KT1025A双模蓝牙芯片关于蓝牙晶振选型和使用的说明

KT1025A双模蓝牙芯片关于蓝牙晶振选型和使用的说明

V1.0

2020-4-241关于蓝牙晶振的说明

一、简介

一直以来,都有一些客户在使用中,遇到一些问题。而晶振产生的问题还算是有共性,所以我们专门编写此文档,来帮助客户解决此问题。我们蓝牙使用的是24M 晶振,频偏在10ppm 。负载电容12pF

二、问题

2.1晶振的要求

(1)、由于蓝牙对频偏要求比较高,所以晶振的品质对蓝牙的性能至关重要,选型过程中。必须保证晶振的一致性和稳定性。晶振的频率偏差必须≤±10ppm ,负载CL 推荐12pF 。

(2)、体积无要求的,推荐我DEMO 上面的晶振,M49SMD-24M 。成本低,性能好

(3)、体积要求小的,推荐SMD3225-24M 的,成本稍高,性能好。

建议直接用我们配套的晶体,相信比外面随意采购的要优惠和质量保障

初期做样,一定一定不要随便搞个24M 的晶振上去用。否则蓝牙距离短、卡音、丢数据、跑不起来等等问题就都来了也不好查问题

如果需要的话,可以找我们直接拿晶振的样品,后期调试没问题了,自己再去单独采购

都可以。因为晶振不良,对于我们来说,也是售后,也会是一个麻烦,所以晶振我们一般都是直接送,不值钱的。

2.2

晶振的长相和注意点

不能用

可以用

晶振旁边不需要贴电容,不需要贴电容。可以预留,但是批量可以不用贴

选择晶振时要考虑哪些参数

选择晶振时要考虑哪些参数? 2011-7-19 14:26 提问者:rinkeigun|浏览次数:2555次 谢谢好心人。我想知道的是: 1. 晶振之身的参数(频率等) 2. 与周围的器件(51单片机)有什么关联,影响 3. 构成晶振的元件是什么(如C,Y) 4.哪里有最简单的电路图 我来帮他解答 2011-7-25 14:05 满意回答 1、 晶体谐振器的等效电路 图1是一个在谐振频率附近有与晶体谐振器具有相同阻抗特性的简化电路。 其中:C1为动态电容也称等效串联电容;L1为动态电感也称等效串联电感; R1为动态电阻也称等效串联电阻;C0为静态电容也称等效并联电容。 这个等效电路中有两个最有用的零相位频率,其中一个是谐振频率(Fr),另一个是反谐振频率(Fa)。当晶体元件实际应用于振荡电路中时,它一般还会与一负载电容相联接,共同作用使晶体工作于Fr和Fa之间的某个频率,这个频率由振荡电路的相位和有效电抗确定,通过改变电路的电抗条件,就可以在有限的范围内调节晶体频率。 2、晶体的频率 晶体在应用的电路中,其电气特性表现较复杂,与其相关的频率指标也有多个,主要的是: a)标称频率(F0) 指晶体元件规范中所指定的频率,也即用户在电路设计和元件选购时所希望的理想工作频率。 b)谐振频率(Fr) 指在规定条件下,晶体元件电气阻抗为电阻性的两个频率中较低的一个频率。根据图1的等效电路,当不考虑C0的作用,Fr由C1和L1决定,近似等于所谓串联(支路)谐振频率(Fs)。 这一频率是晶体的自然谐振频率,它在高稳晶振的设计中,是作为使晶振稳定工作于标称频率、确定频率调整范围、设置频率微调装置等要求时的设计参数。c)负载谐振频率(FL) 指在规定条件下,晶体元件与一负载电容串联或并联,其组合阻抗呈现为电阻性时两个频率中的一个频率。在串联负载电容时,FL是两个频率中较低的那个频

蓝牙无线耳机主流方案

蓝牙无线耳机主流方案 一、简要说明 随着科技的进步,手机蓝牙功能的普及,发现有线耳机在功能上和使用的灵活性越来越满足不了人们的需求.后面就慢慢的出来了有线耳机的替代者: 无线蓝牙耳机。蓝牙耳机已经成为众多消费者的首先,然尔,做为生产厂家,选择什么样的方案也是一个头痛的问题,这里我主要介绍一下现有的主流方案,他们各自是如何定位的,方案有什么特点,下面我们拿一些进行对比分析。 二、现有版本对比的方案 1、蓝牙的技术也是在不断的进步,目前市场主流的方案,都是围绕着以下几个版本 三、蓝牙耳机的分类 1、单声道耳机(Mono Headset):老外也称作Earloop(耳环),多数的单声道蓝牙耳机的产品外形都是很时尚和实用的耳环外形,因而得名。这类耳机一般只做接打电话的用途。典型的产品包括:S530、B165等等很多。 2、立体声耳机(Stereo Headset):这类耳机又可细分为蓝牙音乐耳机(Music Gear)和领带夹式立体声耳机(Cloth Clip)。蓝牙音乐耳机非常注重MP3的播放效果,对各类音频指标都要求很高,一般价格昂贵,都是发烧友级的产品。典型的产品包括:苹果(Apple)AirPods,捷波朗(Jabra)ROX等。 3、车载免提音响类产品主要应用于驾驶过程中接打电话。当然也可以播放音乐。典型的产品包括:MOTOROLA T305等。

