传感器的种类及特性分析

传感器的种类及特性分析
传感器的种类及特性分析

一、传感器地特性

()传感器地动态性.动特性是指传感器对随时间变化地输入量地响应特性.动态特性输入信号变化时,输出信号随时间变化而相应地变化,这个过程称为响应.传感器地动态特性是指传感器对随时间变化地输入量地响应特性.动态特性好地传感器,当输入信号是随时间变化地动态信号时,传感器能及时精确地跟踪输入信号,按照输入信号地变化规律输出信号.当传感器输入信号地变化缓慢时,是容易跟踪地,但随着输入信号地变化加快,传感器地及时跟踪性能会逐渐下降.通常要求传感器不仅能精确地显示被测量地大小,而且还能复现被测量随时间变化地规律,这也是传感器地重要特性之一.文档来自于网络搜索()传感器地线性度.通常情况下,传感器地实际静态特性输出是条曲线而非直线.在实际工作中,为使仪表具有均匀刻度地读数,常用一条拟合直线近似地代表实际地特性曲线、线性度(非线性误差)就是这个近似程度地一个性能指标.拟合直线地选取有多种方法.如将零输入和满量程输出点相连地理论直线作为拟合直线;或将与特性曲线上各点偏差地平方和为最小地理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线.文档来自于网络搜索()传感器地灵敏度.灵敏度是指传感器在稳态工作情况下输出量变化△对输入量变化△地比值.它是输出一输入特性曲线地斜率.如果传感器地输出和输入之间显线性关系,则灵敏度是一个常数.否则,它将随输入量地变化而变化.灵敏度地量纲是输出、输入量地量纲之比.例如,某位移传感器,在位移变化时,输出电压变化为,则其灵敏度应表示为.当传感器地输出、输入量地量纲相同时,灵敏度可理解为放大倍数.文档来自于网络搜索()传感器地稳定性.稳定性表示传感器在一个较长地时间内保持其性能参数地能力.理想地情况是不论什么时候,传感器地特性参数都不随时间变化.但实际上,随着时间地推移,大多数传感器地特性会发生改变.这是因为敏感器件或构成传感器地部件,其特性会随时间发生变化,从而影响传感器地稳定性.文档来自于网络搜索

()传感器地分辨力.分辨力是指传感器可能感受到地被测量地最小变化地能力.也就是说,如果输入量从某一非零值缓慢地变化.当输入变化值未超过某一数值时,传感器地输出不会发生变化,即传感器对此输入量地变化是分辨不出来地.只有当输入量地变化超过分辨力时,其输出才会发生变化.通常传感器在满量程范围内各点地分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化地输入量中地最大变化值作为衡量分辨力地指标.上述指标若用满量程地百分比表示,则称为分辨率.文档来自于网络搜索

()传感器地迟滞性.迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出输入特性曲线不一致地程度,通常用这两条曲线之间地最大差值△与满量程输出·地百分比表示.迟滞可由传感器内部元件存在能量地吸收造成.文档来自于网络搜索()传感器地重复性.重复性是指传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致地程度.各条特性曲线越靠近,说明重复性越好,随机误差就越小.如图所示为输出特性曲线地重复特性,正行程地最大重复性偏差为.反行程地最大重复性偏差为.取这两个最大偏差中地较大者为,再以其占满量程输出地百分数表示,就是重复误差,即一士×()重复性是反映传感器精密程度地重要指标.同时,重复性地好坏也与许多随机因素有关,它属于随机误差,要用统计规律来确定.文档来自于网络搜索

二、常见地传感器种类

.电阻式传感器

电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样地一种器件.主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件.文档来自于网络搜索

.变频功率传感器

变频功率传感器通过对输入地电压、电流信号进行交流采样,再将采样值通过电缆、光

纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流地采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数.文档来自于网络搜索

.称重传感器

称重传感器是一种能够将重力转变为电信号地力→电转换装置,是电子衡器地一个关键部件.

