燃气轮机在船舶动力方面的应用

燃气轮机在船舶动力方面的应用
燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展

邵高鹏

(清华大学汽车系,北京 100084)

摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。

关键词:船用燃气轮机;原理;应用;发展方向;

1.引言

燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。

2.船用燃气轮机的工作原理

船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。

轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

程。经过两级涡轮的燃气经废气箱和烟囱排入大气,是燃气轮机的排气过程,这部分气体中仍然含有一些能量,可以把这部分能量加以利用来提高整机的工作效率。

除了简单开式循环外,船用燃气轮机还有一些更为复杂的循环型式,包括回热机组和中冷机组等等。回热机组中排气温度高,经回热器(即换热器)先把压气机出口的空气加热,然后空气再进入燃烧室,优点是可以提高热效率,但是会增加机器的重量和尺寸;中冷机组在压缩过程中采用中间冷却,这样可以减小高压压气机的压缩功,使单位流量工质的输出功增大。

3.船用燃气轮机的特点

燃气轮机虽然发展比内燃机和蒸汽轮机稍晚,但是很快便在航空领域取得了绝对的统治地位,并在船用动力系统中也得到了广泛的应用,与传统的内燃机动力和蒸汽轮机等相比,燃气轮机能够克服很多它们的缺点,但是也有一些自身惯有的不足。

与柴油机相比,船用燃气轮机有以下特点:

1.燃气轮机工作时虽然同样经历吸气、压缩、做功和排气四个环节,但是这些环节是分别在不同位置同时、连续地进行的,各装置的工作过程互不干扰而且又同时进行,而柴油机要等一个冲程结束后才能开始另一个冲程。

2.燃气轮机以高速回转方式工作,它的主要运动部件压气机转子和涡轮转子等都经过精确地调节平衡,因此燃气轮机在高速转动的过程中冲击小,平稳性好。而活塞式内燃机运动方式为往复运动,工作时有较强的冲击。

3.相比内燃机,燃气轮机有更高的工作温度,而燃烧膨胀压力较低。

4.燃气轮机启动时需要强制点火,而正常运行之后则可以自燃,而内燃机一般只有一种固定的着火方式。

5.燃气轮机运行时没有时间和角度的要求,也没有正时的问题,燃气轮机的燃油喷射是连续不间断的,而内燃机只在一个循环中的某个阶段进行喷油。

一般来说,与船用柴油机相比,燃气轮机的优点主要有:

1.比功率大,重量轻,体积小。在同等功率的各种内燃机中,燃气轮机具有最轻的重量和最小的体积。船用燃气轮机单位功率重量,只有高速柴油机的十五分之一或更小。

2.船用燃气轮机对功率指令反应迅速,低温起动性,加速性良好,且起动后立即可投入全负荷工作。不必“暖车”,不必慢慢提速,有利于提高舰船的机动性。

3.燃气轮机工作时有充足的空气来满足燃油燃烧所需。由于燃烧完善,从而保证在起动、加速、变速及正常运行等不同工况下排气都不会冒黑烟。这个突出的优点,大大提高了军用船舰的隐蔽性。

4.燃气轮机结构紧凑,传动机构较少,工作极为平稳,不震动,工作噪音。尤其是高频噪音较小。便于安装封闭式机罩而对机组实行整体隔音、降噪,从而使机舱工作条件得到改善。在一定程度上也能提高船舰的隐蔽性。

5.燃气轮机工作可靠性高,故障较少发生。同时拆卸、维修、安装都较方便。

与船用柴油机相比,船用燃气轮机具有以下缺点:

1.耗油率偏高,尤其是小型船用燃气轮机。但随着技术的发展,已得到很大改善。

2.燃气轮机的工作转速很高,但输出扭矩较小,必须通过减速箱降速提高扭矩才能输出作功。然而配套的减速箱减速比都比较大,其重量甚至大于燃气轮机本身,增加了结构的复杂性。

3.燃气轮机工作当中耗气量特别大。故进气通道及排气烟囱尺寸都较大,占用了船

舱的部分空间容积在小吨位船上布置起来有些不便。

4.燃气轮机的构造较复杂精细,制造材料和工艺要求都很高,因而它的造价较柴油机高,维修配件也比较贵。

5.为满足燃气轮机高速、高温工作所需,对使用的润滑油有较严格的要求,必须具有良好的润滑性及抗高温的热稳定性。燃料则用热值高,含杂质、水分少,尤其是含硫分低的优质轻柴油,因而在一定程度上限制了使用范围并增加了营运成本。