四、各家公司芯片的对比分析 1、CSR方案:做为蓝牙方案商的龙头老大,市场的占有率比较大,尤其在音频模块。也是欧美等市场最受欢迎和认可的。缺点就是价格居高不下,并且小公司如果要做的话,一般的供应商也是不太愿意配合,因为这种产品在软、硬件开发方面难度还是比较大的。前期没有方案商的指导,会多走很多弯路。 2、TI这个方案市场上做的不多,但超低功耗是他的一大优点,在数据传输将来会有一定的优势,前期开发没有CSR那么难。他一般只做大客户,小客户不感兴趣。 3、珠海炬力方案,作为老牌子的国产方案,产品的性能和音质也是不错,缺点就是方案商比较牛,小客户配合不够。 4、中星微和络达这两个方案也还行,但中星微给我的感觉是批量生产很麻烦.络达灵活性比较欠缺. 5、建荣和杰里,这两款方案,我个人十分看好,为什么这么说,因为这两家方案芯片的出现,对蓝牙市场冲击还是很大,CSR、TI等牛逼的大公司得以不断的降低价格。另外这两家方案的优势也很明显,成本低、性能稳定。新出来的芯片,低功耗做的还可以,用来做大众化的耳机还是很有优势,作为我们开发人、员,更喜爱的其实是这样的方案。 6、RDA和博通:这两家也没什么好说的,就是便宜。但是实际的接触中,芯片本身的软件bug很多,开发起来非常痛苦.博通的批量生产不良率一直居高不下,这是他的硬伤。 五、方案选型说明 1、作为长期生活在这个领域,站在一个技术开发的角度看,我还是推荐“建荣”和“杰里”的蓝牙方案,因为其性价比较高,开发也很灵活,可以为客户定制出所想要的功能,这个就是最大的优势。因为我们目前在推的杰里方案,也是广受市场的好评 2、杰里的方案说明

主流的蓝牙芯片选型

主流蓝牙芯片有哪些 一、概要说明 蓝牙芯片,简单来说就是芯片集成了蓝牙功能的芯片ic,里面主要包括接收和发射信号的射频单元,以及处理数据的CPU单元,还有音频解码的dsp单元,主要也就是这几个核心的单元就组成了神奇的蓝牙芯片 蓝牙的技术也是受到广泛的关注,而蓝牙联盟也在不断更新技术 下面着重介绍一下蓝牙的版本 1、2.1+EDR:这个主要用户低端方案,但是兼容性极好,也是蓝牙最久的一个版本 2、3.1:这个基本已经属于淘汰了,因为他成本不低,功耗也不低,也就是不上不下 3、4.0:这个目前是市场的主流,定位在中高端产品,如:CSR的方案、创杰等等 4、4.1:这个也是目前市场的主流,定位在高端产品,如:TI、中星微、络达 二、方案对比分析 1、CSR方案:这个是老牌子的方案了,市场的占有率最高,也是欧美等市场最受欢迎和认可的。缺点就是价格居高不下,并且小公司如果要做的话,一般的供应商也是不太愿意配合,因为这种产品功能修改和定制是比较麻烦的。 2、TI这个方案市场上做的不多,目前小米的蓝牙音箱用的这个,也是只做大客户,小客户服务不过来 3、珠海炬力方案,作为老牌子的国产方案,确实也给国产长脸不少,产品的性能和音质也是不错,缺点就是方案商比较牛,小客户配合不够。没有实力确实不敢找他们做 4、中星微和络达这两个方案,也还可以,但是灵活性比较欠缺 5、建荣和杰里,这两款方案,我个人是极力推荐,为什么这么说,因为这两家的芯片确实是我们国产的骄傲,因为有他们的存在,CSR、TI等牛逼的大公司得以不断的降低价格。 另外这两家方案的优势也很明显,成本低、性能稳定。但就是功耗做不下来,但是用于蓝牙音箱这样的场合,其实问题不大。作为我们开发人员,更喜爱的其实是这样的方案 6、安凯和博通:这两家也没什么好说的,就是便宜。但是实际的接触中,芯片本身的软件bug很多,开发起来非常痛苦

好晶振的选择方法

好晶振的选择方法 晶振选型时关心的技术指标: 1.频率:基本参数,选型必须知道的参数。 频率越高一般价格越高。但频率越高,频差越大,从综合角度考虑,一般工程师会选用频率低但稳定的晶振,自己做倍频电路。总之频率的选择是根据需要选择,并不是频率越大就越好。要看具体需求。比如基站中一般用10MHz的OCXO,但由于很好的频率稳定性,属于高端晶振。至于范围,晶振的频率做的太高的话,就会失去意义,因为有其他更好的频率产品代替。 KVG的产品频率范围是:25kHz-1.3G。基本上所有应用中的晶振都可以在KVG产品种找到。 2.频率稳定度:关键参数,KVG的高端晶振可以达到10-9级别。 指在规定的工作温度范围内,与标称频率允许的偏差。用PPm(百万分之一)表示。一般来说,稳定度越高或温度范围越宽,价格越高。对于频率稳定度要求±20ppm 或以上的应用,可使用普通无补偿的晶体振荡器。对于介于±1 至±20ppm 的稳定度,应该考虑TCXO 。对于低于±1ppm 的稳定度,应该考虑OCXO。比如OCXO-3000SC,频稳为+/- 2x10^-9。如果客户有十分特别的频稳要求,KVG可以定制。 3.电源电压: 常用的有3.3V、5V、2.8V等。 KVG的产品2。8V 3。3V 5V都有。其中3.3V应用最广。 4.输出: 根据需要采用不同输出。(HCMOS,SINE,TTL,PECL,LVPECL,LVDS,LVHCMOS等)每种输出类型都有它的独特波形特性和用途。应该关注三态或互补输出的要求。对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定。 KVG产品有些系列有HCMOS/TTL,有些系列有LVPECL/LVDS输出。根据客户需要我们可以帮助客户选型。 5.工作温度范围: 工业级标准规定的-40~+85℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。对于某些特殊场合如航天军用等,对温度有更苛刻的要求。 KVG的产品都用普通和工业级标准,对于军工极KVG也有。军工级一般需要定制,KVG在定制方面有优势。 6.相位噪声和抖动: 相位噪声和抖动是对同一种现象的两种不同的定量方式,是对短期稳定度的真实度量。振荡器以及其它利用基波或谐波方式的晶体振荡器具有最好的相位噪声性能。采用锁相环合成器产生输出频率的振荡器比采用非锁相环技术的振荡器一般呈现较差的相位噪声性能。但相对的,拥有好的相位噪声和抖动的同时振荡器的设计复杂,体积大,频率低,造价高。 KVG的晶振系列涵盖了各种设计技术,可根据客户要求进行选择。例如V-850采用倍频器(过滤谐波)技术,具有高频,低抖动(<0.1ps rms 12kHz-20MHz)。实际上相位噪声和抖动是短期频率稳定度的度量,所以一般越高端的晶振,即频稳越好的晶振,这些指标也相应越好。KVG可以提供各种档次相位噪声的晶振,