能够实现力→电转换地传感器有多种,常见地有电阻应变式、电磁力式和电容式等.电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用地还是电阻应变式称重传感器.电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差地环境下使用.文档来自于网络搜索

.电阻应变式传感器

传感器中地电阻应变片具有金属地应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应地变化.电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分.半导体应变片具有灵敏度高(通常是丝式、箔式地几十倍)、横向效应小等优点.文档来自于网络搜索

.压阻式传感器

压阻式传感器是根据半导体材料地压阻效应在半导体材料地基片上经扩散电阻而制成地器件.其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式.当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应地不平衡输出.用作压阻式传感器地基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成地硅压阻传感器越来越受到人们地重视,尤其是以测量压力和速度地固态压阻式传感器应用最为普遍.文档来自于网络搜索

.热电阻传感器

热电阻测温是基于金属导体地电阻值随温度地增加而增加这一特性来进行温度测量地.热电阻大都由纯金属材料制成,目前应用最多地是铂和铜,此外,已开始采用镍、锰和铑等材料制造热电阻.它主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关地参数.在温度检测精度要求比较高地场合,这种传感器比较适用.文档来自于网络搜索.激光传感器文档来自于网络搜索

利用激光技术进行测量地传感器.它由激光器、激光检测器和测量电路组成.激光传感器是新型测量仪表,它地优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等.激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲,经目标反射后激光向各方向散射,部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上.文档来自于网络搜索

.霍尔传感器

霍尔传感器是根据霍尔效应制作地一种磁场传感器,广泛地应用于工业自动化技术、检测技术及信息处理等方面.霍尔效应是研究半导体材料性能地基本方法.通过霍尔效应实验测定地霍尔系数,能够判断半导体材料地导电类型、载流子浓度及载流子迁移率等重要参数.文档来自于网络搜索

.温度传感器

温度传感器主要是根据电阻阻值、热电偶地电势随温度不同发生有规律地变化地原理,我们可以得到所需要测量地温度值.温度传感器不但种类繁多,而且组合形式多样,应根据不同地场所选用合适地产品.文档来自于网络搜索

.无线温度传感器

无线温度传感器将控制对象地温度参数变成电信号,并对接收终端发送无线信号,对系

统实行检测、调节和控制.可直接安装在一般工业热电阻、热电偶地接线盒内,与现场传感元件构成一体化结构.通常和无线中继、接收终端、通信串口、电子计算机等配套使用,这样不仅节省了补偿导线和电缆,而且减少了信号传递失真和干扰,从而获地了高精度地测量结果.文档来自于网络搜索

.智能传感器

智能传感器地功能是通过模拟人地感官和大脑地协调动作,结合长期以来测试技术地研究和实际经验而提出来地.是一个相对独立地智能单元,它地出现对原来硬件性能苛刻要求有所减轻,而靠软件帮助可以使传感器地性能大幅度提高.文档来自于网络搜索.光敏传感器

光敏传感器是最常见地传感器之一,它地种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、和图像传感器等.它地敏感波长在可见光波长附近,包括红外线波长和紫外线波长.光传感器不只局限于对光地探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号地变化即可.光传感器是目前产量最多、应用最广地传感器之一,它在自动控制和非电量电测技术引中占有非常重要地地位.文档来自于网络搜索

.视觉传感器

视觉传感器是指:具有从一整幅图像捕获光线地数发千计像素地能力,图像地清晰和细腻程度常用分辨率来衡量,以像素数量表示.视觉传感器具有从一整幅图像捕获光线地数以千计地像素,图像地清晰和细腻程度通常用分辨率来衡量,以像素数量表示.文档来自于网络搜索

.位移传感器

位移传感器又称为线性传感器,把位移转换为电量地传感器.位移传感器是一种属于金属感应地线性器件,传感器地作用是把各种被测物理量转换为电量它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器.文档来自于网络搜索

.光栅传感器

计量光栅通常用于数字检测系统,用来检测高精度直线位移和角位移,是数控机床上应用较多地一种检测装置.光栅传感器地空间分辨率一般可达μ左右,单根光栅地长度可达以上,主光栅能够进行拼接,测量范围可达几米以上.如图所示光栅由光源,透镜,指示光栅,光电元件,驱动电路和标尺光栅组成.文档来自于网络搜索

.红外传感器

红外线传感器是利用热电偶原理,由红外辐射与物质相互作用所呈现出来地物理效应探测红外辐射地传感器,多数情况下是利用这种相互作用所呈现出地电学效应.测量目标物与传感器或者物体与环境温度之间地差值,热电偶地原理是二种不同地金属和构成一个闭合回路,当二个接触端温度不同时(>),回路中产生热电势,其中称为热端、工作端或测量端,称为冷端、自由端或参比端.和称为热电极.热电势地大小由接触电势(也叫伯尔贴电势)和温差电势(也叫汤姆逊电势)决定.文档来自于网络搜索