4.燃气轮机应用于船舶的状况

1.军事方面:英国于1967 年率先提出实行水面战舰全燃汽轮机推进的动力政策。1969年以后,高性能船舶燃气轮机LM2500 研制成功,美国海军动力装置迅速走上了全燃推进的道路,并在装舰数量上远远超过了英国。原苏联一直是船舶燃气轮机的最大使用国,其海军装用燃机的舰艇数、燃机台数和装机总功率均占世界第一位。80 年代初,日本海军步英国、美国和原苏联后尘也走上了全燃推进的道路。最近十多年,其燃机装舰的速度和规模均超过了英国。目前的护卫舰,尤其是装备现代武器的大型护卫舰,采用燃机( 含柴燃联合装置) 推进日益增多;在驱逐舰和巡洋舰中,燃汽轮机将取代蒸汽机,成为两舰种的动力装置;轻型航母也倾向于采用燃机驱动。我国第一艘装备燃气轮动力的“舷号452”气垫登陆艇于1989年服役,成为我海军发展史上的一个重要里程碑。后来又在一些中大型军舰,如舷号112、113、168、169等驱逐舰上,装备了多种不同型号的燃气轮机动力,为海军的现代化建设奠定了牢固基础。2001年,以沈阳黎明公司为研制总成单位、六〇六所为总设计单位,联合清华大学、中科院、上海交通大学等科研院所和有关企业,组成设计研制项目联合体,借鉴国外技术,引进国外智力,共同研制R0110重型燃气轮机。这一项目被列为国家“十五”期间“863”能源领域重大专项。2009年,重型燃气轮机己进入最后联调及试验验证阶段。输出功率预计可达114500kW,可以作为中型常规航空母舰的主动力。这对于提高我国的综合国力具有积极推动作用。

2.民用船舶:近十年来,燃气轮机在高速渡船中得到大量应用。具有代表性的是瑞士斯坦纳航运公司营运的三艘HSS1500大型高速渡船。大型旅游船和高速集装箱船采用燃机推进是船用燃机在商船应用领域中的又一个重大突破。在商船推进领域中,船舶燃气轮机正在向船用柴油机的世袭地位挑战。

5.船用燃气轮机的未来发展方向

近20 年来,随着燃气轮机技术的发展、高性能航空发动机的改装以及在燃气轮机热力循环方面的开发研究,船用燃气轮机的性能日益先进,技术日臻完善。船用燃气轮机技术发展方向主要有以下几个方面。

1.提高燃气轮机参数,改进部件设计,提高简单循环机组性能,由于舰船对高性能燃气轮机的需求,近20 年来推出了多型大功率高效燃气轮机组。通过提高初温和压比、改进部性能等措施,在简单循环下机组效率超过40%,如GE公司的LM6000PC、R-R公司的MT30等。在推出新机组的同时,各大公司不断提高原有机组的性能。

2.采用先进的复杂循环,提高机组性能采用回热循环、间冷-回热循环等复杂循环,是提高燃气轮机性能的另一条途径。对于低压比小功率船用燃气轮机,通过增加回热器形成回热循环来提高效率;对于高压比三转子大功率船用燃气轮机,增加中间冷却器和回热器形成间冷回热循环,可增大功率、提高效率。

3.采用燃蒸联合循环,提高装置的功率和效率在燃气轮机后增加一个利用排气热量的余热利用回路,用来产生蒸汽并使它在蒸汽轮机中做功,然后蒸汽轮机与燃气轮机并车驱动螺

旋桨。这种燃蒸联合装置可明显地提高装置的输出功率和效率。燃蒸联合循环的效率将达到45%~50%,在使用低压蒸汽时,整个系统的能量利用率高达80%。

4.燃气轮机发电模块是未来舰船燃气轮机的主要应用方向综合电力系统是今后舰艇动力的发展方向,其主要特点是将推进动力与电站动力合二为一,为舰船装备高能武器奠定电能基础。综合电力系统对电站总功率的需求大幅度增加,这就要求单台发电机组的功率成倍增长,传统意义上的柴油机发电机组已不能满足这种变化要求。燃气轮机单机功率大、输出转速高,特别适合作为综合电力系统的原动力.

5.低NOx排放燃烧室的研制对陆地和空中推进装置日益严格的排放要求,未来舰船的主动力装置应满足今后的排放法规,以保证舰船在世界各国港口均能顺利入港。通常用于陆基燃气轮机的干式低排放系统采用贫预混燃烧室,但是这些装置大多数是以气态燃料运行而不是使用馏出油。英国罗尔斯·罗伊斯公司正承担一项计划,根据贫预混预气化(LPP)原理生产使用馏出燃油的液体干式低排放系统。此项工作已证明,在高功率下可以使NOx排放减少到是常规扩散火焰技术的10%。

参考文献:

[1]吉桂明.船舶燃气轮机技术和应用的展望吉桂明[J].舰船科学技术,2000.05.06

[2]王志安.船用燃气轮机技术的发展方向及我国发展途径的思考[J].热能动力工程,2011.07

[3]牛金章,邓武安.燃气轮机的发展及其在舰船上的应用[J].学术园地,2010.07

[4]闻雪友.现代舰船燃气轮机发展趋势分析[J].舰船科学技术,2010.08

燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展 邵高鹏 (清华大学汽车系,北京 100084) 摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。 关键词:船用燃气轮机;原理;应用;发展方向; 1.引言 燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。 2.船用燃气轮机的工作原理 船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。 轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

燃气轮机控制系统概况

燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮机控制系统—SPEEDTRONIC Mark V的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying system. Keywords: Gas Turbine; control system 1.燃气轮机控制系统的发展 燃气轮机开始成为工矿企业和公用事业的原动机组始于40年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展,燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966年美国GE公司推出的第一台燃机电子控制系统的雏形。该套系

