二次函数在实际生活中的应用及建模应用

二次函数在实际生活中的应用及建模应用
二次函数在实际生活中的应用及建模应用

二次函数的建模

知识归纳:求最值的问题的方法归纳起来有以下几点:

1.运用配方法求最值;

2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;

3.建立函数模型求最值;

4.利用基本不等式或不等分析法求最值.

一、利用二次函数解决几何面积最大问题

1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;

(2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?

解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴?

??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是:

利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式

中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)

(2)∵x x x x y 18)18(2

+-=-=中,a= -1<0,∴y 有最大值, 即当9)

1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y

故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回答问题实际时,一定注意不要遗漏了单位。

2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大?

解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x

-)(米),

根据题意,得:x x x x y 252

1)250(2+-=-=; 又∵500,02

500<x<>x x >∴?????- ∵x x x x y 252

1)250(2+-=-=中,a=21-<0,∴y 有最大值,

即当25)21(2252=-?-=-=a b x 时,2625)2

1(42504422max =-?-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625

平方米。 3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.

(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?

(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.

解:(1

)设剪成两段后其中一段为xcm ,则另一段为(20-x )cm

由题意得: 17)420()4(22=-+x x 解得: 4,1621==x x

当161=x 时,20-x=4;当42=x 时,20-x=16

答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。

(2)不能。理由是:设第一个正方形的边长为xcm ,则第二个正方形的边长为)5(4420x x -=-cm ,围成两个正方形的面积为ycm2,

根据题意,得:

25102)5(222+-=-+=x x x x y , ∵

25102)5(222+-=-+=x x x x y 中,a= 2>0,∴y 有最小值, 即当2522102=?--=-=a b x 时,

225241025244422min =?-??=-=a b ac y =12.5>12 故两个正方形面积的和不可能是12cm2.

4、如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,若AE=x ,正方形EFGH 的面积为y.

(1)求出y 与x 之间的函数关系式;

(2)正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由.

解:∵四边形ABCD 是边长为a 米的正方形,

∴∠A=∠D=90°,AD= a 米.

∵四边形EFGH 为正方形,∴∠FEH=90°,EF=EH .

在△AEF 与△DHE 中,

∵∠A=∠D ,∠AEF=∠DHE=90°-∠DEH ,EF=EH

∴△AEF ≌△DHE (AAS ),∴AE=DH=x 米,AF=DE=(a-x )米,

∴y=EF 2=AE 2+AF 2=x 2+(a-x )2=2x 2-2ax+ a 2,即y=2x 2-2ax+ a 2

(2)∵y=2x 2-2ax+ a 2=2(x-2a )2+24a ,∴当x=2a

时,S 有最大值. 故当点E 是AB 的中点时,面积最大.

5、在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.

(1)运动第t 秒时,△PBQ 的面积y(cm 2)是多少?

(2)此时五边形APQCD 的面积是S(cm 2),写出S 与t 的函数关系式,并指出自变量的取值范围.

(3)t 为何值时s 最小,最小值时多少?

答案:

63363

3360726612626262

1)1(2222有最小值等于时;当)()()

()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--?=+-=?-=

6、小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?

解:设花圃的宽为x 米, 则花圃的长为(32-4x+3)=(35-4x )米,面积为S

从而S=x(35-4x)-x=-4x 2+34x

∵ 0<35-4x ≤10 ∴6.25≤x <8.75

S=-4x 2+34x,对称轴x=4.25,开口朝下

∴当x ≥6.25时S 随x 的增大而减小

故当x=6.25时, 35-4×6.25=10

S 取最大值56.25㎡.

答:可设计成宽6.25米,长10米的矩形花圃,这样的花圃面积最大.

变式1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏,花圃的宽宽究竟应为多少米才能使花圃的面积最大?

解:设花圃的宽为x 米, 则花圃的长为(32-2x )米,面积为S

设矩形面积为y 米2,得到:

S=x (32-2x )=-2x 2+32x

∵ 0<32-2x ≤10 ∴ 11≤x <16

由图象或增减性可知x=11米时,

S 最大=110米2

7:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .

(1)判断图(2)中四边形EFGH 是何形状,并说明理由;

(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?

解:(1) 四边形EFGH 是正方形.

图(2)可以看作是由四块图(1)所示地砖绕C 点

按顺(逆)时针方向旋转90°后得到的,

故CE=CF =CG .

∴△CEF 是等腰直角三角形

因此四边形EFGH 是正方形.