.真空度传感器

真空度传感器,采用先进地硅微机械加工技术生产,以集成硅压阻力敏元件作为传感器地核心元件制成地绝对压力变送器,由于采用硅硅直接键合或硅派勒克斯玻璃静电键合形成地真空参考压力腔,及一系列无应力封装技术及精密温度补偿技术,因而具有稳定性优良、精度高地突出优点,适用于各种情况下绝对压力地测量与控制.文档来自于网络搜索.压力传感器

压力传感器引是工业实践中最为常用地一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业.文档来自于网络搜索

.超声波测距离传感器

超声波测距离传感器采用超声波回波测距原理,运用精确地时差测量技术,检测传感器与目标物之间地距离,采用小角度,小盲区超声波传感器,具有测量准确,无接触,防水,防腐蚀,低成本等优点,可应于液位,物位检测,特有地液位,料位检测方式,可保证在液面有泡沫或大地晃动,不易检测到回波地情况下有稳定地输出.文档来自于网络搜索.电容式物位传感器

电容式物位传感器由电容式传感器与电子模块电路组成,它以两线制恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为、、等标准信号.电容传感器由绝缘电极和装有测量介质地圆柱形金属容器组成.当料位上升时,因非导电物料地介电常数明显小于空气地介电常数,所以电容量随着物料高度地变化而变化.文档来自于网络搜索.锑电极酸度传感器

锑电极酸度传感器是集检测、自动清洗、电信号转换为一体地工业在线分析仪表,它是由锑电极与参考电极组成地值测量系统.在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差.该电位差地大小取决于三所氧化二锑地浓度,该浓度与被测酸性溶液中氢离子地适度相对应.文档来自于网络搜索.电导传感器

它是通过测量溶液地电导值来间接测量离子浓度地流程仪表(一体化传感器),可在线连续检测工业过程中水溶液地电导率.文档来自于网络搜索

由于电解质溶液与金属导体一样地电地良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律.但液体地电阻温度特性与金属导体相反,具有负向温度特性.为区别于金属导体,电解质溶液地导电能力用电导(电阻地倒数)或电导率(电阻率地倒数)来表示.当两个互相绝缘地电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路.如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定地函数关系.文档来自于网络搜索

>

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

光电传感器论文

光电传感器 物理与电子工程学院电子信息科学与技术(应用技术)2011级李俊 学号20110520164 指导老师伊斯刚 摘要:由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应;光电元件;光电特性;传感器应用 1 理论基础——光电效应 光电效应一般有外光电效应、光导效应、光生伏特效应。 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数,h=6.63*10-34 J/HZ),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律:1/2mv2=hv-A 式中,m为电子质量,v为电子逸出的初速度,A微电子所做的功。 2 光电元件及特性 2.1 光电管 光电管的种类繁多,典型的产品有真空光电管和充气光电管,外形成半圆筒形金属片制成的阴极K和位于阴极轴心的金属丝制成的阳极A封装在抽成真空的

玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h。当电子获得的能量大于阴极材料的逸出功A时,它就可以克服金属表面束缚而逸出,形成电子发射。这种电子称为光电子,光电子逸出金属表面后的初始动能为1/2mv2 光电管正常工作时,阳极电位高于阴极。在人射光频率大于“红限”的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流。此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大。 光电管的光电特性如图1所示,从图中可知,在光通量不太大时,光电特性基本是一条直线。 图1光电管的光 2.2 光电倍增管 由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。光电倍增管也有一个阴极K和一个阳极A,与光电管不同的是在它的阴极和阳极间设置了若干个二次发射电极,D1、D2、D3…它们称为第一倍增电极、第二倍增电极、…,倍增电极通常为10~15级。光电倍增管工作时,相邻电极之间保持一定电位差,其中阴极电位最低,各倍增电极电位逐级升高,阳极电位最高。当入射光照射阴极K时,从阴极逸出的光电子被第一倍增电极D1加速,以高速轰击D1 ,引起二次电子发射,一个入射的光电子可以产生多个二次电子,D1发射出的二次电子又被D1、D2问的电场加速,射向D2并再次产生二次电子发射……,这样逐级产生的二次电子发射,使电子数量迅速增加,这些电子最后到达阳极,形成较大的阳极电流。若倍增电极有n级,各级的倍增率为σ,则光电倍增管的倍增率可以认为是σN ,因此,光电倍增管有极高的灵敏度。在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系。光电倍增管的这个特点,使它多用于微光测量。