大型天然气燃气轮机机型选择

大型天然气燃气轮机机型选择 1.E级燃机与F级燃机的比较 由于E级燃气轮机的燃气初温(1105℃)较低,自身效率要比F级燃气轮机低4个百分点。E级燃气轮机的排气温度仅540℃,蒸汽循环不能再热,只能采用双压循环;而F 级燃气轮机排烟温度高达576℃,蒸汽循环可采用高参数的三压再热循环。因而E级联合循环的效率要比F级低6个百分点。 SIEMENS公司E级和F级机组技术性能比较表 燃机型号V94.2 V94.3A 燃气初温(℃)一级动叶进口1105 一级动叶进口1320 燃机效率(%)34.4 38.7 排气温度(℃)540 576 蒸汽系统双压无再热三压有再热 联合循环效率(%)51.7 57.4 另外由于E级机组容量较小,需要2+1(两台燃机带一台汽机)组成的联合循环,容量才能达到1台F级机组的容量。因而设备增多(2台燃机、1台汽机、3台发电机、3台主变压器、3条电气出线、3套润滑油系统、3套辅机)、系统复杂(汽水系统需要母管制)、厂房和占地较大。E级联合循环机组单位容量的投资比F级联合循环机组的大。 经过多方面的技术和经济比较,我们得出结论:在天然气价格逐年增高的趋势下,建设大型联合循环电厂,不宜选用E级燃气轮机作为基本机型,而大功率、高效率的F级燃气轮机才是联合循环电厂的首选机型。 在中国,2005年以来,与西气东输及LNG(液化天然气)输入工程相配套,我们共

建设了48套F级联合循环机组。 2.F级燃机及联合循环的性能 通过“以市场换技术”,中国已形成了哈尔滨动力集团-GE公司(美国通用电器)、上海电气集团-SIEMENS公司(西门子)、和东方电气集团-三菱公司(MITSUBISHI)三家大型燃气轮机制造集团。每个厂家栏目下左侧的产品是在中国已生产投运的产品,每个厂家栏目下右侧的产品为改进型产品。 表1 F级燃气轮机的技术性能 公司哈动力-GE 上海电气-SIEMENS 东方电气-三菱 燃机型号9FA 9FB V94.3A SGT5-40 00F(2) V94.3A SGT5-40 00F(4) M701F3 M701F4 净功率(MW)256 282.3 271 287 270 312 净热耗 (Kj/Kwh) 9757 9620 9302 9424 净效率(%)36.9 37.4 38.9 39.5 38.2 39.3 压气机级数18 18 15 15 17 17 压比15.4 18.5 16.9 16.9 17 18 燃烧室型式环管型环管型环形环形分管环状分管环状 燃烧器型式/数量DLN2.0+ /18 DLN2.6+ 混合型 DLN/24 混合型 DLN/24 干式低 NOx 干式低 NOx

哈工程版船舶动力装置概论样本

第一章,总论 1,船舶的主要性能指标有哪些? 答: 排水量△: 船舶总重量, 由空载重量LW和载重量DW组成; 容积▽: 水面航行船舶的水下部分的体积,也称作容积排水量; 航速: 1海里=1.852km 续航力S: 舰船在用尽全部燃料及其它消费品储量前, 以恒速所航行过的距离称为续航力, 以海里计; 自给力T: 舰船在海上航行, 中途不补给任何储备品所能持续活动的时间称为自给力, 以昼夜计; 生命力: 舰船能抵御战斗破坏或失事破损并保持其运载、战斗能力的性能称为生命力; 机动性: 舰船起锚开航、改变航速和航向的性能; 隐蔽性: 舰船在海上航行并完成战斗运输任务而不被敌方发现的性能; 耐波性: 舰船能在大风浪不良天气下完成任务的性能; 2,船舶动力装置是由哪些装置系统组成的? 答: 推进系统: 主机、传动设备、推进器 辅助设备: 发电副机组、辅助锅炉装置、压缩空气系统 机舱自动化系统 船舶系统 3,船舶对动力装置有哪些要求? 答: 技术性能和经济性能, 对于军用舰船来说着重于战术技术性能;

而民用船舶则倾向于经济性能。 4,船舶动力装置的主要性能指标是什么? 答: 技术指标: 功率指示, 重量指标, 尺寸指标 经济指标: 动力装置燃料消耗率, 主机燃料消耗率, 动力装置每海里航程燃料消耗量, 动力装置有效热效率, 动力装置的建造、运转及维修的经济性 运行性能指标: 机动性, 可靠性, 隐蔽性, 遥控和机舱自动化, 生命力 5,高、中、低速柴油机的转速范围如何? 答: 低速机: 300r/min, 中速机: 300-1000r/min,高速机: >1000r/min 6,柴油机的消耗率一般是多少? 答: 低速机: 160-180g/(kw.h), 中速机: 150-220 g/(kw.h), 高速机: 200-250 g/(kw.h) 7,柴油机的优缺点为何? 答: 优点: 有较高的经济性、重量轻、具有良好的机动性缺点: 单机功率低、柴油机工作中振动、噪声大, 大修期限较短、柴油机在低速区工作时稳定性差, 滑油消耗率高 8,蒸汽轮机的优缺点为何, 为什么主要应用在大型船舶上? 答: 单机功率很大; 汽轮机叶轮转速稳定, 没有周期性作用力, 因此汽轮机组振动噪声小 汽轮机工作时只是转子轴承处有摩擦阻力, 故磨损部件少, 工

