

5.2.2 半无限大体单区域问题(Stefan Question )的精确解:

同样以融解过程为例:

对液相,

2

21l l l t t a x

τ

??=??,设方程解为(满足初始条件):

(/

l t A Berf x =+

由边界温度条件得:

l w p w

t t t t -=-

对固相,忽略温差:w p t t t ∞==,即固相温度恒等于相变温度等于初始温度。 由相变处得换热条件求δ

的变化规律,设/δΩ=度也与时间的开平方成正比。

上式是关于凝固常数的方程,叫相变问题的特征方程。

进入物体的融解热流密度为:0

()l l

x t t t q x

λλ=-?=-=

?,热流密度同样

与时间的开平方成反比。

5.2.3 半无限大体双区域问题(Neumman Question )的精确解:

同样以融解过程为例:

对液相,

2

21l l l t t a x

τ

??=??,设方程解为(满足初始条件):

2

()():)0

exp()()())/l l l l

p w l w p l l l l t d x Q x d t t erf t t Q a Ste δτδτλρτ

λ?=+?=

-+

=ΩΩΩ=-=

(/

l w t t Aerf x =+

由边界温度条件得:

l w p w

t t t t -=

-

,t t A -=

对固相,

2

21s s s t t a x

τ

??=

??,设方程解为(满足初始条件):

(/

l t t Berfc x ∞=+

由边界温度条件得:

s p t t t t ∞∞

-=

-

,t t B -=

由相变处得换热条件求δ

的变化规律,设/δΩ=

度也与时间的开平方成正比,/δΩ=。

得相变问题的特征方程:

(

)

2

l x t A

x e

δ

=Ω?=?(

)

2

s x t B

x

e

δβ=Ω?=-

?

(

)

()

2

2

))

()/()/exp()()

exp()()

p w p l w p l l l s p l l l t t t t t t a Q t t a Q erf erfc λρλβρ∞∞-+

=-

----

=

ΩΩΩΩΩ

Ω

2

2

/exp()()

exp()()

l

s s l Ste Ste erf erfc βρρ-

=

ΩΩΩΩΩΩ

进入物体的融解热流密度为:0

()l l

x t t t q x

λλ=-?=-=

?,热流密度还是

与时间的开平方成反比。

5.2.4 非线性问题求解方法总结:

对非线性问题,直接求解难度大,一般是进行适当简化,在简化基础上构造

()():l s l

l l

s

t t d x Q x

d x

δτδτλρλτ

??=+=??

一个满足大多数唯一性条件的,保留部分待解常数的解函数。将这个解函数代入余下的唯一性条件,求出待解常数,即为近似解或精确解。

5.3 关于湖水结冰问题的讨论:

几何条件假定:湖面很大,也很深,看成半无限大体。

换热条件假定:结冰前湖水均温,为t ∞,湖水主体温度一直保持t ∞。大气环境温度为t a ,湖面与大气间的表面传热系数为常量h 1,冰层下表面与湖水间的表面传热系数也为常量h 2。

物性假定:因为在0℃附近,冰的比热c s 《Q l ,忽略冰层热容作用。由此可得在冰层中的温度分布为直线。

设坐标原点在湖面,冰层厚度为δ,我们根据能量守恒和平壁导热规律得:

21()1//p a p s l

s

t t d h t t Q h d δρδλτ

∞-=-++ (1)

冰层温度分布:()/s w p w t t t t x δ=+- 求解δ,令

()()()()()

112

2

2

11///////s p p a s s s p a l

s s s s s h m t t t t R h h Ste Fo

Ste c t t Q Fo h c a h δδλττρλτλ∞==--===-==

代入(1)式:

()

()22

11

()1

11(1)

1p s s l

p a p

a h t t d d Q m R d h t t h t

t d d m R d λδδρδτ

τ

δδτ

δ

∞-=

+=+

+---+=

+

00,,00s t t ττδδ∞=→===→=

(

)

2

11

11(1)

0.5

/(1d d m R du m δδτ

δτ++=-+=-?