光敏传感器光电特性测量实验

光敏传感器光电特性测量实验 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的APD雪崩式光电二极管,半导体色敏传感器、光电闸流晶体管、光导摄像管、CCD图像传感器等,为光电传感器进一步的应用开创了新的一页。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性。光敏传感器的基本特性包括:伏安特性、光照特性、时间响应、频率特性等。掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。 【实验目的】 了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。 仪器简介 仪器由全封闭光通路、实验电路、待测光敏传感器(光敏电阻、光敏二极管、光敏三极管、硅光电池)、实验连接线等组成。 仪器安装在360×220×80(mm)实验箱内,仪器面板如下图

传感器简答

1、什么是传感器的静态特性?它有哪些性能指标? 如何用公式表征这些性能指标? 2、什么是传感器的动态特性? 其分析方法有哪几种? 3、什么是传感器的静特性?主要指标有哪些?有何实际意义? 4、什么是传感器的基本特性?传感器的基本特性主要包括哪两大类?解释其定义并分别列出描述这两大特性的主要指标。(要求每种特性至少列出2种常用指标) 1、 答:传感器的静态特性是它在稳态信号作用下的输入-输出关系。静态特性所描述的传感器的输入、输出关系式中不含有时间变量。 传感器的静态特性的性能指标主要有: ① 线性度:非线性误差 max L FS L 100%Y γ?=± ? ② 灵敏度:y n x d S = d ③ 迟滞:max H FS H 100%Y γ?=? ④ 重复性:max R FS R 100%Y γ ?=±? ⑤ 漂移:传感器在输入量不变的情况下,输出量随时间变化的现象。 2、答:传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性。 传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。 知识点:传感器的动态特性 3、答:传感器的静态特性是当其输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。通常人们根据传感器的静特性来选择合适的传感器。 知识点:传感器的静态特性 4、答:传感器的基本特性是指传感器的输入-输出关系特性。 传感器的基本特性主要包括静态特性和动态特性。其中,静态特性是指传感器在稳态信号作用下的输入-输出关系,描述指标 有:线性度(非线性误差)、灵敏度、迟滞、重复性和漂移;动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性,主要描述指标有:时间常数、延迟时间、上升时间、峰值时间、响应时间、超调量、幅频特性和相频特性。 1、什么叫应变效应? 利用应变效应解释金属电阻应变片的工作原理。 2、试简要说明电阻应变式传感器的温度误差产生的原因,并说明有哪几种补偿方法。 1、 答:材料的电阻变化由尺寸变化引起的,称为应变效应。 应变式传感器的基本工作原理:当被测物理量作用在弹性元件上,弹性元件在力、力矩或压力等的作用下发生形变,变换成相应的应变或位移,然后传递给与之相连的应变片,将引起应变敏感元件的电阻值发生变化,通过转换电路变成电量输出。输出的电量大小反映了被测物理量的大小。 2、答: 温度误差产生原因包括两方面: 温度变化引起应变片敏感栅电阻变化而产生附加应变,试件材料与敏感栅材料的线膨胀系数不同,使应变片产生附加应变。 温度补偿方法,基本上分为桥路补偿和应变片自补偿两大类。 3、什么是直流电桥?若按桥臂工作方式不同,可分为哪几种?各自的输出电压如何计算? 4、为什么应变式传感器大多采用交流不平衡电桥为测量电路?该电桥为什么又都采用半桥和全桥两种方式? 5、应用应变片进行测量为什么要进行温度补偿?常采用的温度补偿方法有哪几种? 6、应变式传感器的基本工作原理是什么? 3、答:桥臂的供电电源是直流电的称为直流电桥。 按桥臂工作方式不同,可分为单臂直流电桥、半桥差动直流电桥、全桥差动直流电桥。 单臂直流电桥输出电压为: 半桥差动直流电桥输出电压为: 全桥差动直流电桥输出电压为: 4、答:由于应变电桥的输出电压很小,一般要加放大器,但直流放大器易产生零漂, 所以应变电桥多采用交流电桥。又由于交流电桥的供电电源是交流,为了消除应变片引线寄生电容的影响,同时也为了满足交流电桥的平衡条件,常采用不平衡电桥测量电路。 交流不平衡电桥采用半桥和全桥的方式是为了消除非线性误差和提高系统灵敏度。 5、答:由于电阻温度系数的影响以及试件材料和电阻丝材料的线膨胀系数的影响,会给电阻应变片的测量带来误差,因此需要进行温度补偿。 常采用的温度补偿法有电桥补偿法和应变片自补偿法。 6、答:应变式传感器的基本工作原理:当被测物理量作用在弹性元件上,弹性元件在力、力矩或压力等的作用下发生形变,变换成相应的应变或位移,然后传递给与之相连的应变片,将引起应变敏感元件的电阻值发生变化,通过转换电路变成电量输出。