(2)设CE=x, 则BE=0.4-x ,每块地砖的费用为y 元

那么:y=x ×30+×0.4×(0.4-x)×20+[0.16-x -×0.4×(0.4-x)×10]

)24.02.0(102+-=x x

3.2)1.0(102+-=x )

4.00(<

答:当CE=CF=0.1米时,总费用最省.

8、某居民小区要在一块一边靠墙(墙长15m)的空地上建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m 2).

(1)求y 与x 之间的函数关系,并写出自变量的取值范围;

(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?

解:

)240(x x y -=)20(22x x --=

200)10(22+--=x

∵152400≤-

∵二次函数的顶点不在自变量x 的范围内,

而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,

5.187200)105.12(22max =+--=y (平方米)

答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.

9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.

(1)要使鸡场面积最大,鸡场的长度应为多少m ?

(2)如果中间有n(n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?

x

解:(1)∵长为x 米,则宽为350x

-米,设面积为S 平方米.

)50(3

13502x x x x S --=-?=3625)25(312+--=x ∴当25=x 时,

3625m a x =S (平方米) 即:鸡场的长度为25米时,面积最大.

(2) 中间有n 道篱笆,则宽为250+-n x

米,设面积为S 平方米.

则:)50(212502x x n n x x S -+-=+-?=2625)25(212++-+-=n x n

∴当25=x 时,

2625

max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.

即:使面积最大的x 值与中间有多少道隔墙无关.

10、(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(如果要问,剪去四个正方形后的面积是多少)

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,

则.即.

解得(不合题意,舍去),.剪去的正方形的边长为1cm.

(2)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:

.即.改写为.当时,.

即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.

(3)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2.若按图1所示的方法剪折,

则与的函数关系式为:

x

x

x

x

y?

-

?

+

-

=

2

2

10

2

)

2

8(2

即.

当时,.

若按图2所示的方法剪折,则与的函数关系式为:

x x x x y ?-?+-=2282)210(2. 即.

当时,.

比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为

cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为

cm2.

11.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .

(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;

(2)求支柱的长度; (3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.

解:(1)根据题目条件,

的坐标分别是.

设抛物线的解析式为,

将的坐标代入,得 解得.

所以抛物线的表达式是.

(2)可设

,于是

从而支柱

的长度是米.

(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.

过点作垂直交抛物线于,则.

根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.

12、

12、(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,?分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD

∴MF=2MN =2x ∴ EM=10-2x

∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5

∵1020<

当x=2.5时,S 有最大值12.5

13、已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.

解:设矩形PNDM 的边DN=x ,NP=y ,

则矩形PNDM 的面积S=xy (2≤x≤4)

易知CN=4-x ,EM=4-y .

过点B 作BH ⊥PN 于点H

则有△AFB ∽△BHP

∴PH

BH BF AF =,即3412--=y x , ∴52

1+-=x y , x x xy S 52

12+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,

∴当x≤5时,函数值y 随x 的增大而增大,

对于42≤≤x 来说,当x=4时,124542

12=?+?-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.

14.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设

BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.

A B C D

P Q

解:∵∠APQ=90°,

∴∠APB+∠QPC=90°.

∵∠APB+∠BAP=90°,

∴∠QPC=∠BAP ,∠B=∠C=90°

.∴△ABP ∽△PCQ.

,86,y

x x CQ BP PC AB =-= ∴x x y 3

4612+-=. 15、如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )

A .424m

B .6 m

C .15 m

D .2

5m 解:AB =x m ,AD=b ,长方形的面积为y m 2 5 m 12 m A B C

D

∵AD ∥BC ∴△MAD ∽△MBN ∴

MB MA BN AD =,即5512x b -=,)5(5

12x b -= )5(512)5(5122x x x x xb y --=-?==, 当5.2=x 时,y 有最大值. 二、利用二次函数解决抛物线形建筑物问题

1、如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是 . 解:设此函数解析式为:2y ax =,(a ≠0); 那么

(2,-2)应在此函数解析式上.

则24a -= 即得12a =

-, 那么212y x =-.

2、某地要建造一个圆形喷水池,在水池中央垂直于

水面安装一个花形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图

(1)所示.图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的图(1) 图

关系是45

22++-=x x y .请回答下列问题: (1)柱子OA 的高度是多少米? (2)喷出的水流距水平面的最大高度是多少米?

(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?

解:(1)把x=0代入抛物线的解析式

得:y=

45,即柱子OA 的高度是4

5 (2)由题意得:当x=2=121-?-()时,y=49,即水流距水平面的最大高度 (3)把y=0代入抛物线

得:4

522++-x x =0,解得,x 1=12-(舍去,不合题意),x 2=52 故水池的半径至少要5

2米才能使喷出的水流不至于落在池外 3.一座桥如图,桥下水面宽度AB 是20米,高CD 是4米.要使高为3米的船通过,则其宽度须不超过多少米.