{ln[1/(1)]}/(,)mR mR mR f mR τδδδ=----=

讨论:当()max ,1/mR mR τδ→∞→-。mR 一定时,冰层的最大厚度也就确定。此时湖水对冰层的自然对流热流量等于湖面对大气散发的热流量,湖水凝结停止。

当0p t t m R ∞=→=,湖水比热无穷大,(

)2

2111τδδ=+-→=此种情况冰层没有极大值,可一直增厚。

即11)/s h δλ=。

当1m R =,冰层得到的热流量等于散出的热流量,

ln 0,c c τδδτδ=--→==-,此种情况由于厚度不能为负值,故不会结冰,尽

管t a 小于冰点。

当,p w a t t t t ∞==,湖水比热无穷大(或湖水与冰间的换热系数无穷大),湖面与大气换热系数无穷大,有:p w

p w

s

s l

s

s l

t t t t d Q d d d Q δλρλτδδ

δ

τ

ρ--=→=

δ=

=

此即Stefan 近似解。

此处的分析方法又叫做准稳态近似法。

高等传热学作业

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθθθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

专升本《工程传热学》_试卷_答案

专升本《工程传热学》 一、 (共18题,共156分) 1. 说明得出导热微分方程所依据的基本定律。 (8分) 标准答案:能量守恒方程和傅利叶定律。 2. 写出肋效率的定义。对于等截面直肋,肋效率受哪些因素影响? (8分) 标准答案: 3. 在液体沸腾过程中一个球形汽泡存在的条件是什么?为什么需要这样的条件? (8分) 标准答案:在液体沸腾过程中一个球形汽泡存在的条件是液体必须有一定的过热度。这是因为从汽泡的力平衡条件得出 ,只要汽泡半径不是无穷大,蒸汽压力就大于液体压力,它们 各自对应的饱和温度就不同有 ;又由汽泡热平衡条件有 ,而汽泡存在必须保持其 饱和温度,那么液体温度,即大于其对应的饱和温度,也就是液体必须过热。 4. 什么是速度边界层?动量方程在热边界层中得到简化所必须满足的条件是什么?这样的简化有何好处? (8分) 标准答案:流体流过壁面时流体速度发生显著变化的一个薄层。 动量方程得以在边界层中简化,必须存在足够大的Re 数,也就是具有的数量级。 此时动量扩散项才能够被忽略。从而使动量微分方程变为抛物型偏微分方程,成为可求解的形式。 5. 在导热过程中产生了Bi 数,而在对流换热过程中产生了Nu 数,写出它们的物理量组成,并指出它们之间的差别是什么? (8分) 标准答案: 从物理量的组成来看,Bi 数的导热系数 为固体的值,而 Nu 数的则为流体的值;Bi 数的特征尺寸Ls 在固体侧定义,而Nu 数的Lf 则在流体侧定义。从物理意义上看,前者反映了导热系统同环境之间的换热性能与其导热性能的对比关系,而后者则反映了换热系统中流体与壁面地换热性能与其自身的导热性能的对比关系。 6. 外径为50mm ,表面温度为180 的圆筒,在它的外面用导热系数为0.14W/ 的保温材料 包扎起来,保温材料的厚度为 30mm 。要求外表面温度小于60,试计算每米管道的散热量。如 果将保温材料换成导热系数为0.034 W/的保温材料,导热量同上,其它条件也不变。试计算 新保温材料的厚度。 (12分) 标准答案: 7. 针对如下导热微分方程写出方程各项的含义,并说明得出导热微分方程所依据的基本定律? (8 分) 标准答案: 导热微分方程所依据的基本定律是傅里叶定律和导热微分方程。 8. 写出Bi 数的定义式并解释其意义。在Bi 0 的情况下,一初始温度为t0的平板突然置于温度为的流体中冷却(如图1 ),粗略画出τ=τ1>0和 时平板附近的流体和平板的温度分布。 (8分) 标准答案:反映了导热系统同环境之间的换热性能与其导热性能的对比关系。