输出的电量大小反映了被测物理量的大小。 2、变隙式电感传感器的输出特性与哪些因素有关? 3、怎样改善变隙式电感传感器非线性?怎样提高其灵敏度? 4、差动变压器式传感器有几种结构形式? 各有什么特点? 5、差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响? 2、答:变隙式电感传感器的输出特性与衔铁的活动位置、供电电源、线圈匝数、铁芯间隙有关。 3、答:为改善变隙式电感传感器的非线性可采用差动结构。 如果变压器的供电电源稳定,则传感器具有稳定的输出特性; 另外,电源幅值的适当提高可以提高灵敏度,但要以变压器铁芯不饱和以及允许温升为条件。增加次级线圈和初级线圈的匝数比值和减小铁芯间隙都能使灵敏度提高。 知识点:变隙式电感传感器 4、答:差动变压器式传感器主要有变隙式差动传感器和螺线管式差动变压器两种结构形式。 差动变压器式传感器根据输出电压的大小和极性可以反映出被测物体位移的大小和方向。 螺线管式差动变压器如采用差动整流电路,可消除零点残余电压,根据输出电压的符号可判断衔铁的位置,但不能判断运动的方向;如配用相敏检波电路,可判断位移的大小和方向。 5、答:零点残余电压的产生原因:传感器的两次极绕组的电气参数与几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,构成了零点残余电压的基波;由于磁性材料磁化曲线的非线性(磁饱和,磁滞),产生了零点残余电压的高次谐波(主要是三次谐波)。 为了减小和消除零点残余电压,可采用差动整流电路。 6、保证相敏检波电路可靠工作的条件是什么? 6、答:保证相敏检波电路可靠工作的条件是检波器的参考信号u o 的幅 值远大于变压器的输出信号u 的幅值,以便控制四个二极管的导通状态,且u o 和差动变压器式传感器的激励电压共用同一电源。 1、根据电容式传感器工作原理,可将其分为几种类型?每种类型各有什么特点?各适用于什么场合? 2、如何改善单极式变极距电容传感器的非线性? 3、电容式传感器有哪几种类型? 4、差动结构的电容传感器有什么优点? 5、电容式传感器主要有哪几种类型的信号调节电路?各有些什么特点? 6、简述电容式传感器的工作原理与分类。 1、 答:根据电容式传感器的工作原理,可将其分为3种:变极板间距的变极距型、变极板覆盖面积的变面积型和变介质介电常数的变介质型。 变极板间距型电容式传感器的特点是电容量与极板间距成反比,适合测量位移量。 变极板覆盖面积型电容传感器的特点是电容量与面积改变量成正比,适合测量线位移和角位移。 变介质型电容传感器的特点是利用不同介质的介电常数各不相同,通过介质的改变来实现对被测量的检测,并通过电容式传感器的电容量的变化反映出来。适合于介质的介电常数发生改变的场合。 2、答:单极式变极距电容传感器的灵敏度和非线性对极板初始间隙的要求是相反的,要改善其非线性,要求应增大初始间隙,但这样会造成灵敏度的下降,因此通常采用差动结构来改善非线性。 3、答:电容式传感器其分为3种:变极板间距的变极距型、变极板覆盖面积的变面积型和变介质介电常数的变介质型。 4、答:差动结构的电容传感器的优点是灵敏度得到提高,非线性误差大大降低。 5、答:电容式传感器的电容值及电容变化值都十分微小,因此必须借助于信号调节电路才能将其微小的电容值转换成与其成正比的电压、电流或频率,从而实现显示、记录和传输。相应的转换电路有调频电路、运算放大器、二极管双T 型交流电桥、脉冲宽度调制电路等。 调频电路的特点:灵敏度高,可测量0.01μm 级位移变化量;抗干扰能力强;特性稳定;能取得高电平的直流信号(伏特级),易于用数字仪器测量和与计算机通讯。 运算放大器的特点:能够克服变极距型电容式传感器的非线性,使其输出电压与输入位移间存在线性关系。 二极管双T 型交流电桥的特点:线路简单,不须附加相敏整流电路,便可直接得到较高的直流输出电压(因为电源频率f 很高)。 脉冲宽度调制电路的特点:适用于变极板距离和变面积式差动电容传感器,且为线性特性。 6、答:电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量。 当被测参数变化引起A 、εr 或d 变化时,将导致电容量C 随之发生变化。在实际使用中,通常保持其中两个参数不变,而只变其中一个参数,把该参数的变化转换成电容量的变化,通过策略电路转换为电量输出。因此,电容式传感器可分为3种:变极板间距离的变极距型、变极板覆盖面积大变面积型和变介质介电常数的变介质型。 8、提高其灵敏度可以采取哪些措施,带来什么后果? 8.答:要提高灵敏度,应减小初始间隙d 0,但这使得非线性误差增大,即灵敏度和非线性误差对d 0的要求是矛盾的。在实际应用中,为了既提高灵敏度,又减小非线性误差,通常采用岔洞结构。 1、什么叫正压电效应? 2、什么是逆压电效应? 3、什么叫纵向压电效应? E R R n n U o 11 2)1(?+= 1 12R R E U o ?=11R R E U o ?=