(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系

.

①求抛物线的解析式;

②要使高为3米的船通过,则其宽度须不超过多少米?

(2)如图2,若把桥看做是圆的一部分.

①求圆的半径;

②要使高为3米的船通过,则其宽度须不超过多少米?

解:(1)①设抛物线解析式为:

2y ax c =+, ∵桥下水面宽度AB 是20米,高CD 是4米,

∴A (﹣10,0),B (10,0),D (0,4),

∴10004a c c +=??=?,解得:1254a c ?=-???=?,∴抛物线解析式为:21425y x =-+;

②∵要使高为3米的船通过,∴3y =,则213425x =-+,解得:5x =±,∴EF=10米;

(2)①设圆半径r 米,圆心为W ,∵BW2=BC2+CW2,∴222(4)10r r =-+,解得:14.5r =;

②在RT △WGF 中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:

GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=27,此时宽度EF=47米.

4.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )

A .2.76米

B .6.76米

解:设该抛物线的解析式为y=ax 2,在正常水位下x=10,y=-4,代入解析式得

-4=a ×102 a=-1/25 所以此抛物线的解析式为:y=-x 2/25

因为桥下水面宽度不得小于18米,所以令x=9时可得:y=-81/25=-3.24

此时水深6+4-3.24=6.76米

即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B

5、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m .

(1)在如图所示的直角坐标系中,求出该抛物线的解析式;

(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示h 的函数解析式.

(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行?

解:(1)设该抛物线的解析式为y=ax 2,在正常水位下x=10,y=-4,代入解析式得 -4=a ×102 a=-1/25 所以此抛物线的解析式为:y=-x 2/25

(2)设水面上升hm ,水面与抛物线的交点为(d/2,h-4),带入抛物线得

h-4=-d 2/4×1/25 化简得:d=10√4-h

(3)将d=18代入d=10√4-h 得:h=0.76 所求最大水深为:2+0.76=2.76(米)

所以当水深超过2.76米时就会影响过往船只在桥下的顺利航行

6、林书豪身高1.91m ,在某次投篮中,球的运动路线是抛物线

y=?5

1-x 2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离约为( ) A .3.2m B .4m

解:由题意得:3.05=?5

1-x 2+3.5, x 2=2.25,∵篮圈中心在第一象限,

∴x=1.5,∴他与篮底的距离约为1.5+2.5=4m ,故选B .

7.如图是江夏宁港灵山脚下古河道上一座已有了400年历史的古拱桥的截面图,这座拱桥桥洞上沿是抛物线形状,若把拱桥的截面图放在平面直

角坐标系中,则抛物线两端点与水面的距离都是1m ,拱桥的

跨度为10m ,桥洞与水面的最大距离是5m ,如果在桥洞两侧

壁上各安装一盏距离水面4m 的景观灯,则两盏景观灯之间

的水平距离是( )

A .3m

B .4m

C .5m

D .6m

解:抛物线的顶点坐标为(5,5),且经过点(0,1),

设抛物线解析式为y=a (x-5)2+5,

把点(0,1)代入得:a=-4/25

抛物线解析式为y=-4/25(x-5)2+5, 令y=4,得:x1=15/2 x2=5/2

∴盏景观灯之间的水平距离是:15/2-5/2=5m 故选C . 先不做此题 7.如图,在“江夏杯”钓鱼比赛中,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A 为最高点的一条抛物线,已知鱼线AB 长6m ,鱼隐约在水面了,估计鱼离鱼竿支点有8m ,此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,则鱼竿所在抛物线的解析式为

8.如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5

米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线

状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C

与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离

是 米.

解:如图,建立直角坐标系,过C 点作CE ⊥y 轴于E ,过C 点作CF ⊥x 轴于F , ∴B (0,1.5),∴∠CBE=45°,∴EC=EB=2米,

∵CF=AB+BE=2+1.5=3.5,∴C (2,3.5)

设抛物线解析式为:y=a (x-2)2+3.5,

又∵抛物线过点B ,∴1.5=a (0-2)2+3.5 a=-1/2

所求抛物线解析y=-1/2(x-2)2+3.5,即 y=-x 2/2+2x+3/2

∵抛物线与x 轴相交时,y=0,即-x 2/2+2x+3/2=0

∴(舍去)7

27221-=+=x x ∴点D 坐标为)

(0,72+ 水流落点D 到A 点的距离为:米72+

9.如图,是江夏广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶

点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.