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

传热学作业

沈阳航空航天大学 预测燃气涡轮燃烧室出口温度场 沈阳航空航天大学 2013年6月28日

计算传热学 图1模型结构和尺寸图 1.传热过程简述 计算任务是用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内烟气流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。在进行分析时要同时考虑导热、对流、辐射三种传热方式。 (1) 直角弯管内外壁面间的热传导。注意:如果壁面按薄壁处理时,则不用考虑此项,因为此时管壁厚度忽略不计,内壁和外壁温度相差几乎为零。 (2) 管道外壁面与外界环境发生的自然对流换热。由于流体浮生力与粘性力对自然对流的影响,横管与竖管对流换热系数略有不同的。计算公式也不一样。同时,管道内壁面同烟气发生的强制对流换热。 (3) 管道外壁和大空间(环境)发生辐射换热 通过烟气温度和流量,我们可以推断出管道内烟气为湍流流动。这在随后的模

沈阳航空航天大学 拟计算中可以得到证实。 2.计算方案分析 2.1 控制方程及简化 2.1.1质量守恒方程: 任何流动问题都要满足质量守恒方程,即连续方程。其积分形式为: 0vol A dxdydz dA t ρρ?+=?????? 式中,vol 表示控制体;A 表示控制面。第一项表示控制体内部质量的增量,第二项表示通 过控制面的净通量。 直角坐标系中的微分形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 上式表示单位时间内流体微元体中质量的增加,等于同一时间段内流入该微元体的净增量。 对于定常不可压缩流动,密度ρ为常数,该方程可简化为 0u v w x y z ???++=??? 2.1.2动量守恒方程: 动量守恒方程也是任何流动系数都必须满足的基本定律。数学式表示为: F m dv dt δδ= 流体的粘性本构方程得到直角坐标系下的动量守恒方程,即N-S 方程: ()()()u u p div Uu div gradu S t x ρρμ??+=+-?? ()()()v v p div Uv div gradv S t y ρρμ??+=+-?? ()()()w w p div Uw div gradw S t z ρρμ??+=+-?? 该方程是依据微元体中的流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。式中u S 、v S 、w S 是动量方程中的广义源项。和前面方程一样上式

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

西安交通大学传热学大作业二维温度场热电比拟实验1

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道, 于纸面方向上用冷空气及砖墙的温度变化很小, 可以近似地予以忽略。 在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每 米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在 0℃及 30℃; 第二种情况:内外壁均为第三类边界条 件, 且已知: t 1 30 C,h 1 10.35W / m 2 K 2 t 2 10 C, h 2 3.93W / m 2 K 砖墙导热系数 0.35/ m K 二、数学描写 由对称的界面必是绝热面, 态、无内热源的导热问题。 控制方程: 22 tt 22 xy 边界条件: 第一种情况: 由对称性知边界 1 绝热: 边界 2 为等温边界,满足第一类边界条件: t w 0 C ; 边界 3 为等温边界,满足第一类边界条件: t w 30 C 。 第一种情况: 由对称性知边界 1 绝热: q w 0; 边界 2 为对流边界,满足第三类边界条件: q w ( t )w h 2(t w 可取左上方的四分之一墙角为研究对象, 该问题为二维、 稳 图1-

t f ); n t 边界3 为对流边界,满足第三类边界条件:q w ( ) w h 2 (t w t f )。 w n w 2 w f

0,m 6,n 1~ 7;m 7 ~ 16,n 7 30,m 1,n 1~12;m 2 ~ 16,n 12 三、方程离散 用一系列与坐标轴平行的间隔 0.1m 的二维网格线 将温度区域划分为若干子区域,如图 1-3 所示。 采用热平衡法, 利用傅里叶导热定律和能量守恒定 律,按照以导入元体( m,n )方向的热流量为正,列写 每个节点代表的元体的代数方程, 第一种情况: 边界点: 1 边界 绝热边界) : 边界 图1-3 t m ,1 t 16,n 等温内边界) : 14 (2t m,2 1 4 (2t 15,n t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 t 16,n 1), n 8 ~ 11 边界 等温外边界) : 内节 点: 1 (t t t t ) 4 m 1,n m 1,n m ,n 1 m,n 1 m 2 ~ 5,n 2 ~11;m 6 ~ 15,n 8 ~ 11 t m,n 第二种情况 边界点: 边界 1(绝热边界) : t m ,1 1 4 (2t m,2 t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 4 (2t 15,n t 16,n 1 t 16,n 1), n 8 ~11 4 边界 2(内对流边界) : t6,n 2t 5,n t 6,n 1 t 6,n 1 2Bi 1t 1 ,n 1~ 6 6,n 2(Bi 2) t m,n t m,n

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

高等传热学部分答案.