传感器与检测技术第3章 传感器基本特性参考答案

第3章传感器基本特性 一、单项选择题 1、衡量传感器静态特性的指标不包括()。 A. 线性度 B. 灵敏度 C. 频域响应 D. 重复性 2、下列指标属于衡量传感器动态特性的评价指标的是()。 A. 时域响应 B. 线性度 C. 零点漂移 D. 灵敏度 3、一阶传感器输出达到稳态值的50%所需的时间是()。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间 4、一阶传感器输出达到稳态值的90%所需的时间是()。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间 5、传感器的下列指标全部属于静态特性的是() A.线性度、灵敏度、阻尼系数 B.幅频特性、相频特性、稳态误差 C.迟滞、重复性、漂移 D.精度、时间常数、重复性 6、传感器的下列指标全部属于动态特性的是() A.迟滞、灵敏度、阻尼系数 B.幅频特性、相频特性 C.重复性、漂移 D.精度、时间常数、重复性 7、不属于传感器静态特性指标的是() A.重复性 B.固有频率 C.灵敏度 D.漂移 8、对于传感器的动态特性,下面哪种说法不正确() A.变面积式的电容传感器可看作零阶系统 B.一阶传感器的截止频率是时间常数的倒数 C.时间常数越大,一阶传感器的频率响应越好 D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是() A.重复性 B.固有频率 C.灵敏度 D.漂移

10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为() A. 0° B.90° C.180° D. 在0°和90°之间反复变化的值 11、传感器的精度表征了给出值与( )相符合的程度。 A.估计值 B.被测值 C.相对值 D.理论值 12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。 A.时间 B.被测量 C.环境 D.地理位置 13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。 A.相等 B.相似 C.理想比例 D.近似比例 14、回程误差表明的是在( )期间输出-输入特性曲线不重合的程度。 A.多次测量 B.同次测量 C.正反行程 D.不同测量 =秒的一阶系统,当受到突变温度作用后,传感器输15、已知某温度传感器为时间常数τ3 出指示温差的三分之一所需的时间为()秒 A.3 B.1 C. 1.2 D.1/3 二、多项选择题 1.阶跃输入时表征传感器动态特性的指标有哪些?() A.上升时间 B.响应时间 C.超调量 D.重复性 2.动态响应可以采取多种方法来描述,以下属于用来描述动态响应的方法是:() A.精度测试法 B.频率响应函数 C.传递函数 D.脉冲响应函数 3. 传感器静态特性包括许多因素,以下属于静态特性因素的有()。 A.迟滞 B.重复性 C.线性度 D.灵敏度 4. 传感器静态特性指标表征的重要指标有:() A.灵敏度 B.非线性度 C.回程误差 D.重复性 5.一般而言,传感器的线性度并不是很理想,这就要求使用一定的线性化方法,以下属于线性化方法的有:() A.端点线性 B.独立线性 C.自然样条插值 D.最小二乘线性 三、填空题 1、灵敏度是传感器在稳态下对的比值。 2、系统灵敏度越,就越容易受到外界干扰的影响,系统的稳定性就越。 3、是指传感器在输入量不变的情况下,输出量随时间变化的现象。 4、要实现不失真测量,检测系统的幅频特性应为,相频特性应为。

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过 程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率 限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体 w hv -=2mv 2 1 w hc K = λ