(1)请建立适当的直角坐标系,求抛物线的函数解析式;

(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)

解:(1)以点O为原点、射线OC为y轴的正半轴建立

直角坐标系,

设抛物线的函数解析式为y=ax2,由题意知点A的坐标

为(4,8).

所以8=a×42 a=1/2 ∴所求抛物线的函数解析

式为:y=x2/2

(2)找法:延长AC,交建筑物造型所在抛物线于点D,

则点A、D关于OC对称.

连接BD交OC于点P,则点P即为所求.

(3)由题意知点B的横坐标为2,

∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),

∴点D的坐标为(-4,8),

设直线BD的函数解析式为y=kx+b,

2k+b=2..........①

?4k+b=8........②

解得:k=-1,b=4.

∴直线BD的函数解析式为y=-x+4,

把x=0代入y=-x+4,得点P的坐标为(0,4),

两根支柱用料最省时,点O、P之间的距离是4米.

10、兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.(提示:利用对称性,答案:2080.)

11、自建平面坐标系求值:(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一

个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米.

答案:如图所示建立直角坐标系

则:设c ax y +=2

将点)1,5.0(-,)5.2,1(代入, ?

??+=+-?=c a c a 5.2)5.0(12,解得???==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.

三、利用抛物线解决最大利润问题

1、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y =-10x +500.

(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)

(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)

(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

解:(1)由题意得出: :w = (x -20)·y=(x-20)·(-10x+500)=-10x 2+700x-10000

∵a=-10<0,x=-b/2a =35,,∴当销售单价定为35元时,每月可获得最大利润.

(2)由题意,得:-10x 2+700x-10000=2000,

解这个方程得:x1=30,x2=40.

∴李明想要每月获得2000元的利润,销售单价应定为30元或40元.

(3)∵a=-10<0,∴抛物线开口向下. ∴当30≤x ≤40时,W ≥2000.

∵x ≤32,∴当30≤x ≤32时,W ≥2000.

设成本为P (元),由题意,得:P =20(-10x+500)=-200x+10000,

∵k=200<0,∴P 随x 的增大而减小.∴当x=32时,P 最小=3600.

答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.

2.我市某工艺厂设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(注:利润=销售总价-成本总价)

销售单价x (元∕件)

… 30 40 50 60 … 每天销售量y (件) … 500 400 300 200 …

(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;

(2)在(1)的条件下,设工艺厂试销该工艺品每天所得利润为P元;

①当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润P为8000元?

②工艺厂自身发展要求试销单价不低于35元/件,同时,当地物价部门规定,该工艺品销售单价最高不能超过55元,写出在此情况下每天获利P的取值范围.解:(1)如图所示是一次函数解析式,设一次函数解析式为:y=ax+b

30a+b=500.........①

40a+b=400.........②

解得:a=?10 b=800 ∴函数解析式为:y=-10x+800

(2)①由题意得出:P=(-10x+800)(x-20)=8000,解得:x1=40,x2=60,

∴当销售单价定为40元或60元时,工艺厂试销该工艺品每天获得的利润P为8000元;

②∵P=(-10x+800)(x-20)=-10x2+1000x-16000=-10(x-50)2+9000,

∴当x=50时,P=9000元,

当x=35时,P=6750元,

∴P的取值范围是:6750≤P≤9000.

3.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:

销售单价x(元/件)…55 60 70 75 …

一周的销售量y

…450 400 300 250 …

(件)

(1)直接写出y与x的函数关系式:y=-10x+1000

(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?

(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请求出该商家最大捐款数额是多少元?

解:(1)设y=kx+b,

由题意得,

55k+b=450...........①

60k+b=400...........②

解得:k=?10 b=1000

则函数关系式为:y=-10x+1000;

(2)由题意得,S=(x-40)y=(x-40)(-10x+1000)

=-10x2+1400x-40000=-10(x-70)2+9000,

∵-10<0,

∴函数图象开口向下,对称轴为x=70,

∴当50≤x≤70时,销售利润随着销售单价的增大而增大;

(3)∵由40(-10x+1000)≤10000

解得x≥75 ∴当x=75时,利润最大,为8750元.

4、某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只.(1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式为;

(2)求该批发商平均每天的销售利润W(元)与销售只x(元/只)之间的函数关系式;

(3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元

解::( 1)y=90-3(x-50)即y=-3x+240;

(2)w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;

(3)当x≤60,y随x的增大而减小,当x=55时,w最大=1125

所以定价为55元时,可以获得最大利润是1125元.

5.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,

市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.

设这种产品每天的销售利润为w元.