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内 速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

最新生活中的传热学-(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题: 1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析? 答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△ t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。 3、滚烫的砂锅放在湿地上易破裂。为什么? 答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而内壁的热又一下子传不出来,外壁冷却很快的收缩,内壁却还很热,没什么收缩,加以陶瓷特别脆,所以往往裂开。 或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。 4、往保温瓶灌开水时,不灌满能更好地保温。为什么? 答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么? 答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。 7、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么? 答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间内传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。 基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间内所传递的热量不至于达到灼伤人的温度

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

高等传热学课件对流换热-第2章-1

第二章层流强制对流换热 §2-1 层流对流换热边界层微分方程的物理数学性质 由于对流换热基本方程组的非线性与耦合性,求解异常困难,在19世纪,对粘性流动与换热进行求解几乎是不可能的。自从1904年德国的著名力学家Prandtl提出边界层的理论后,借助于该理论对N-S 方程进行简化,在某些简单的情况下可进行理论求解,从而为现代流体力学的发展奠定了基础,同时也推动了对流换热理论的发展。到目前为止,已获得了十几个层流对流换热问题的分析解。下面介绍边界层理论的要点及边界层微分方程的数理性质。

一、边界层理论要点 1.流动边界层 绕流固体壁面的粘 性流体流场可分为 边界层区、主流区(势流 区)两个特征不同的流动 区域: (a). 壁面附近边界层:在垂直于壁面方向,速度变化剧烈,存在很大 的速度梯度,粘性应力起重要作用。速度分布,粘性 (b). 离壁面较远的主流区:速度梯度很小,可以忽略粘性应力,视为 理想流体的流动。 δ 。(尺度) (c). 边界层厚度δ远比流过的距离L小得多,即L (d). 边界层内存在层流、湍流、过度流等不同流态。(流态)

2.热边界层 (a). 壁面附近的热边界层:垂直于壁面方向,存在很大的温度梯度, 沿壁面法向的导热起主要作用。 (b). 离壁面稍远的主流区:混合剧烈,温度梯度很小,可忽略导热。 δ 。 (c).热边界层厚度t L (d). tδ与δ的关系,起决于流体物性。(r P数) (e). 热边界层的流动状态对换热起着决定性作用。 从物理本质上看,边界层是扩散效应(微观热运动)起主要或重要作用的区域;或者说是扩散效应的影响区域。 层流热边界层内:沿壁面法向的热流传递方式主要是导热。 湍流边界层内:粘性底层靠导热,湍流核心区的脉动对流占主要地位。

同济大学传热学题库共6套含答案

传热学(一) ?名词解释(本大题共 5 小题,每小题 4 分,共 20 分) 21. 导热基本定律 22. 非稳态导热 23. 凝结换热 24. 黑度 25. 有效辐射 ?简答题 ( 本大题共 2 小题 , 每小题 8 分 , 共 16 分 ) 26. 简述非稳态导热的基本特点。 27. 什么是临界热绝缘直径?平壁外和圆管外敷设保温材料是否一定能起到保温的作用,为什么? ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 一内径为 300mm 、厚为 10mm 的钢管表面包上一层厚为 20mm 的保温材料,钢材料及保温材料的导热系数分别为 48 和 0.1 ,钢管内壁及保温层外壁温度分别为220 ℃及 40 ℃,管长为 10m 。试求该管壁的散热量。 29. 一内径为 75mm 、壁厚 2.5mm 的热水管,管壁材料的导热系数为 60 ,管内热水温度为 90 ℃,管外空气温度为 20 ℃。管内外的换热系数分别为和 。试求该热水管单位长度的散热量。 ?名词解释 ( 本大题共 5 小题 , 每小题 4 分 , 共 20 分 ) 21. 导热基本定律 : 当导热体中进行纯导热时 , 通过导热面的热流密度 , 其值与该处温度梯度的绝对值成正比 , 而方向与温度梯度相反。