常见的蓝牙模块选型核心对比分析总结

一、简介 正因为蓝牙芯片的种类繁多,所以很多工程师在选择的时候,不知道该怎么选。选择合适的蓝牙模块,最重要的是选择蓝牙模块最核心的芯片,芯片的性能,直接决定了模块的参数 蓝牙模块,串口蓝牙模块等等产品,顾名思义就是实现蓝牙功能的半成品模块产品。主要由蓝牙芯片和外围元器件组成,从而形成一个可以直接供用户使用的产品。 二、主流分类 芯片分类对应的的选择 音频芯片可选的芯片方案太多了 1、高端的可以选“CSR[现在的QCC]”、“炬力”、“创杰”等等 2、中端的可以选“RDA”、“络达”、“杰理”、“建荣”、“博通” 这个的选择,就是根据自己的产品定位了,成本合适,谁服务好就选谁 蓝牙BLE方案1、如果是低功耗的应用场景,待机uA级别的那种 (1)、这种应用,只能选“TI”、“Nordic”、“Dialog”,成本较高,认可度也较高 2、如果不需要低功耗,就是单纯的传数据,这个就有很多的选择 (1)、JL、建荣、博通,泰凌微、伦茨。他们都可以,也都还挺好 (2)、因为芯片出货量大,所以成本是非常有优势的 蓝牙数传方案,双模BLE 和SPP 1、目前这个市场只有“易兆微”、“创杰”、“microchip”在做,性价比一般般 2、这个其实也可以用蓝牙音频的芯片去做,成本又会低一些,性能也不打折 蓝牙音频+双模数据1、这个能做的就是国产芯片的天下,“JL”、“建荣”、“炬力”等等 2、这个系列的芯片都是非常有优势的,主要是开发者如何开发,应用者如何构思需求 3、这个市场其实是和“蓝牙音频”市场合并在一起的,充分享受了芯片量大,以及充分竞争,所带来的低成本、高性能。非常值得关注 备注: 1、不要求低功耗的数传,建议直接淘汰“TI”、“Nordic”、“Dialog”,因为付付出多余的成本 2、如果要求超低功耗的,那你也没得选,就那几家的芯片,随便选一个合适的即可 3、如果是需要音频带数传的,或者数传BLE双模的。可以选用BT401蓝牙模块

压控晶振原理

压控晶振原理 压控晶体振荡器简介 压控晶体振荡器全称:电压控制晶体振荡器(Voltage Controlled Crystal Oscillator),是一种与晶体谐振器串联插入变容二极管,根据外部加入的电压使二极管的容量发生变化,来达到输出频率可根据晶体谐振器的负载电容特性变化的晶体振荡器。 VCXO主要由石英谐振器、变容二极管和振荡电路组成,其工作原理是通过控制电压来改变变容二极管的电容,从而“牵引”石英谐振器的频率,以达到频率调制的目的。VCXO大多用于锁相技术、频率负反馈调制的目的。 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。压控晶体振荡器具有以下特点: (1)低抖动或低相位噪声:由于电路结构、电源噪声以及地噪声等因素的影响,VCO的输出信号并不是一个理想的方波或正弦波,其输出信号存在一定的抖动,转换成频域后可以看出信号中心频率附近也会有较大的能量分布,即是所谓的相位噪声。VCO输出信号的抖动直接影响其他电路的设计,通常希望VCXO的抖动越小越好。 (2)宽调频范围:VCO的调节范围直接影响着整个系统的频率调节范围,通常随着工艺偏差、温度以及电源电压的变化,VCXO的锁定范围也会随着变化,因此要求VCXO有足够宽的调节范围来保证VCXO的输出频率能够满足设计的要求。 (3)稳定的增益:VCO的电压——频率非线性是产生噪声的主要原因之一,同时,这种非线性也会给电路设计带来不确定性,变化的VCXO增益会影响环路参数,从而影响环路的稳定性。因此希望VCXO的增益变化越小越好。 1.频率大小:频率越高一般价格越高。但频率越高,频差越大,从综合角度考虑,一般工程师会选用频率低但稳定的晶振,自己做倍频电路。总之频率的选择是根据需要选择,并不是频率越大就越好。要看具体需求。比如基站中一般用10MHz的恒温晶振(OCXO),因其有很