(1)求w与x之间的函数关系式;

(2)该产品销售价定为多少时,每天的销售利润最大?最大利润是多少元?

(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

解:(1)由题意得:w=(x-20)?y=(x-20)(-2x+80)=-2x2+120x-1600,∴w与x的函数关系式为:w=-2x2+120x-1600;,

(2)w=-2x2+120x-1600=-2(x-30)2+200,

∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.

答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.

(3)当w=150时,可得方程-2(x-30)2+200=150.

解得x1=25,x2=35.

∵35>28,∴x2=35不符合题意,应舍去.

答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.6.某公司营销A、B两种产品,根据市场调研,发现如下信息:

信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系

y=ax2-bx,当x=1时,y=1.4;当x=3时,y=3.6。

信息2:销售B种产品所获利润y (万元)与所售产品x(吨)之间存在正比例函数关系y=0.3x.

根据以上信息,解答下列问题:

(1)求二次函数解析式;

(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种

产品获得的利润之和最大,最大利润是多少?

解:(1)因为当x=1时,y=1.4;当x=3时,y=3.6,

代入y=ax2-bx 得a=-0.1 b=1.5

所以,二次函数解析式为y=-0.1x2+1.5x;

(2)设购进A产品m吨,购进B产品(10-m)吨,销售A、B两种产品获得的利润之和为W元,根据题意可列函数关系式为:

(3)W=-0.1m2+1.5m+0.3(10-m)=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,

因为-0.1<0,当m=6时,W有最大值6.6,

∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.

7.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.

(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?

(2)设李明获得的利润为w(元),当销售单价定为多少时,每月可获得最大利润?

(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?

解::(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,

300×(12﹣10)=300×2=600元, 即政府这个月为他承担的总差价为600元;

(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000 ∵a=﹣10<0,∴当x=30时,w有最大值4000元.

即当销售单价定为30元时,每月可获得最大利润4000元;

(3)由题意得:﹣10x2+600x﹣5000=3000, 解得:x1=20,x2=40.

∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,w≥3000.

又∵x≤25,∴当20≤x≤25时,w≥3000.

设政府每个月为他承担的总差价为p元,

∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.

∵k=﹣20<0.∴p随x的增大而减小,

∴当x=25时,p有最小值500元.

即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.

8.某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.

(1)该文具店这种签字笔平均每周的销售量为个(用含x的式子表示);(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;

(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?

解:(1)(220-10x);

∵抛物线的开口向下,在对称轴直线x=16的左侧,随的增大而增大.

由题意可知,∴当x=14时,最大为320.

∴当x=14时,该文具店这种签字笔平均每周的销售利润最大是320元.

9.一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:

x 3000 3200 3500 4000

y 100 96 90 80

(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.

(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:

租出的车辆数未租出的车辆数

租出每辆车的月收益所有未租出的车辆每月的维护费

(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元

解:(1)由表格数据可知y与x是一次函数关系,设其解析式为,

将(3000,100),(3200,96)代入得,解得:。

∴。

将(3500,90),(4000,80)代入检验,适合。

∴y 与x 间的函数关系是

。 (2)填表如下: 租出的车辆数

未租出的车辆数 租出每辆车的月收益 所有未租出的车辆每月的维护费 (3)设租赁公司获得的月收益为W 元,依题意可得:

当x=4050时,Wmax=307050,

∴当每辆车的月租金为4050元时,公司获得最大月收益307050元

10、随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)

(1)分别求出利润与关于投资量的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

解:(1)设

=,由图12-①所示,函数=的图像过(1,2),所以2=, 故利润关于投资量的函数关系式是=;

因为该抛物线的顶点是原点,所以设2y =

,由图12-②所示,函数2y =的图像过(2,2),所以,

故利润2y 关于投资量的函数关系式是222

1x y ;

(2)设这位专业户投入种植花卉万元(

),则投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得

==

+21y

y

+= =

∵021>=a ∴当时,的最小值是14;

∴他至少获得14万元的利润. 因为,所以在对称轴2=x 的右侧,

z 随x 的增大而增大

所以,当8=x 时,z 的最大值为32.

如图7,把抛物线y=

2

1x 2平移得到抛物线m ,抛物线m 经过点A (-6,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线y=21x 2交于点Q ,则图中阴影部分的面积为________________.