22. 发生在非稳态温度场内的导热过程称为非稳态导热。 或:物体中的温度分布随时间而变化的导热称为非稳态导热。 23. 蒸汽同低于其饱和温度的冷壁面接触时 , 蒸汽就会在壁面上发生凝结过程成为流液体。 24. 物体的辐射力与同温度下黑体辐射力之比。 25. 单位时间内离开单位表面积的总辐射能。 ?简答题(本大题共 2 小题,每小题 8 分,共 16 分) 26. ( 1 )随着导热过程的进行 , 导热体内温度不断变化 , 好象温度会从物体的一部分逐渐向另一部分转播一样 , 习惯上称为导温现象。这在稳态导热中是不存在的。 ( 2 )非稳态导热过程中导热体自身参与吸热(或放热),即导热体有储热现象,所以即使对通过平壁的非稳态导热来说,在与热流方向相垂直的不同截面上的热流量也是处处不等的,而在一维稳态导热中通过各层的热流量是相等的。 ( 3 )非稳态导热过程中的温度梯度及两侧壁温差远大于稳态导热。 27. ( 1 )对应于总热阻为极小值时的隔热层外径称为临界热绝缘直径。 ( 2 )平壁外敷设保温材料一定能起到保温的作用,因为增加了一项导热热阻,从而增大了总热阻,达到削弱传热的目的。 ( 3 )圆筒壁外敷设保温材料不一定能起到保温的作用,虽然增加了一项热阻,但外壁的换热热阻随之减小,所以总热阻有可能减小,也有可能增大。 ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 解:已知 d 1 =300mm d 2 =300+2 × 10=320mm d 3 =320+2 × 20=360mm m t w1 =220 ℃ t w2 =40 ℃ =9591.226W 29. 解:已知 d 1 =75mm=0.075m d 2 =75+2 × 2.5=80mm=0.08m t f1 =90 ℃ t f2 =20 ℃

10高等传热学标准答案

2010高等传热学标准答案 合肥工业大学机械与汽车工程学院研究生考试试卷课程名称高等传热学考试日期2011-12-30姓名年级班级学号得分--------------------------------------------------------------------------------------------------------------------------------------------------------共 4 页第 1 页本试卷共5题,每题20分一、厚度为50mm的无限大平壁在稳态时壁内温度分布为t=100-10000x2,平壁材料的导热系数为40W/(),试计算:壁内单位体积内热源生成热;平壁中心面、两外表面的热流密度及这三个热流密度与内热源生成热之间的关系。2?d2t?d????t??40??2?104?8?105W/m3 ?0求得?解:根据2??dxdx2??(2)q???dt??40??2?104x?8?105

x dx??装订线平壁中心面:x=0,q=0;中心面是对称面;左外表面:x=-25mm,q=-2×104W/m2 右外表面:x=25mm, q=2×104W/m2 2d????t,所以q???dt???dx???x 因为:?2?dxdx0x二、用热电偶测量气流的温度,热电偶结点看成圆球,若气流和热电偶结点间的对流表面换热系数h=400W/m2K,定压比热容cp=400J/(),密度ρ=8500kg/m3 (1) 若时间常数为1s,求热电偶结点的直径; (2) 若将初始温度为25℃,时间常数为1s的热电偶放入200℃的气流中,热电偶结点温度达到199℃需要多少时间? (3) 若环境温度为25℃的大空间,热电偶结点的发射率为,忽略热电偶的导热损失,热电偶测得的气流温度为195℃,求气流的实际温度。解:时间常数:4?cpV?cpR3?c????1hA3hh?4?R23h?c3?4 00?1R???? ?cp8500?400?cp?R3D?2 R???hA???exp???可得???0?cVp??????cpVhAln?8500?400?? 200??ln? ?03?40025?200 考虑到辐射影

高等传热学作业修订版

高等传热学作业修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ? θ? θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各 向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2222222sin )(sin sin )( (1-6)