如何选取正确的晶振

一个号的晶体振荡器可以被泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。它具有多种封装类型,最主要的特点是电气性能规范多种多样。它有以下几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。 如果你的设备需要即开即用,您就必须选用VCXO或温补晶振,如果你的要求稳定度在0.5ppm以上,凯越翔建议你选择数字温补晶振(MCXO)。而模拟温补晶振则适用于稳定度要求在5ppm~0.5ppm之间的需求。VCXO只适合于稳定度要求在5ppm以下的产品。如果你的设备在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm的,可选用OCXO。 从频率稳定性方面考虑:晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。稳定性愈高或温度范围愈宽,器件的价格亦愈高。工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。所以设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。指标过高意味着花钱愈多。 晶体老化:造成频率变化的又一重要因素。根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。 与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。 输出:必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰(EMI)。晶体振荡器可HCMOS/TTL兼容、ACMOS兼容、ECL和正弦波输出。每种输出类型都有它的独特波形特性和用途。应该关注三态或互补输出的要求。对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定。许多DSP和通信芯片组往往需要严格的对称性(45%至55%)和快速的上升和下降时间(小于 5ns)。 相位噪声和抖动:在频域测量获得的相位噪声是短期稳定度的真实量度。它可测量到中心频率的1Hz之内和通常测量到1MHz。晶体振荡器的相位噪声在远离中心频率的频率下有所改善。TCXO和OCXO振荡器以及其它利用基波或谐波方式的晶体振荡器具有最好的相位噪声性能。采用锁相环合成器产生输出频率的振荡器比采用非锁相环技术的振荡器一般呈现较差的相位噪声性能。 抖动与相位噪声相关,但是它在时域下测量。以微微秒表示的抖动可用有效值或峰—峰值测出。许多应用,例如通信网络、无线数据传输、ATM和SONET要

晶振的匹配电容选择修订稿

晶振的匹配电容选择 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

匹配电容是指晶振要正常震荡所需要的电容,一外接电容是为了使晶振两端的等效电容等于或接近于负载电容(晶体的负载电容是已知的,在出厂的时候已经定下来了,一般是几十PF,)。应用时一般在给出负载电容值附近调整可以得到精确频率,此电容的大小主要影响负载谐振频率,一般情况下,增大电容会使振荡频率下降,而减小电容会使振荡频率升高, 晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C] 式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容,一般情况下,Cd、Cg取相同的值并联后等于负载电容是可以满足振荡条件的, 在许可的范围内Cd和Cg的值越小越好,电容值偏大会虽然有利于震荡的稳定,但是电容过大会增加起振的时间。如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量。 在电路中输出端和输入端之间接了一个大的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振,有的晶振不需要是因为把这个电阻已经集成到了晶振里面。 设计是注意事项: 1.使晶振、外部电容器(如果有)与 IC之间的信号线尽可能保持最短。当非常低的电流通过IC晶振振荡器时,如果线路太长,会使它对 EMC、ESD 与串扰产生非常敏感的影响。而且长线路还会给振荡器增加寄生电容; 2.尽可能将其它时钟线路与频繁切换的信号线路布置在远离晶振连接的位置; 3.当心晶振和地的走线; 4.将晶振外壳接地。

车载蓝牙芯片方案对比分析

车载蓝牙芯片ic方案对比分析 一、概要说明 对于一些比较低档的车型,如面包车等等,是没有蓝牙功能的,如果需要增加蓝牙功能就只有买车载的蓝牙发射器,借助于车身自带的收音机功能,才能享受蓝牙的乐趣蓝牙芯片,简单来说就是芯片集成了蓝牙功能的芯片ic,里面主要包括接收和发射信号的射频单元,以及处理数据的CPU单元,还有音频解码的dsp单元,主要也就是这几个核心的单元就组成了神奇的蓝牙芯片 蓝牙的技术也是受到广泛的关注,而蓝牙联盟也在不断更新技术 下面着重介绍一下蓝牙的版本 1、2.1+EDR:这个主要用户低端方案,但是兼容性极好,也是蓝牙最久的一个版本 2、3.1:这个基本已经属于淘汰了,因为他成本不低,功耗也不低,也就是不上不下 3、4.0:这个目前是市场的主流,定位在中高端产品,如:CSR的方案、创杰等等 4、4.1:这个也是目前市场的主流,定位在高端产品,如:TI、中星微、络达 二、方案对比分析 1、CSR方案:这个是老牌子的方案了,市场的占有率最高,也是欧美等市场最受欢迎和认可的。缺点就是价格居高不下,并且小公司如果要做的话,一般的供应商也是不太愿意配合,因为这种产品功能修改和定制是比较麻烦的。 2、TI这个方案市场上做的不多,目前小米的蓝牙音箱用的这个,也是只做大客户,小客户服务不过来 3、珠海炬力方案,作为老牌子的国产方案,确实也给国产长脸不少,产品的性能和音质也是不错,缺点就是方案商比较牛,小客户配合不够。没有实力确实不敢找他们做 4、中星微和络达这两个方案,也还可以,但是灵活性比较欠缺 5、建荣和杰里,这两款方案,我个人是极力推荐,为什么这么说,因为这两家的芯片确实是我们国产的骄傲,因为有他们的存在,CSR、TI等牛逼的大公司得以不断的降低价格。 另外这两家方案的优势也很明显,成本低、性能稳定。但就是功耗做不下来,但是用于蓝牙音箱这样的场合,其实问题不大。作为我们开发人员,更喜爱的其实是这样的方案 6、安凯和博通:这两家也没什么好说的,就是便宜。但是实际的接触中,芯片本身的软件