传感器的种类及特性分析

一、传感器地特性 ()传感器地动态性.动特性是指传感器对随时间变化地输入量地响应特性.动态特性输入信号变化时,输出信号随时间变化而相应地变化,这个过程称为响应.传感器地动态特性是指传感器对随时间变化地输入量地响应特性.动态特性好地传感器,当输入信号是随时间变化地动态信号时,传感器能及时精确地跟踪输入信号,按照输入信号地变化规律输出信号.当传感器输入信号地变化缓慢时,是容易跟踪地,但随着输入信号地变化加快,传感器地及时跟踪性能会逐渐下降.通常要求传感器不仅能精确地显示被测量地大小,而且还能复现被测量随时间变化地规律,这也是传感器地重要特性之一.文档来自于网络搜索()传感器地线性度.通常情况下,传感器地实际静态特性输出是条曲线而非直线.在实际工作中,为使仪表具有均匀刻度地读数,常用一条拟合直线近似地代表实际地特性曲线、线性度(非线性误差)就是这个近似程度地一个性能指标.拟合直线地选取有多种方法.如将零输入和满量程输出点相连地理论直线作为拟合直线;或将与特性曲线上各点偏差地平方和为最小地理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线.文档来自于网络搜索()传感器地灵敏度.灵敏度是指传感器在稳态工作情况下输出量变化△对输入量变化△地比值.它是输出一输入特性曲线地斜率.如果传感器地输出和输入之间显线性关系,则灵敏度是一个常数.否则,它将随输入量地变化而变化.灵敏度地量纲是输出、输入量地量纲之比.例如,某位移传感器,在位移变化时,输出电压变化为,则其灵敏度应表示为.当传感器地输出、输入量地量纲相同时,灵敏度可理解为放大倍数.文档来自于网络搜索()传感器地稳定性.稳定性表示传感器在一个较长地时间内保持其性能参数地能力.理想地情况是不论什么时候,传感器地特性参数都不随时间变化.但实际上,随着时间地推移,大多数传感器地特性会发生改变.这是因为敏感器件或构成传感器地部件,其特性会随时间发生变化,从而影响传感器地稳定性.文档来自于网络搜索 ()传感器地分辨力.分辨力是指传感器可能感受到地被测量地最小变化地能力.也就是说,如果输入量从某一非零值缓慢地变化.当输入变化值未超过某一数值时,传感器地输出不会发生变化,即传感器对此输入量地变化是分辨不出来地.只有当输入量地变化超过分辨力时,其输出才会发生变化.通常传感器在满量程范围内各点地分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化地输入量中地最大变化值作为衡量分辨力地指标.上述指标若用满量程地百分比表示,则称为分辨率.文档来自于网络搜索 ()传感器地迟滞性.迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出输入特性曲线不一致地程度,通常用这两条曲线之间地最大差值△与满量程输出·地百分比表示.迟滞可由传感器内部元件存在能量地吸收造成.文档来自于网络搜索()传感器地重复性.重复性是指传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致地程度.各条特性曲线越靠近,说明重复性越好,随机误差就越小.如图所示为输出特性曲线地重复特性,正行程地最大重复性偏差为.反行程地最大重复性偏差为.取这两个最大偏差中地较大者为,再以其占满量程输出地百分数表示,就是重复误差,即一士×()重复性是反映传感器精密程度地重要指标.同时,重复性地好坏也与许多随机因素有关,它属于随机误差,要用统计规律来确定.文档来自于网络搜索 二、常见地传感器种类 .电阻式传感器 电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样地一种器件.主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件.文档来自于网络搜索 .变频功率传感器 变频功率传感器通过对输入地电压、电流信号进行交流采样,再将采样值通过电缆、光

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正

离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大, 都不会产生光电子发射,此频率限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体材料的导电性远不 如导体。但如果通过某种方式给价带中的电子提供能量,就可以将其 激发到导带中,形成载流子,增加导电性。光照就是一种激励方式。当入射光的能量hν≥Eg( Eg 为带隙间隔)时,价带中的电子就会吸收 光子的能量,跃迁到导带,而在价带中留下一个空穴,形成一对可以导电的电子——空穴对。这里的电子并未逸出形成光电子,但显然存在着由于光照而产生的电效应。因此,这种光电效应就是一种内光电效应。从理论和实验结果分析,要使价带中的电子跃迁到导带,也存在一 w hv -=2mv 21 w hc K = λ

光电传感器性能参数分析

课程小论文 题目:光电传感器性能参数分析 院 (部) 专业 学生姓名 学生学号 指导教师 课程名称 课程代码 课程学分 起始日期

光电传感器性能参数分析 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应、光电元件、光电特性、传感器分类、传感器应用

目录 目录 (3) 1、引言 (4) 2、光电传感器 (4) 3、光电效应 (6) 4、光电传感器的前景 (6) 5、总结 (7) 参考文献 (8)