解析:设平移后的抛物线m 的解析式为y=

12

x 2+bx+c ,它经过点A (-6,0)和原点O (0,0),代入求出解析式得: b=3 c=o 所以函数的解析式为

12x 2+3x 所以顶点坐标是(-3,-92

), x=-3时,y=212x =92,所以点Q 坐标是(-3,92

), OA=6,PQ=2×92=9,所以四边形APOQ 面积是12

×6×9=27,图中阴影部分的面积是 四边形APOQ 面积的12,所以面积是272

m Q

P A x

y

O

图7

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题 1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 (1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴? ??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式 中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18) (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回答问题实际时,一定注意不要遗漏了单位。 2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 252 1)250(2+-=-=中,a=21-<0,∴y 有最大值,

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0 B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92 +-=x y 。当-2

二次函数在实际中的应用

二次函数在实际中的应用 法国著名数学家的卡尔说过:“我们所解决的每一个问题,将成为一种模式,用于解决其它问题”.本文用二次函数的模式,解答生产、生活、体育等实际中的问题,达到触类旁通的目的. 一、借助二次函数解答桥梁问题 例1、(2006吉林省)如图1,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m . ⑴ 建立如图所示的直角坐标系,求此抛物线的解析式; ⑵ 现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 解:(1)设抛物线的解析式为2y ax =,桥拱最高点O 到水面CD 的距离为h 米,则D (5,h -),B (10,3h --). ∴25100 3.a h a h =-??=--?,解得1251a h ?=-???=? ,∴抛物线的解析式为2125y x =-. (2)水位由CD 处涨到点O 的时间为:1÷0.25 = 4(小时), 货车按原来速度行驶的路程为:40×1+40×4 = 200<280, ∴货车按原来速度行驶不能安全通过此桥,设货车速度提高到x 千米/小时, 当4401280x +?=时,解得60x = , ∴要使货车安全通过此桥,货车的速度应超过60千米小时. 二、应用二次函数剖析撞车问题 例2、(2006苏州市)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”,如图2. 已知汽车的刹车距离s(单位:m)与车速v(单位:m /s)之同有如下关系:s=tv+kv 2其中t 为司机的反应时间(单位:s),k 为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=O.7s 图1

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

二次函数及实际应用之利润最大(小)值问题

二次函数的实际应用——利润最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

2 [例1]:求下列二次函数的最值: (1)求函数322 -+=x x y 的最值. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

2021中考数学专题08 二次函数在实际应用中的最值问题

专题二次函数在实际应用中的最值问题 1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率; (2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y (元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大? (3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元? 2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表: (1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式; (2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大? (3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)3、怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;

(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现, 影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数: y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式; (2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图 象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t . (1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12 x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是万元,收购成本为万元,求和的值; (2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可

浅谈二次函数在实际生活中的应用

龙源期刊网 https://www.360docs.net/doc/0c3380060.html, 浅谈二次函数在实际生活中的应用 作者:刘昌义 来源:《学习与科普》2019年第11期 摘要:随着社会的快速发展,人们的生活水平不断提升,生活质量的要求也不断提高, 这样一来,对各种资源的需求量也不断增大。而资源的总数是有限的,如何将优先的资源通过合理的运用来满足更多人的实际需要,这就需要用到数学中所学到的二次函数知识。二次函数在实际生活中的应用,是利用所学知识解决实际生活问题的体现。二次函数的实际应用过程,也是数学思想在生活实际中得到合理运用的过程。 关键词:二次函数;实际生活;实际应用 二次函数不管是作为一种数学计算工具还是作为初中数学学习过程中的知识组成部分,都具有非常重要的作用。二次函数贯穿了初中数学的整体学习过程,从最简单的图像方程画图计算再到复杂的二次函数实际应用,无一不体现出了它的重要性。同时二次函数也作为中考的重要考察内容,其难度相对其他数学知识更高,连贯性也更强,如果初中阶段的二次函数没有学好,势必会影响到后续的函数学习。除此之外,通过教学研究,笔者发现很多学生在二次函数的学习中暴漏出来一个问题:当题目与现实生活综合到一起时,很多学生往往后无从下手,这体现出学生对其所学知识的实际应用能力较差。所以我们需要通过对二次函数在实际生活中应用方向的研究,来找到培养学生利用二次函数解决生活实际问题能力的方法。 一、二次函数在桥梁建筑方面的应用 在日常生活中所见到的桥类建筑大多为拱形,拱形的桥梁结构相对于直桥更加稳固,且可以给桥下的水面提供较大的通行空间,以供船只通过。从拱形桥的形状看上去跟抛物线类似,其在设计之中就应用了二次函数的相关性质。除此之外,在很多公共建筑的设计上也应用了二次函数的原理,如花坛、喷泉和国家体育馆鸟巢的设计。通过这类实际应用体现出二次函数已经融入了我们的生活之中。 二、二次函数在经济生活中的实际应用 二次函數作为一种数学工具被广泛的应用到统计之中,其在经济生活之中的作用往往集中在投资调查、销售定价、销售情况统计、市场调查、消费住宿等方面。在这些经济活动中,无论其表现形式如何,最终的目的都是为了做到利益最大化。在这些项目中二次函数都是作为统计工具,根据实际经济情况建立相应的函数关系式,使用函数关系式对市场进行调查、统计和预测,从而保证拿到最大利润。 (1)投资调查