晶振选型与应用知识

石英晶振选型与应用知识 石英晶体是压电晶体的一种,沿着特定的方向挤压或拉伸,它的两端会产生正负电荷,这种效应称为正压电效应;相反,对晶体施加电场导致晶体形变的效应,称为逆压电效应。所以在石英晶片两面施加交变电场,晶片就会产生形变,而形变又会产生电场,这是一个周期转换的过程。对于特定的晶片,这个周期是固定的,我们利用这个周期来产生稳定的基准时钟信号。 石英晶体元器件,是利用石英晶体的压电效应实现频率控制、稳定或选择的关键电子元器件。包括石英晶体谐振器、石英晶体振荡器和石英晶体滤波器。在石英晶片的两面镀上电极,经过装架、调频、封装等工序后制成石英晶体元件。石英晶体元件与集成电路等其它电子元件组合成石英晶体器件。本文主要介绍石英晶振:即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。一般的概念中把晶振就等同于谐振器理解了,振荡器就是通常所指钟振。石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中. 一、石英晶振的型号命名方法 1.国产石英晶体谐振器的型号由三部分组成: –第一部分:表示外壳形状和材料, B表示玻璃壳,J表示金属壳,S表示塑料封型; –第二部分:表示晶片切型,与切型符号的第一个字母相同, A表示AT切型、B表示BT切型, –第三部分:表示主要性能及外形尺寸等, 一般用数字表示,也有最后再加英文字母的。 JA5为金属壳AT切型晶振元件,BA3为玻壳AT切型晶振元件。 2石英晶体振荡器的型号命名有四部分组成: .

–第一部分:主称 用大写字母Z表示石英晶体振荡器; –第二部:类别 用大写字母表示,其意义见下表: –第三部分:频率稳定度等级 用大写字母表示,其意义见下表: –第四部分:序号 用数字表示,以示产品结构性能参数的区别

蓝牙各个版本对比

蓝牙各个版本对比 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

蓝牙各个版本对比 1、版本 传输率约在748~810kb/s,因是早期设计,容易受到同频率之间的类似通信产品干扰,影响通讯质量。这个初始版本支持Stereo音效的传输要求,但只能够以单工方式工作,加上带宽频率响应等指标不理想,并未算是最好的Stereo传输工具。 2、版本 同样是只有748~810kb/s的传输率,但增加了(改善Software)抗干扰跳频功能 (太深入的技术理论不再详述!)。支持Stereo音效的传输要求,但只能够作单工方式工作,加上带宽频率响应还是不理想,也不能作为立体声(Stereo)传输工具。 3、版本 是的改良提升版,传输率约在s~s,可以有(双工)的工作方式。即一边作语音通讯,同时亦可以传输档案/高质素图片,版本当然也支持Stereo运作。随后蓝牙版本的芯片,增加了Stereo译码芯片,则连A2DP (AdvancedAudioDistributionProfile)也可以不需要了。 4、版本 为了改善蓝牙技术存在的问题,蓝牙SIG组织(Special InterestGroup)推出了Bluetooth +EDR版本的蓝牙技术。改善装置配对流程:以往在连接过程中,需要利用个人识别码来确保连接的安全性,而改进过后的连接方式则是会自动使用数字密码来进行配对与连接,举例来说,只要在手机选项中选择连接特定装置,在确定之后,手机会自动列出当前环境中可使用的设备,并且自动进行连结;而短距离的配对方面:也具备了在两个支持蓝牙的手机之间互相进行配对与通讯传输的NFC(Near

32位RISC CPU ARM芯片的应用和选型

32位RISC CPU ARM芯片的应用和选型 摘要:ARM公司以及ARM芯片的现状和发展,从应用的角度介绍了ARM芯片的选择方法,并介绍了具有多芯核结构的ARM芯片。列举了目前的主要ARM 芯片供应商,其产品以及应用领域。举例说明了几种嵌入式产品最佳ARM芯片选择方案。 关键词:ARM MMU SOC RISC CPU ARM公司自1990年正式成立以来,在32位RISC(Reduced Instruction Set Computer)CPU开发领域不断取得突破,其结构已经从V3发展到V6。由于ARM 公司自成立以来,直以IP(Intelligence Property)提供者的身份向各大半导体制造商出售知识产权,而自己从不介入芯片的生产销售,加上其设计的芯核具有功耗低、成本低等显著优点,因此获得众多的半导体厂家和整机厂商的大力支持,在32位嵌入式应用领域获得了巨大的成功,目前已经占有75%以上32位RISC 嵌入式产品市场。在低功耗、低成本的嵌入式应用领域确立了市场领导地位。现在设计、生产ARM芯片的国际大公司已经超过50多家,国中兴通讯和华为通讯等公司已经购买ARM公司芯核用于通讯专用芯片的设计。 目前非常流行的ARM芯核有ARM7TDMI,StrongARM,ARM720T,ARM9TDMI,ARM922T,ARM940T,RM946T,ARM966T,ARM10TDMI等。自V5以且,ARM公司提供Piccolo DSP的芯核给芯片设计得,用于设计ARMDSP的SOC(System On Chip)结构芯片。此外,ARM芯片还获得了许多实时操作系统(Real Time Operating System)供应商的支持,比较知名的有:Windows CE、Linux、pSOS、VxWorks、Nucleus、EPOC、uCOS、BeOS等。 随着国内嵌入式应用领域的发展,ARM芯片必然会获得广泛的重视和应用。但是,由于ARM芯片有多达十几种的芯核结构,70多芯片生产厂家,以及千变万化的内部功能配置组合,给开发人员在选择方案时带来一定的困难。所以,对ARM芯片做一对比研究是十分必要的。 1 ARM芯片选择的一般原则