燃气轮机控制系统概况模板

燃气轮机控制系统 概况 燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮 机控制系统—SPEEDTRONIC Mark V 的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying

system. Keywords: Gas Turbine; control system 1. 燃气轮机控制系统的发展燃气轮机开始成为工矿企业和公用事业的原 动机组始于40 年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展, 燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦 可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966 年美国GE 公司推出的第一台燃机电子控制系统的雏形。该套系统, 也就是后来被定名为SPEEDTRONIC MARK I 的控制系统,以电子装置取代了早期的燃料调节器。 MARK I 系统采用固态系列元件模拟式控制系统, 大约50 块印刷电路板, 继电器型顺序控制和输出逻辑。 MARK II 在1973 年开始使用。其改进主要是采用了固态逻辑系统, 改进了启动热过渡过程, 对应用的环境温度要求放宽了。 在MARK II 的基础上, 对温度测量系统的补偿、剔除、计算等进行改型, 在70 年代后期生产出MARK II +ITS, 即增加了一套集成温度系统。对排气温度的控制能力得以加强, 主要是对损坏的排气热电偶

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术的进展与前景 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术

燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。 近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家著名的公司GE、ABB、Siemens、西屋等均与航空发动机设计、研究、制造厂彼此联营,保证及时地把航空发动机领域内的先进技术用来武装重型燃气轮机,以确保技术的先进性。如压气机已采用“可控扩压”的概念进行设计,把单轴压气机的压缩比提高到了24~30的水平,透平叶片采用了航空机组的先进冷却结构和定向结晶制造工艺,使透平前的燃气温度提高到了1300℃的水平,由此明显地提高了机组的输出功率和热效率。如GE公司的9FA、Siemens的V94.3A等典型机组的燃机单循环功率为266MW,燃气初温为1270~1300℃,压缩比为16,

军舰动力装置概况——燃气轮机

军舰动力装置概况——燃气轮机美国FT-8舰用燃气轮机 (一)研制背景和研制打算 FT-8燃气轮机由普拉特?惠特尼(P&W)公司的JT8D-219航空涡扇发动机派生。JT8D-219是JT8D系列中的最新型号,1985年开始投入使用。研制时充分利用了FT-4燃气轮机的成功体会,并移植了普拉特?惠特尼公司的PW2037和PW4000航空发动机的先进技术。在设计上突出了机组的高效率、高寿命和高可靠性。JT8D系列是一型成熟的航空发动机,20余年来已生产14000余台,并装在3000多架民航飞机上,如波音727、737、DC-9、MD-82等。累计运行了两亿八千五百万飞行小时,平均单台寿命超过1 8000h。 FT-8是1986年开始设计的。派生时将低压压气机改为8级,前两级用JTSD的风扇改成,第3级至第8级除对第3级压气机叶型作修改外,其他5级不变。进口导流叶片与前2级静子叶片可调。高压压气机共7级,7级高压压气机不变,重新设计了燃烧室和燃料系统。高、低压涡轮叶片加大了冷却,并设计了涡轮间隙操纵结构。动力涡轮4级,涡轮效率93.6%,燃气轮机总效率38.7%,是当代同等功率燃气轮机中最高的。 (二)系统组成和要紧性能 FT-8燃气轮机由进气道、低压压气机、高压压气机、燃烧室、高压涡轮、动力涡轮、排气装置和操纵系统等部套组成。 高压涡轮。单级轴流式。涡轮叶片和导向叶片为气冷,涡轮叶片材料为MAR-M-247,导向叶片为MAR-M-509,轮盘为In718。叶片涂层为N iCoCrAly。 低压涡轮。2级轴流式,第1级气冷。所有叶片材料皆为MAR-M-247,轮盘皆为Was-paloy。除第2级导向叶片涂层为PtAl外,其余叶片涂层皆为NiCoCrAly。 动力涡轮。4级轴流式,叶片材料除第3和第4级导向叶片为In7 18外,皆为In738。轮盘为Ing01。第1和第2级涡轮叶片及导向叶片涂层为PW A73铝硅,轴采纳PW All0铝涂层。