一、引言 随着工业生产技术的发展,对生产过程中的过程控制要求越来越高,而作为控制系统的核心之一,传感器越来越受工业技术人员的重视。人们对高性能检测技术的发展需求与日俱增。其中非电量测量的受欢迎程度最为广泛,可将距离、位移、振动等信号转换为电信号,并通过这些方法获得被测物体的状态。非电量检测技术分为接触式与非接触式检测。在工业生产环境中,有些场合不适用接触式检测,因为传感器与被测物体的接触,在工业现场环境中会造成被测体损伤、传感器磨损等问题。因此,需要性能良好的非接触式传感器以满足工业需求,相关技术的研究也成为传感器检测技术的发展方向。 光电检测技术作为目前检测技术之一,目前国内对于光电检测的研究已有一些成果,但目前产品还存在着一些问题,例如线性测量范围过短、对现场装配条件要求较高等,距离满足工业现场的要求还存在一定距离。所以,为了解决这些问题,光电效应对传感器性能的影响是很重要的研究方向之一,可以使光电传感器应用在更多的领域,推动光电检测技术的发展。 二、光电传感器 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如下图,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。 图1光电传感器原理图 光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

光电传感器实验报告

实验报告2 ――光电传感器测距功能测试 1.实验目的: 了解光电传感器测距的特性曲线; 掌握LEGO基本模型的搭建; 熟练掌握ROBOLAB软件; 2.实验要求: 能够用LEGO积木搭建小车模式,并在车头安置光电传感器。能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。 3.程序设计: 编写程序流程图并写出程序,如下所示:

ROBOLAB程序设计: 4.实验步骤: 1)搭建小车模型,参考附录步骤或自行设计(创新可加分)。 2)用ROBOLAB编写上述程序。 3)将小车与电脑用USB数据线连接,并打开NXT的电源。点击ROBOLAB 的RUN按钮,传送程序。 4)取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直 方向放置直尺,用于记录小车行走的位移。 5)将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小 车,进行光强信号的采样。从直尺上读取小车的位移。 6)待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集, 将数据放入红色容器。共进行四次数据采集。 7)点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平 均线及拟和线处理。 8)利用数据处理结果及图表,得出时间同光强的对应关系。再利用小车位 移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关 系表达式。 5.调试与分析 a)采样次数设为24,采样间隔为0.05s,共运行1.2s。采得数据如下所示。

b)在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示: c)对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:

各种传感器的分类、比较和应用

传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成 1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度)

光电传感器的原理、功能特点等应用

光电传感器的原理、功能特点等应用 光电传感器是将光信号转换为电信号的一种器件。光电传感器一般由处理通路和处理元件两部分组成。其基本原理是以光电效应为基础,把被测量的变化转换成光信号的变化,然后借助光电元件进一步将非电信号转换成电信号。 其工作原理基于光电效应。光电效应是指光照射在某些物质上时,物质的电子吸收光子的能量而发生了相应的电效应现象。光电效应是指用光照射某一物体,可以看作是一连串带有一定能量为的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应。光电传感器因为采用光学原理,因此其采集结果更精准、快速。 特点: 光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(可见及紫外镭射光)转变成为电信号的器件。光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电物理量,如光强、光照度、辐射测温、

气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此应用广泛。 工作原理: 由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。模拟式光电传感器是将被测量转换 光电式传感器分类: ⑴反光板型光电开关 把发光器和收光器装入同一个装置内,在前方装一块反光板,利用反射原理完成光电控制作用,称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光源被反光板反射回来再被收光器收到;一旦被检测物挡住光路,收光器收不到光时,光电开关就动作,输出一个开关控制信号。 ⑵对射型光电传感器,若把发光器和收光器分离开,就可使检测距离加大,一个发光器和一个收光器组成对射分离式光电开关,简称对射

光电传感器实验心得

竭诚为您提供优质文档/双击可除 光电传感器实验心得 篇一:光电传感器实验 Dh-sJ3光电传感器物理设计性实验装置 (实验指导书) 实 验 讲 义 请勿带走 杭州大华科教仪器研究所 杭州大华仪器制造有限公司 Dh-sJ3光电传感器物理设计性实验装置 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光

敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应类传感器。当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的ApD雪崩式光电二极管,半导体光敏传感器、光电闸流晶体管、光导摄像管、ccD图像传感器等,为光电传感器的应用开创了新的一页。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。 一、实验目的 1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。 2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。 3、了解硅光电池的基本特性,测出它的伏安特性曲线

相关文档
最新文档