几款蓝牙芯片比较

几款蓝牙芯片调研 芯片类型 特性CC2541 CC2640 BLUENRG BLUENRG-MS 数据传输速率250Kbps、500Kbps 1Mbps、2Mbps 使用GATT notifications,可 以达到15 kbytes/s。如果 常规测试的话, 大概在 6~8kbytes/s ——TI论坛 1Mbps 1Mbps 实际占用大小100kb-120kb 接收灵敏度-94dBm at 1Mbps -97dbm -88dBm -88dBm RX功耗17.9mA 5.9mA 14.3mA 7.3mA TX功耗18.2mA (0dBm):6.1mA (+5dBm):9.1mA (0dBm):8.2mA (+5dBm):11mA (0dBm):8.2mA (+5dBm):11mA 休眠功耗功率模式 1(4-μs 唤醒):270 μA 功率模式 2 (睡 眠定时器打开): 1 μA 功率模式 3 (外 部中断):0.5 μA 待机电流:1uA 关断电流: 100nA 32KHZ X0 ON (slave) :1.7uA 32KHZ X0 ON (Master) :2.4uA 32KHZ X0 ON (RAM2 OFF) :1.7uA 32KHZ X0 ON (RAM2 ON) :2.4uA 内核带有指令预取功 能的高性能低功 耗8051微控制器 内核 32位的ARM Cortex-M3内核 ARM Cortex-M0内 核 ARM Cortex-M0内 核 FLASH 128或256KB 128KB 64KB 64KB SRAM 8KB 8KB 12KB 12KB(RAM1、RAM2 各6KB) 蓝牙协议版本V4.0 V4.1 V4.0 V4.1 组网情况Cc2540有主从切换程序demo ——TI论坛推测cc2640也 可以。 最大连接数8个——数据手 册

主流蓝牙模块选型超全涵盖BLE数传和蓝牙音频方案

一、简介 蓝牙芯片模块市场的百花齐放,也带来的工程师在选型时碰到很大的困难,但是笔者觉得 1、无论是做半成品,还是做成品,我觉得选择一个合适的方案,太重要了。 2、选型的平衡点就是刚刚合适,既不浪费,也不要不够 3、同时尽量选择一些充分竞争的大品类的芯片,来做一些小众市场的应用,其实这种方式是最优的。因为你可以享受到最大出货量和充分竞争带来的成本优势,以及芯片完整的服务 二、蓝牙的分类 这里,蓝牙版本,就不做多的说明,因为网上随便都能很轻易的搜索到,这里我个人认为的蓝牙分类主要分一下四大类: 1、蓝牙音频芯片方案 2、蓝牙数传方案---BLE 3、蓝牙数传方案,双模BLE和SPP 4、蓝牙音频+双模数据+KT1025A 蓝牙分类应用场景趋势 蓝牙音频芯片1、蓝牙音箱[便携式蓝牙音箱]、[桌面蓝牙音箱]、[广场舞音箱] 2、蓝牙耳机[运动式蓝牙耳机]、[头戴蓝牙耳机] 3、还有早期使用这种芯片开发的SPP透传的模块,如HC-05,这种处于淘汰边 缘 只可了解,不能做产品。这个分类主要集中在蓝牙音箱和蓝牙耳机 蓝牙BLE方案1、智能手环 2、共享单车蓝牙开锁 3、智能成人用品、智能灯 4、工业上面蓝牙传输数据的应用进口,并且持续的成本高 蓝牙数传方案,双模BLE和SPP 1、车载OBD数传 2、蓝牙打印机产品 小众的应用,成本高 蓝牙音频+双模数据1、这个是目前的主打,因为超大的出货量,所以迅速的压低了芯片的成本 2、总的对比下来,这一块的芯片成本最低,因为应用场景最丰富 3、优点就是成本低廉,开发灵活,支持BLE和SPP,同时支持音频 4、缺点也很明显,因为兼容音频,所以带来功耗偏大,不适合做一些低功耗的 产品,所以手环类的就没戏了 这个是目前量最大的 市场,最充分的竞争 可以关注

MSP430单片机外围晶振设计选型及参考方案

MSP430单片机外围晶振设计选型及参考方案MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低MSP430单片机。它的功耗小、具有精简指令集(RISC)的混合信号处理器(Mixed Signal Processor)。称之为混合信号处理器,是由于其针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上,以提供“单片机”解决方案。 该系列单片机多应用于需要电池供电的便携式仪器仪表中。本文主要讲解MSP430系列芯片外围晶振设计选型及注意事项等。 ---MSP430F149 MSP430系列芯片一般外搭两颗晶振:一颗主频晶振,通常在4~16Mhz中选择;另外一颗时钟晶振,即32.768Khz晶振,早期选用直插封装的,现在大部分采用贴片封装的产品,其一便于贴装,其二追求产品的稳定性和品质的可靠性等。

---应用电路 ---MSP430开发板 一、主频晶振的选择 通常MSP430芯片的主频晶振一般选择4Mhz的整数倍,即

4Mhz、8Mhz、16Mhz、32Mhz等。早期电路设计的时候一般选择成本较低的49S封装产品,现阶段越来越倾向于稳定性更好、体积更小、便于贴装的贴片3225封装产品,上海唐辉电子代理的日本KDS大真空公司推出的DSX321G和DSX320G\DSX320GE产品。 1、工业级、消费类产品用DSX321G8Mhz,如下图: 该型号产品封装为3.2mm*2.5mm,体积不到传统直插型49S封装的1/5,精度可达到20PPM,工作温度达到-40—+85°C的工业级,完全能够满足客户的要求。

晶振选型指南(精)