燃气轮机发电技术综述

Internal Combustion Engine &Parts 0引言 随着我国天然气资源的大规模开发及越来越严格的环保标准,我国陆续建成投产了多台燃气轮机发电机组,在满足电力需求的同时,创造了良好的社会效益和经济 效益。目前就世界范围而言, 燃气轮机发电已是电力结构中的重要组成部分,对推动经济和社会发展发挥着重要作用。 1燃气轮机装置的工作过程 燃气轮机是以连续流动的燃气为工质、 将燃料的化学能转变为转子机械能的内燃式动力机械, 是一种旋转式热力发动机。燃气轮机装置主要由压气机、 燃烧室、透平三大部件及控制系统、 辅助设备组成。压气机从外界大气环境吸入空气,并逐级压缩;压缩空气被送到燃烧室与喷入的 燃料混合燃烧,产生高温燃气;然后燃气进入透平膨胀做 功;透平排气可直接排到大气,对外界环境放热,也可通过换热设备放热以回收利用部分余热。工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热四个工作过程完成一个热力循环,进行能量转换。通常在燃气轮机中,压气机 是由燃气透平来带动的,它是透平的负载, 在简单循环中,透平的机械能有1/2到2/3左右用来带动压气机,其余的1/3左右的机械能用来驱动发电机。 2燃气轮机发电机组 用燃气轮机驱动发电机构成了燃气轮机发电机组。目前,应用最广泛、获得最高实用热效率的是燃气与蒸汽的联合循环。燃气轮机循环中,工质的平均吸热温度很高,燃气初温达到了1300℃-1500℃(表1),平均放热温度也较高,通常燃气轮机排气温度在500℃-600℃左右,因此单独 的燃气轮机发电机组的热效率难以达到较高值(表1)。蒸 汽轮机循环中,工质的平均放热温度达到了较低值,但工质的平均吸热温度不高,因此单独的蒸汽轮机发电机组的热效率也难以达到较高值。这两种单独的循环的热效率最 高40%多。若将燃气循环和蒸汽循环联合起来, 就成为了平均吸热温度很高而平均放热温度很低的热机, 其循环效率必定较高,最高热效率已达到60%以上(表2)。 如GE 公司基于空气冷却透平技术的9H 级燃气轮机联合循环效率约61%,西门子公司全内空冷H 级燃机联合循环效率也在60%以上。 燃气-蒸汽联合循环的方案有多种,本文介绍典型的联合循环发电型式。 2.1纯余热锅炉型联合循环发电机组这种联合循环中,燃气侧和蒸汽侧两循环的结合点是余热锅炉。燃气轮机的排气送入余热锅炉中去加热给水、 产生蒸汽,驱动汽轮机做功,这是以燃气轮机为主的联合循环方案。 余热锅炉内不加入燃料燃烧,因此,蒸汽参数及蒸汽轮机的容量取决于燃气透平的排气参数和流量,在通常燃气轮机排气参数下,得到的是中温中压的蒸汽, 通常汽轮机的容量约为燃气轮机容量的30%-50%。 这种联合循环效率高、技术成熟、 系统简单、造价低、启停速度快,应用最广。若在燃气透平的排气段设置旁通 烟囱, 汽轮机停机时燃气轮机可以单独运行;但燃气轮机停机时汽轮机不能单独工作。 2.2排汽补燃型联合循环发电机组排汽补燃型联合循环有两种方案:在余热锅炉前增加 烟道补燃器以及往余热锅炉中加入一定的燃料, 利用燃气中剩余的氧进行燃烧。由于补燃,锅炉蒸发量增加, 蒸汽参数提高,蒸汽轮机循环的出力和效率得到提高; 负荷变化时,可在较大的输出功率变化范围内, 燃气轮机工况不变,只改变补燃燃料,以改变汽轮机功率来改变联合循环的出力,机组的变工况性能得到改善,部分负荷下的效率较高; —————————————————————— —作者简介:杨巧云(1966-),女,湖南湘潭人, 武汉电力职业技术学院教授,硕士。 燃气轮机发电技术综述 杨巧云 (武汉电力职业技术学院, 武汉430079)摘要:介绍燃气轮机发电装置的的工作过程及典型型式,对几种主要的燃气-蒸汽联合循环发电装置进行分析比较,并将燃气轮 机发电机组与常规燃煤发电机组进行比较。 关键词:燃气轮机;燃气-蒸汽联合循环;发电 机组型号ISO 基本功率 (MW )燃气初温℃ 供电效率(%) PG9351FA MS9001G LM6000-PD M701G GT13E2V94.3A 255.628241.1334165.1265.9 132714301160142711001310 36.0 39.540.739.535.738.6 表1某些燃气轮机发电机组的主要技术参数(教材,清华) 表2某些联合循环发电机组的主要技术参数(教材,清华) 机组型号ISO 基本功率(MW ) 供电效率(%) S209FA KA13E2-2KA26-1S109H GUDIS.94.3MPCP2(M701F ) 786.9 480392.5480392.2799.6 57.1 52.956.360.057.457.3