知识点20 二次函数在实际生活中应用

知识点20 二次函数在实际生活中应用 一、选择题 9.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( ) A.y = 26 675 x 2 B.y =26675 - x 2 C.y = 13 1350 x 2 D.y =13 1350 - x 2 第9题图 【答案】B 【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675- ,∴二次函数表达式为y =26675 -x 2 ,故选B. 三、解答题 22.(2019年浙江省绍兴市,第22题,12分 ).有一块形状如图的五边形余料ABCDE ,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积; (2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由. 【解题过程】

24.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p = t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣ (t ﹣h )2 +0.4刻画. (1)求h 的值. (2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系: 生长率p 0.2 0.25 0.3 0.35 提前上市的天数m (天) 5 10 15 ①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m . (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用). 【解题过程】(1)把(25,0.3)的坐标代入21 ()0.4160 p t h =- -+,得h =29或h =21. ∵h >25,∴h =29. (2)①由表格可知m 是p 的一次函数,∴m=100p-20.

14.二次函数的实际应用

第六节 二次函数的实际应用 姓名:________ 班级:________ 用时:______分钟 1.(2019·易错题)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m )与足球被踢出后经过的时间t(单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h 0 8 14 18 20 20 18 14 … 下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =9 2;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度 是11 m .其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.(2018·北京中考)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m )与水平距离x(单位:m )近似满足函数关系y =ax 2+bx +c(a≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( ) A .10 m B .15 m C .20 m D .22.5 m

3.(2018·武汉中考)飞机着陆后滑行的距离y(单位:m )关于滑行时间t(单位: s )的函数解析式是y =60t -32 t 2.在飞机着陆滑行中,最后 4 s 滑行的距离是 ________m . 4.(2018·沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =__________m 时,矩形土地ABCD 的面积最大. 5.(2017·成都中考)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E x(千米) 8 9 10 11.5 13 y 1(分钟) 18 20 22 25 28 (1)求y 1关于x 的函数表达式; (2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2 -11x +78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.

中考数学习题精选:二次函数在实际生活中应用(含参考答案)

中考数学习题精选:一、选择题 1、(2018北京房山区第一学期检测)小明以二次函数 2 248 y x x =-+的图象为灵感为 “2017北京·房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿, 若AB=4,DE=3,则杯子的高CE为 A.14 B.11 C.6 D. 3 答案:B 2、(2018北京怀柔区第一学期期末)网球单打比赛场地宽度为8米,长度在球网的两侧各为12米,球网高度为0.9米(如图AB的高度).中网比赛中,某运动员退出场地在距球网 14米的D点处接球,设计打出直线 ..穿越球,使球落在对方底线上C处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高度至少为 A. 1.65米 B. 1.75米 C.1.85米 D. 1.95米 答案:D 3、(2018北京丰台区第一学期期末)在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG = 2BE. 如果 设BE的长为x(单位:m),绿地AEFG的面积为y(单位: m2),那么y与x的函数的表达式为;当 BE AEFG的面积最大. E D G F H A C B 第 6题图 C

答案:2 2864(08)y x x x =-++<<(可不化为一般式),2 4、(2018北京密云区初三(上)期末)学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m ,设矩形的一边长为x m ,矩形的面积为y m 2.则函数y 的表达式为______________,该矩形植物园的最大面积是_______________ m 2. 答案:(4)y x x =- ,4 5、(2018北京顺义区初三上学期期末)如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 . 答案:2 20S a a =-+ 6、(2018年北京昌平区第一学期期末质量抽测)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面 的最大距离是5m . (1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图), 你选择的方案是_____(填方案一,方案二,或方案三),则B 点坐标是______, 求出你所选方案中的抛物线的表达式; (2)因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度. 解:方案1:(1)点B 的坐标为(5,0) (1) 分 设抛物线的解析式为:(5)(5)y a x x =+-…………… 2分 由题意可以得到抛物线的顶点为(0,5),代入解析式可得:1 5 a =- y 方案 2 方案 3 方案 1

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值? 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式?当x为多长时,花园面积最大?