恒温晶振、温补晶振选用指南 晶体振荡器被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪, BP 机、移动电话发射台,高档频率计数器、 GPS 、卫星通信、遥控移动设备等。它有多种封装,特点是电气性能规范多种多样。它有好几种不同的类型:电压控制晶体振荡器(VCXO 、温度补偿晶体振荡器(TCXO 、恒温晶体振荡器(OCXO ,以及数字补偿晶体振荡器(MCXO 或 DTCXO , 每种类型都有自己的独特性能。如果您需要使您的设备即开即用, 您就必须选用 VCXO 或温补晶振,如果要求稳定度在 0.5ppm 以上,则需选择数字温补晶振 (MCXO 。模拟温补晶振适用于稳定度要求在 5ppm ~0.5ppm 之间的需求。 VCXO 只适合于稳定度要求在 5ppm 以下的产品。在不需要即开即用的环境下,如果需要信号稳定度超过 0.1ppm 的,可选用OCXO 。 频率稳定性的考虑 晶体振荡器的主要特性之一是工作温度内的稳定性, 它是决定振荡器价格的重要因素。稳定性愈高或温度范围愈宽,器件的价格亦愈高。工业级标准规定的 - 40~+75℃这个范围往往只是出于设计者们的习惯, 倘若 -30~+70℃已经够用, 那么就不必去追求更宽的温度范围。设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。指标过高意味着花钱愈多。晶体老化是造成频率变化的又一重要因素。根据目标产品的预期寿命不同, 有多种方法可以减弱这种影响。晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年, 这种现象才最为显著。例如, 使用 10年以上的晶体, 其老化速度大约是第一年的 3倍。采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如, 可以在控制引脚上施加电压 (即增加电压控制功能等。与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。输出必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰 (EMI 。晶体振荡器可 HCMOS/TTL兼容、 ACMOS

常用晶振型号一览表

1.8432MHz 18.432MHZ 25MHZ 4 MHZ 12 MHZ 16 MHZ 13 MHZ 21.47727 MHZ 33.8688 MHZ 3.6864 MHZ 10.245 MHZ 14.7456 MHZ 7.9296875 MHZ 24.576 MHZ 7.2 MHZ 22.1184 MHZ 21.504 MHZ 1.8432 MHZ 13.25 MHZ 24 MHZ 2 MHZ 9.8304 MHZ 20.945 MHZ 9.216 MHZ 14.31818 MHZ 76.8 MHZ 7.3728 MHZ 11.0592 MHZ 44.545 MHZ 40 MHZ 16.384 MHZ 27 MHZ 26 MHZ 48 MHZ 45 MHZ 90 MHZ 130 MHZ 112.32 MHZ 130 MHZ 45.1 MHZ 110.52 MHZ 21.4 MHZ 106.95 MHZ 128.45 MHZ 21.4 MHZ 38.85 MHZ 70 MHZ 45.1 MHZ 26.050 MHZ 8.192 MHZ 44 MHZ 15.36 MHZ 20 MHZ 125 MHZ 25 MHZ 50 MHZ 27 MHZ 65 MHZ 17.734475 MHZ 100 MHZ 32.768 KHZ 31.5 MHZ 29.5 MHZ 56 MHZ 12.288 MHZ 18.432 MHZ 33.333 MHZ 26.975 MHZ 27.145 MHZ 75 MHZ 153.6 MHZ 150 MHZ 455 KHZ 4.91 MHZ 6 MHZ 16.9344 MHZ 10 MHZ 3.64 MHZ 4.1952 MHZ 30 MHZ 8.38 MHZ 4.09 MHZ 16.8 MHZ 4.25 MHZ 9.83 MHZ 33.8688 MHZ 10.7 MHZ 10.8 MHZ 32 MHZ 5 MHZ 14 MHZ 17.28 MHZ 2.68 MHZ 3 MHZ 12.5 MHZ 3.2 MHZ 465 MHZ 446 MHZ 1960 MHZ 433.92 MHZ 225 MHZ 1842 MHZ.5 MHZ 942.5 MHZ 243.5 MHZ 85.38 MHZ 1489 MHZ 1441 MHZ 897.5 MHZ 280 MHZ 926.5 MHZ 903.5 MHZ 360 MHZ 881.5 MHZ 947.5 MHZ 340 KHZ 400 KHZ 26 MHZ 10.245 MHZ 1880 MHZ 1747.5 MHZ 1960 MHZ 1575.45 MHZ 1847 MHZ 842.5 MHZ 1842.5 MHZ 315 MHZ 310 MHZ 19.68 MHZ 13.56 MHZ

国产蓝牙BLE MESH芯片模块ic对比zigbee选型说明

一、简介 ble蓝牙mesh自从推出协议栈以来,一直备受广大的开发者所关注,但是发展到现今,应用生态也是非常短缺,所以芯片的源头厂商推动力不强,也就那么几个厂商在维持。但是随着物联网的迅猛发展,AI的逐步落地,蓝牙mesh笔者相信不久的将来一定能引爆一个新的市场,带来全新的 二、蓝牙的分类 这里,蓝牙版本,就不做多的说明,因为网上随便都能很轻易的搜索到,这里我个人认为的蓝牙分类主要分一下五大类: 蓝牙分类应用场景趋势 蓝牙音频芯片1、蓝牙音箱[便携式蓝牙音箱]、[桌面蓝牙音箱]、[广场舞音箱] 2、蓝牙耳机[运动式蓝牙耳机]、[头戴蓝牙耳机] 3、还有早期使用这种芯片开发的SPP透传模块,如HC-05,这种处于淘汰边缘 只可了解,不能做产品。这个分类主要集中在蓝牙音箱和蓝牙耳机 蓝牙BLE方案1、智能手环 2、共享单车蓝牙开锁 3、智能成人用品、智能灯 4、工业上面蓝牙传输数据的应用进口,并且持续的成本高 蓝牙数传方案,双模BLE和SPP 1、车载OBD数传 2、蓝牙打印机产品 小众的应用,成本高 蓝牙音频+双模数据1、这个是目前的主打,因为超大的出货量,所以迅速的压低了芯片的成本 2、总的对比下来,这一块的芯片成本最低,因为应用场景最丰富 3、优点就是成本低廉,开发灵活,支持BLE和SPP,同时支持音频 4、缺点也很明显,因为兼容音频,所以带来功耗偏大,不适合做一些低功耗的 产品,所以手环类的就没戏了 这个是目前量最大的 市场,最充分的竞争 可以关注 蓝牙MESH1、最能想到的就是家庭灯具 2、酒店广播呼叫系统--KT6039A 3、远程抄表系统2491352264 4、只要需要低功耗、自组网的场景都适合 国产发力。重点关注