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势 近年来,燃气轮机的技术发展非常迅速,性能日益完善,大型燃气轮机联合循环电厂的功率等级已与汽轮机电厂相当,发电效率普遍超过了50%,最高已达58%,远远超过汽轮机电厂的效率,加之还有初始投资省、占地面积少、耗水少、环境污染少、运行维护方便等优点,使燃气轮机联合循环电厂在世界范围内获得了迅速的推广应用,因而,各主要燃气轮机制造厂都已成套供应燃气一蒸汽联合循环发电机组,安装和使用都很方便。据统计,目前全世界新增发电设备中,燃气轮机及联合循环发电机组约占40%,已与汽轮发电机组平分秋色,而美、日等发达国家,燃气轮机已经超过了汽轮机。据美国电力研究所的专题报告预测,美国1993一2001年内新增发电设备的2/3将是燃气轮机发电机组,到2015年,世界新增发电设备中燃气轮发电机组约占63%。美好的应用前景进一步刺激了燃气轮机的研究和发展,下面将对近期的研究和发展情况分别进行介绍。 由于工业化国家对环境保护的要求越来越严格,促使燃气轮机制造厂将较多的精力放在努力减少排气污染方面,其经费已占燃气轮机研究经费的最大份朽。燃气轮机一般燃用天然气或蒸馏油等清洁燃料,其含硫和含尘量极低,因而,排气中烟尘和502含量极低。所以燃气轮机考虑的排气污染物主要有未燃烧的碳氢化合物(UHC)、一氧化碳(CO)和氮氧化物(NOx)3种,由于燃烧技术的成熟和燃烧室结构的完善,目前先进燃气轮机的燃烧效率几近100%,排气中的UHC和CO极其微少,可以满足工业化国家严格的环保要求。但是,由于燃气轮机燃烧室中的火焰温度比较高,在高温下产生了一定数量的NO、,一般可达200又10一6左右,超过了许多工业化国家的环保规定。因此,减少燃气轮机排气污染的努力,近年来主要是集中在减少NO二产生方面。向燃烧室的燃烧区按照一定比例注入水或蒸汽,可以降低最高燃烧温度,有效地抑制Ox的产生量,这是目前一种比较成熟而能有效减少燃气轮机NO、排放的方法,已获得了较广泛的应用。一般注水与燃料之比约为0.95左右。在燃气轮机的排气通道应用选择催化还原S(CR)技术,即布置催化床并注入氨气,使NOx还原成NZ和水蒸气,这也可有效地减少NOx的排放。但上述两种方法成本比较高,而且对环境又会造成另外的有害影响,如氨气泄漏等,所以,目前的研究重点已转向干式低NO、(DLN)燃烧室的研制,即不向燃烧室中注入水或蒸汽,而通过优化燃烧室结构和合理组织燃烧来减少NOx的产生。目前,GE、西屋、ABB、西门子、索拉等主要燃气轮机制造厂都已研制成各自的DLN燃烧室,具体措施大致有以下几种: 1预混稀相燃烧(或称预混贫燃料燃烧) 该方法通过燃料与空气预先混合成稀相,再组织燃烧,使燃烧更为完全,而且可降低燃烧室内的最高燃烧温度。例如,在大多数范围内,可使火焰温度低于1400’C。因而有效地抑制了NO二的产生量。该方法的缺点是运行范围比较窄,低工况时容易熄火。目前,大多数DLN燃烧室都是应用这种方法,但都采取了一些稳定燃烧的措施,如应用值班喷嘴、控制燃料的分配等。例如,爱利松公司的501型燃气轮机采用预混锥使燃料与空气产生稀相预混,再配合旋流器、值班喷嘴和空气掺混系统来控制燃料/空气比和火焰分布,实现了低NOx排放,同时在低负荷时无熄火和不稳定现象。索拉公司1993年以后应用该方法,使其燃气轮机在50%一100%负荷范围内NOx产生量少于42x10一6。西门子公司应用该技术,使其燃气轮机的NOx排放量低达9火10一6CO排放量少于5火106,而成本仅增加不到10%。GE公司应用该技术,计划要使NOx排放量降低至9又10一6。EGT公司在其

燃气轮机结构-涡轮

第四章涡轮 涡轮概述 一:涡轮功用 把来自燃烧室的高温、高压燃气中的部分热能和压力能转换成机械功,用以带动压气机、附件和外负荷。 二:按燃气流动方向分类 轴流式径流式(离心式、向心式) 三:涡轮工作条件 高温、高转速、频繁剧烈热冲击、不均匀加热及由于转子不平衡和燃气压力、流量脉动造成的不平衡负荷的作用。 四:船舶燃气轮机涡轮 船舶燃气轮机多应用轴流式涡轮。其特点是功率大、燃气温度高、转速高、效率高。 燃气发生器涡轮(增压涡轮):用来带动压气机和附件; 动力涡轮:用来带动减速器-螺旋桨或其他负荷,输出功率 五:涡轮通流形式 平的 扩张型:等中径通流等内径通流等外径通流

涡轮转子 一:涡轮转子组成 涡轮盘、涡轮轴、工作叶片、连接零件 二:盘与轴的连接 1.不可拆卸式结构:销钉连接整体结构或焊接 2.可拆卸式结构:螺钉连接短螺栓连接

三:盘与盘的连接 盘与盘地连接也分为不可拆卸和可拆卸两种结构,如下为典型连接: 不可拆卸式的径向销钉连接用长螺栓连接的可拆卸结构用短螺栓连接的可拆卸结构四:工作叶片及其与轮盘的连接 1:工作叶片工作环境: 离心力、气动力、振动负荷、受到燃气腐蚀、冷热疲劳 第一级工作叶片工作条件最恶劣,决定燃气初温选择,直接影响燃气轮机性能和可靠性 2:工作叶片组成 叶身、中间叶根、榫头(有些叶尖带有叶冠) 3:中间叶根作用 可以减少向轮盘传热,改善榫头应力分布不均匀;可以通冷却空气,降温,减少热应力,减轻轮盘质量。 4:榫头 叶片用枞树形榫头连接,承受负荷、离心力大、高温下工作。 故需满足:a.允许榫头受热后自由膨胀 b.传热性能好,叶片热量容易带走5:工作叶片的固定: 涡轮静子 一:涡轮静子组成 涡轮外环、导向器、涡轮支撑、传力系统 二:涡轮机匣 1:结构特点 一般采用整体式,且采用与燃机轴线垂直的分开面,将外环分成几部分 也有用于纵向剖分面的分开式结构的机匣,但多用于多级涡轮的情况 : 2:径向周向定位 通常采用圆柱表面实施,也有用几个不等距的精密配合的销钉作为定位件,再用精配螺栓附加定位