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多? 设销售单价为x元,(0<x≤13.5)元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)所获利润可以表示为__________________; (4)当销售单价是________元时,可以获得最大利润,最大利润是__________。 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量?其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________. (4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

经典二次函数和实际应用题解法

二次函数运用题 一:知识点 利润问题:总利润=总售价–总成本 总利润=每件商品的利润×销售数量 二:例题讲解 1、(2009年内蒙古包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2. 2、(2010年聊城冠县实验中学二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________ 3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大最大面积是多少 4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.(1)若每件降价x元,每天盈利y元,求y与x的关系式.(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元(3)每件衬衫降价多少元时,商场每天盈利最多盈利多少元

5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式. (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式. (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值最大值是多少 6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件). (1)写出日销售量y(件)与销售单价x(元)之间的函数关系式; (2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P (元)与销售单价x(元)之间的函数关系式; (3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标; (4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高是多少

初中数学 二次函数的实际应用

初中数学 聆听例题,二次函数实际应用 1. 形状——抛物线 2. 形式——二次整式 【问题1】小明在某次投篮中,球的运动路线是抛物线2 1 3.5 5 y x =-+的一部分,若命中篮圈中心,则他与篮底的距离l是______m 【练习】 1. 竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是() A.第3秒B.第3.9秒 C.第4.5秒D.第6.5秒 2. 如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.

聆听例题,3. 平时我们在跳绳时,绳子甩到最高处的形状可近似看做抛物线,如图建立直角坐标系,抛物线的函数表达式为 2 113 632 y x x =-++,绳子甩到最高处时刚好通过站在x=2点处跳绳的学生小明的头顶,则小明的身高为()A.1.5m B.1.625m C.1.66m D.1.67m 4. 密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度. 【问题2】小明爸爸经营某种品牌的服装,购进时单价是30元,根据市场调查:在一段时间内,销售单价是50元时,销售量是100件,而销售单价每降1元,就会多售出10件服装. (1)设该种品牌服装的销售单价为x元,销售量为y件,请写出y与x之间的函数关系式; (2)若小明爸爸想获得2000元的销售利润,同时尽快清理库存,该服装销售单价应定为多少元? (3)在(1)问条件下,销售该品牌服装获得的最大利润是多少? 【练习2】 1. 某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为() A.y=-1 2 x2+10x+1200(0<x<60) B.y=-1 2 x2-10x+1250(0<x<60) C.y=-1 2 x2+10x+1250(0<x<60)

(完整版)二次函数在实际生活中的应用.

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x 元时,日均毛利润为y 元,由题意,得日均销售量为400-40[(x -12)÷0.5]=1 360-80x , y =(x -9)(1 360-80x ) =-80x 2+2 080x -12 240(10≤x ≤14). -b 2a =- 2 0802×(-80) =13, ∵10≤13≤14,∴当x =13时,y 取最大值, y 最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销

售量y (件)与销售单价x (元)的关系如图Z8-1所示. (1)图中点P 所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件; (2)请直接写出y 与x 之间的函数表达式:__y =20x +1_000__;自变量x 的取值范围为__30≤x ≤50__; (3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件; 第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件). (2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得?????400=30k +b ,300=35k +b ,解得?????k =-20,b =1 000, ∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50, ∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元, 由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500, ∵-20<0,∴当x =35时,W 取最大值4 500. 答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元. 2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在图Z8-1

二次函数的实际问题应用(分类讲解变式)

二次函数的应用 【今日目标】 1、学会建立二次函数模型解决实际问题(与方程、最值相结合); 2、能在限制条件下求出符合题意的最值。 【精彩知识】 【引例】求下列二次函数的最值: (1)求函数223 x y x x的最值.(2)求函数223 y x x的最值.(03) ★方法归纳: 如果自变量的取值范围是全体实数,那么函数在处取得最大值(或最小值). 如果自变量的取值范围是 x x x,分两种情况: 12 a为例,最大值是;最小值是顶点在自变量的取值范围内时,以0 顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性 专题一应用之利润最值问题 【例1】某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少? ●变式练习: 某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上 涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为x的取值范围为y元。 (1)求y与x的函数关系式,并直接写出自变量x的取值范围; (2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少? (3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?

【例2】某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y (万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式; (2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少? (3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元? 专题二应用之面积最值问题 【例3】把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚 度忽略不计)。 (1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的 长方形盒子。 ①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少? ②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的 边长;如果没有,说明理由。 (2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边 上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。 专题三实际应用问题 【例4】如图,排球运动员站在点O处练习发球,将球从O点正上方 2 m的A处发出,把球看

相关文档
最新文档