高等传热学考试范围(答案)

1.强迫流动换热如何受热物性影响? 答:强迫对流换热与Re和Pr有关;加热与对流的粘性系数发生变化。 2.强化传热是否意味着增加换热量?工程上强化传热的收益和代价通常是指什么? 答:不一定,强化传热是指在一定条件(如一定的温差、体积、重量或泵功等)下增加所传递的热量。工程上的收益是减小换热器的体积节省材料和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。代价是耗电,并因增大流速而耗功。 3.传热学和热力学中的热平衡概念有何区别? 答:工程热力学是温度相同时,达到热平衡,而传热学微元体获得的能量等于内热源和进出微元体热量之和,内热源散热是有温差的。 4.表面辐射和气体辐射各有什么特点? 为什么对辐射板供冷房间,无需考虑气体辐射的影响,而发动机缸内传 热气体辐射却成了主角? 答:表面辐射具有方向性和选择性。气体辐射的特点:1.气体的辐射和吸收具有明显的选择性。2. 气体的辐射和吸收在整个气体容器中进行,强度逐渐减弱。空气,氢,氧,氮等分子结构称的双原子分子,并无发射和吸收辐射能的能力,可认为是热辐射的透明体。但是二氧化碳,水蒸气,二氧化硫,氯氟烃和含氯氟烃的三原子、多原子以及不对称的双原子气体(一氧化碳)却具有相当大的辐射本领。房间是自然对流,气体主要是空气。由于燃油,燃煤及然气的燃烧产物中通常包含有一定浓度的二氧化碳和水蒸气,所以发动机缸内要考虑。 5.有人在学完传热学后认为,换热量和热流密度两个概念实质内容并无差别,你的观点是? 答:有差别。热流密度是指通过单位面积的热流量。而换热量跟面积有关。 6.管内层流换热强化和湍流换热强化有何实质性差异?为什么? 答:层流边界层是强化管内中间近90%的部分,层流入口段的热边界层比较薄,局部表面传热系数比充分发展段高,且沿着主流方向逐渐降低。如果边界层出现湍流,则因湍流的扰动与混合作用又会使局部表面传热系数有所提高,再逐渐向于一个定值。而湍流是因为其推动力与梯度变化和温差有关,减薄粘性底层,所以强化壁面。 7.以强迫对流换热和自然对流换热为例,试谈谈你对传热、流动形态、结构三者之间的关联 答:对流换热按流体流动原因分为强制对流换热和自然对流换热。一般地说,强制对流的流速较自然对流高,因而对流换热系数也高。例如空气自然对流换热系数约为5~25 W/(m2?℃),强制对流换热的结构影响了流体的流态、流速分布和温度分布,从而影响了对流换热的效果。流体在管内强制流动与管外强制流动,由于换热表面不同,流体流动产生的边界层也不同,其换热规律和对流换热系数也不相同。在自然对流中,流体的流动与换热表面之间的相对位置,对对流换热的影响较大,平板表面加热空气自然对流时,热面朝上气流扰动比较激烈,换热强度大;热面朝下时流动比较平静,换热强度较小。 8.我们经常用Q=hA·Δt.计算强迫对流换热、自然对流换热、沸腾和凝结换热,试问在各种情况下换热系数与 温差的关联? 答:强迫对流的换热系数与Re,Pr有关但与温差无关,自然对流与Gr的0.25次方有关联,即与温差有关,凝结换热换热系数是温差的-0.25次方。 9.试简述基尔霍夫定理的基本思想 答:一、基尔霍夫第一定律:汇于节点的各支路电流的代数和等于零,用公式表示为: ∑I=0 又被称作基尔霍夫电流定律(KCL)。 二、基尔霍夫第二定律:沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电 源的内阻在内)和支路电流的乘积(即电压的代数和)。用公式表示为: ∑E=∑RI 又被称作基尔霍夫电压定律(KVL)。 10.简述沸腾换热与汽泡动力学、汽化核心、过热度这些概念的关联 答:沸腾是指在液体内部以产生气泡的形式进行的气化过程,就流体运动的动力而言,沸腾过程又有大容器沸

相关文档
最新文档