联合循环燃气轮机发电厂简介.doc

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组 成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回 收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽 轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机 各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美 国 GE公司的 MS9001E燃气轮机 , 其热效率为 33.79%,余热锅炉为杭 州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1 简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的 结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部 分: 1、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送 入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空 气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀 作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和 寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分 为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转 型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用 于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行 可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、 热电联产。埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000 转/ 分,直接传动的发电机。该型燃气轮发电机组最早于1987 年投入商

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

燃气轮机用于发电的主要形式

燃气轮机用于发电的主要形式 燃气轮机用于发电的主要形式 燃气轮机装置是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,如LM6000PC和FT8燃气轮机,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,如GT26和PG6561B等燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机用于发电的主要形式: 简单循环发电:由燃气轮机和发电机独立组成的循环系统,也称为开式循环。其优点是装机快、起停灵活,多用于电网调峰和交通、工业动力系统。目前的最高效率的开式循环系统是GE公司LM6000PC 轻型燃气轮机,效率为43%。 前置循环热电联产或发电:由燃气轮机及发电机与余热锅炉共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收,转换为蒸汽或热水加以利用。主要用于热电联产,也有将余热锅炉的蒸汽回注入燃气轮机提高燃气轮机出力和效率。最高效率的前置回注循环系统是GE公司LM5000-STIG120 轻型燃气轮机,效率为43.3%。前置循环热电联产时的总效率一般均超过80%。为提高供热的灵活性,大多前置循环热电联产机组采用余热锅炉补燃技术,补燃时的总效率超过90%。 联合循环发电或热电联产:燃气轮机及发电机与余热锅炉、蒸汽轮机或供热式蒸汽轮

简析燃气轮机发电机组的现状及未来发展详细版

文件编号:GD/FS-5604 (安全管理范本系列) 简析燃气轮机发电机组的现状及未来发展详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

简析燃气轮机发电机组的现状及未 来发展详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重视。 1.燃气轮机及其发电机组现状浅析

1.1.燃气轮机浅析 作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热效率(简单循环)。高度垄断是重型燃气轮机制造领域的特点,重要的核心企业为ABB、西门子/西屋、GE、三菱等。轻型燃气轮机制造领域中主导企业为P&W、R.R与GE,其他国家也不甘落后,正在紧锣密鼓的航机改型。

燃气轮机复习题.(DOC)

电站燃气轮机课程复习思考题 1. 词语解释: (1)循环效率:当工质完成一个循环时,把外界加给工质的热能q转化成为机械功l c的百分数。 (2)装置效率(发电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为电功l s的百分数。 (3)净效率(供电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为净功l e的百分数。 (4)比功:进入燃气轮机压气机的1kg的空气,在燃气轮机中完成一个循环后所能对外输出的机械功(或电功)l s(kJ/kg),或净功l e(kJ/kg). (5)压气机的压缩比: 压气机的出口总压与进口总压之比。 (6)透平的膨胀比: 透平的进口总压与出口总压之比。 (7)压气机入口总压保持系数:压气机的入口总压与当地大气压之比。 (8)燃烧室总压保持系数:燃烧室的出口总压与入口总压之比。 (9)透平出口总压保持系数:当地大气压与透平的排气总压之比。 (10)压气机的等熵压缩效率:对于1kg同样初温度的空气来说,为了压缩达到同样大小的压缩比,等熵压缩功与所需施加的实际压缩功之比。 (11)透平的等熵膨胀效率:对于1kg同样初温度的燃气来说,为了实现同样的膨胀比,燃气对外输出的实际膨胀功与等熵膨胀功之比。 (12)温度比:循环的最高温度与最低温度之比。 (13)回热循环:在简单循环回路中加入回热器,当燃气透平排出的高温燃气流经回热器时,可以把一部分热能传递给由压气机送来的低温空气。这样,就能降低排气温度,而使进到燃烧室燃料量减少,从而提高机组的热效率。 (14)热耗率:当工质完成一个循环时,把外界加给工质的热能q,转化成机械功(或电工)

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术 的进展与前景 Ting Bao was revised on January 6, 20021

国内外燃气轮机发电技术的进展与前景 阎保康 浙江省电力试验研究所杭州310014 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术 燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家

燃气轮机课程设计--燃气轮机方向

燃气轮机课程设计--燃气轮机方向

课程设计 燃气轮机方向 大气进气 进气 大 气排气 G/M /F ~ 压气涡轮 燃

一、单轴燃气轮机循环计算 1、设计参数 标准状态进气条件:K T 2880=*,Pa P 5010013.1?=*; 燃气初温:K T 9933=*; 燃机功率:KW N e 30=; 2、循环计算选取数据 压气机压比:1.2=* C π; 压气机效率:83.0=*C η; 燃烧室燃烧效率:96.0=* B η; 涡轮效率:85.0=* T η; 机械效率:99.0=* m η; 压力损失:94.0=*in σ,98.0=*B σ,96.0=* out σ; 88435.0==* ***out B in σσσσ; 涡轮膨胀比:85714.1==***σππC T ; 漏气量:0=?; 3、变比热循环计算 3.1、压气机进口参数 由K T T 28801==**,Pa p p in 50 11095222.0?==* **σ,查表1、2得: 01I 1I ? 01ln π 1ln π? 8354.27 -6.2958 1.71153 -0.002335 ()Kmol KJ I /28.834895222 .02958.627.835401=?-==β, ()70931.195222 .0002335.071153.1ln 01=?-==βπ;