主流的语音芯片对比

主流的语音芯片方案 一、简介 语音播报,这个基本在任何行业都可能用得到,如:公交报站、仪器仪表播报语音信息等等。应用非常的广泛,大到轨道交通,小到家庭用的小家电。如果在现有的系统或者产品设备中增加语音播放的功能,无疑将提升产品的用户体验和价值,因为产品的原则就是对用户越简单越显而易见,越好。市面上的语音播报方案也是呈现多样化,下面我就具体的来一个分析和解剖。 目前市面上主流的语音方案,基本上就是OTP芯片,就是但颗芯片完成控制和语音的存储,最著名的就是佑华的4位机。这种类型的芯片,语音播放生硬,并且语音固定不能修改,另外一个就是可修改。而我们的方案,就是单芯片解决,更换声音极其简单,并且成本低廉。比现有的方案都具有更高的性价比 二、主流分析 市面上主要的方案分为两种: 1、是掩膜类(MASK)、一次性(OTP)类的 (1)、它的特点是成本低廉[争对量大的情况]。因为这样的芯片必须要量大[10K级别的]才便宜,因为量小了,分摊下来,成本其实也不低。 (2)、语音存储的时间短,播放的音质差,并且不可重复的更换语音。因为它内部实现的方法是将语音文件压缩成WA V的文件,直接存储在芯片内部,这样就会导致语音被压缩的非常的厉害。 (3)、主流的还是“SOP8”、“SOP16”、“牛屎堆封装” 2、可替换声音文件的多次烧录的语音芯片 (1)、这个只在OTP芯片的基础上引入了多少烧录的技术,其原理还是和OTP的方式是一样的,这就不做详细的介绍 3、可替换声音文件的芯片方案KT404A (2)、KT404A方案,支持MP3解码。引入了mp3这一项技术,就可以保证播放的音质 (3)、支持USB直接更换语音,可重复烧录语音。烧录次数可达10万次,同时也支持批量烧录,生产极其方便。 (4)、标准的SOP16封装。 三、优势说明 相比较市场的其他方案,我们的优势十分的明显 ?音质接近电脑的播放水准,声音清晰并且圆润 ?芯片采用的是MP3解码的方法,所以相比较传统的WA V的OTP方案,在音频压缩方 面有着非常大的优势 ?KT404A支持外部的存储器扩展,用户根据需要的大小,进行贴心的选择 ?语音可以分类管理,支持循环播放,随机播放,一对一播放等等,十分灵活 ?KT404A支持USB直接更新语音,烧录次数超过10万次 ?KT404A出货为封装片,保证了良率,同时交期最多3天,对数量无任何要求

KT1025AB蓝牙芯片硬件说明和设计注意事项总结

KT1025X硬件说明和设计技巧 1、首先请以提供的测试DEMO为准“BT201”模块,如果单独使用芯片,没测试过dem直接LAYOUT,此时经验不是很丰富,极有可能出现底噪。所以首先对比好厂商的测试板 注意:蓝牙音频类的产品,出现底噪或者杂音是很常见的,layout的时候请不要很随意,基础知识不牢固的,网上多学习,不要想当然的随便,结果出来杂音就是自然而然的事情 2、天线和一些元器件的封装,请直接参考DEMO模块的PCB文件,资料库里面有 3、还需要注意电源供电: (1)、BT201测试板其实也是有底噪的,只是非常小,人耳基本很难听出来而已 (2)、可以使用手机充电器供电试试,不会有大的底噪 (3)、最好用电池供电,因为电池是觉得对的直流,所以非常干净 (4)、台式电脑的USB输出就有可能产生纹波比较大,会产生底噪 (5)、板子中如果有DCDC,则也容易产生底噪,最优的供电是采用7805之类的LDO 4、如果板子有底噪,该怎么排查? (1)、首先板子的供电,选一个干净的,最好电池供电,断开前级一切电源电路 (2)、然后接出芯片的耳机输出,用耳机听听,是否有底噪,如果没有就查后级功放电路 (3)、如果播放U盘无底噪,而播放蓝牙有底噪,这个不能说明什么问题。 本身蓝牙属于高频射频,对外就会辐射能量,底噪只能尽可能的小,不可能没有。但是好的设计,你听起来是感受不到底噪的,除非仪器去测量。 5、蓝牙底噪的改善方法: (1)、蓝牙天线和蓝牙模块尽量远离模拟电路 (2)、芯片的模拟地一定要接到电源地的输入端 (3)、检查芯片周围的接芯片脚的电容有没有问题,是否短路,或者虚焊 (4)、蓝牙部分的GND要多放过孔。 6、晶振的选型和指标要求? 由于蓝牙对频偏要求比较高,所以晶振的品质对蓝牙的性能至关重要,选型过程中 必须保证晶振的一致性和稳定性。晶振的频率偏差必须≤±10ppm,负载CL推荐12pF。 备注:晶振对地电容C102=C103?=2*CL‐(4pF~6pF),其中CL为晶振负载电容。 (1)、体积无要求的,推荐我DEMO上面的晶振,成本低,性能好 (2)、体积要求小的,推荐24M-3225的,成本稍高,性能好 建议直接用原厂配套的晶体,相信比外面随意采购的要优惠和质量保障

相关文档
最新文档