3.2、压气机出口参数 由45347.21.2ln 71153.1ln ln ln 0102=+=+=* C πππ,查表1、2得: T 0 2ln π 0 2s I 355 2.44453 10306.64 356 2.45441 10335.85 经插值得:K T s 90.3552=*; ()()Kmol KJ I s /93.1033264.1030685.103359.064.1030600 2=-?+==β; () () Kmol KJ I I I I I I I I C s s C /20.107380101020 02 01020 1 02=+-=?--=*=*ηηβ; 查表1得: T 0 2 I 2I ? 369 10715.82 -3.6629 370 10745.07 -3.6382 经插值得:K T 77.3692=*; 由于Pa p p C 512 1099966.1?==* **π得: ()Kmol KJ I /91.1073099966 .16439.320.1073802=?-==β; 45125.21.2ln 70931.1ln ln ln 12=+=+=* C πππ; 压气机压缩功:Kmol KJ I I l C /63.238228.834891.1073012=-=-=; 3.3、燃烧室出口参数 已知燃气初温:K T 9933=*, Pa p p B 523 1095970.1?==* **σ, 查表1得:

(完整版)燃气轮机

燃气轮机简介 1、燃气轮机发展史 1939年世界上第一台燃气轮机投入使用以来,至今已有65年的历史。在这65年中燃气轮机的发展非常快,其性能、结构不断地提高和完善。燃气轮机的用途已从过去的军事领域扩展到铁路运输、移动电站、海上平台、机械驱动和各种循环方式的大中型电站等。例如:简单循环、回热循环、间冷循环、再热循环、燃气—蒸汽联合循环(单压、双压、三压再热)、增压硫化床燃烧—联合循环(PFBC—CC)、整体式煤气化联合循环(IGCC)等。由于燃气轮机具有用途广泛、启动快、运行方式灵活、用水量少、热效率高、建设周期短以及对燃料的适应性非常广(各种气体燃料、液体燃料和煤)等特点,因此可以这样说,燃气轮机已经成为热机中的一支劲旅,汽轮机长期独霸发电行业的格局已经开始动摇。 近二十年来,燃气轮机在电站中的应用得到了迅猛发展。这是因为燃气轮机启动速度快、运行方式灵活,且能在无电源的情况下启动(黑启动Black),机动性能好且有极强的调峰能力,可保障电网安全运行。进入八十年代以后,燃气轮机技术得到了迅猛发展,技术性能大幅度提高。到目前为止单机容量已达334MW,简单循环的燃气轮机热效率达43.86%,已超过大功率、高参数的汽轮机电站的热效率。而燃气—蒸汽联合循环电站的热效率更高达60%。先进的燃气轮机已普遍应用模块化结构,使其运输、安装、维修和更换都比较方便,而且广泛应用了孔探仪定期检查、温度控制、振动保护、超温保护、熄火保护、超速保护等措施,使其可靠性和可用率大为提高。此外,由于燃气轮机的燃烧效率很高,未燃烧的碳氢化合物、一氧化碳、二氧化硫等排放物一般都能达到严格的环保要求。注水/蒸汽燃烧室和DLN燃烧室的应用使NO X的排放降至9-25ppm。 2、我国燃气轮机工业概况 我国解放前没有燃气轮机工业,解放后全国各地试制过十几种型号的陆海空用途的燃气轮机。1956年我国制造的第一批喷气式飞机试飞,1958年起又有不少工厂设计试制过各种燃气轮机。 1962年上海汽轮机厂试制船用燃气轮机,1964年与上海船厂合作制成 550KW燃气轮机,1965年制成6000KW列车电站燃气轮机,1971年制成3000KW卡车电站。在这期间还与703研究所合作制造了3295KW、4410KW、18380KW等几种船用燃气轮机。 1969年哈尔滨汽轮机厂制成2200KW机车燃气轮机和1000KW自由活塞式燃气轮机,1973年与703研究所合作制成4410KW船用燃气轮机,与长春机车车辆厂合作制成3295KW机车燃气轮机。 1964年南京汽轮电机厂制成1500KW电站燃气轮机;1970年制成37KW 泵用燃气轮机;1972年制成1000KW电站燃气轮机;1977年制成21700KW快装式电站燃气轮机;1984年与GE公司合作生产了PG6541B型36000KW燃气轮机;从1984年至2004年已生产了PG6541B型、PG6551B型、PG6561B型、PG6581B型四种型号燃气轮机,功率由36000KW上升到现在的43660KW。2003年国家发改委决定南京汽轮电机集团有限责任公司与GE公司进一步扩大

相关文档
最新文档