生物技术基础名词解释

生物技术基础名词解释
生物技术基础名词解释

生物技术基础名词解

Revised on November 25, 2020

第一章

1、现代生物技术:也称生物工程。在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。

2、基因重组:gene recombination 造成基因型变化的核酸的交换过程。

3、酶工程:enzyme engineering 酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。

4、蛋白质工程:protein engineering 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。

5、快速无性繁殖:

7、生物工程:bioengineering应用生命科学及工程学的原理,借助生物体作为反应器或用生物的成分作工具以提供产品来为社会服务的生物技术。包括基因工程、细胞工程、发酵工程、酶工程等。

8、细胞工程:cell engineering应用细胞生物学和分子生物学的方法,通过类似于工程学的步骤在细胞整体水平或细胞器水平上,遵循细胞的遗传和生理活动规律,有目的地制造细胞产品的一门生物技术。

9、发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。

10、转基因工程:转基因工程又叫重组DNA技术,重组是指在体外将分离到的或合成的目的基因(object gene),通过与质粒、病毒等载体(vector)重组连接,然后将其导入不含该基因的受体细胞(host cell),使受体细胞产生新的基因产物或获得新的遗传特性。

11、生物固氮:是指固氮微生物将大气中的氮气还原成氨的过程。

12、人类基因组计划:human genome project于20世纪80年代提出,由美、英、日、中、德、法等国参加并于2001年完成的针对人体23对染色体全部DNA的碱基对(3×109)序列进行排序,对大约25 000基因进行染色体定位,构建人类基因组遗传图谱和物理图谱的国际合作研究计划。

13、愈伤组织:callus;calli(复) 原指植物体的局部受到创伤刺激后,在伤口表面新生的组织。它由活的薄壁细胞组成,可起源于植物体任何器官内各种组织的活细胞。现多指切取植物体的一部分,置于含有生长素和细胞分裂素的培养液中培养,诱导产生的无定形的组织团块。

第二章

一、名词解释

1 、DNA变性:在某些理化因素作用下,DNA双链解开成两条单链的过程叫DNA的变性。DNA的变性是DNA二级结构破坏、双螺旋解体的过程。DNA的变性中以DNA的热变性最常见。 1.增色效应:DNA变性时其溶液0D260增高的现象。:热变性的DNA是在一个相当窄的温度范围内完成。在这一范围内。医学教`育网搜集整理紫外光吸收值达到最大值的50%时的温度称为DNA 的解链温度,又称融解温度(meltingtemperature,Tm)。其大小与G+C含量成正比。

2、复制子:(replicon)是DNA复制是从一个DNA复制起点开始,最终由这个起点起始的复制叉完成的片段。DNA 中发生复制的独立单位称为复制子。每个复制子使用一次,并且在每个细胞周期中只有一次。

3、启动子:promoter DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,在许多情况下,还包括促进这一过程的调节蛋白的结合位点。

4、内含子:(introns)是真核生物细胞DNA中的间插序列。这些序列被转录在前体RNA中,经过剪接被去除,最终不存在于成熟RNA分子中。内含子和外显子的交替排列构成了割裂基因,在前体RNA中的内含子常被称作“间插序列”。

5、限制性内切酶:生物体内可以识别并切割特意的双链DNA序列的一种内切核酸酶,简称限制酶。它们能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。

6、酶切位点:DNA上一段碱基的特定序列,限制性内切酶能够识别出这个序列并在此将DNA序列切成两段。

7、PCR:聚合酶链式反应,其英文Polymerase Chain Reaction是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.

8、基因克隆载体:在基因工程重组DNA技术中将DNA片段(目的基因)转移至受体细胞的一种能自我复制的DNA分子。三种最常用的载体是细菌质粒、噬菌体和动植物病毒。

9、质粒:细菌细胞内一种自我复制的环状双链DNA分子,能稳定地独立存在于染色体外,并传递到子代,一般不整合到宿主染色体上。现在常用的质粒大多数是经过改造或人工构建的,常含抗生素抗性基因,是重组DNA技术中重要的工具。

10、Ti质粒:(Ti-plasmid)根瘤农杆菌染色体外的环状双链DNA质粒,能诱导植物产生异常氨基酸和冠瘿碱或二者之一,并诱生冠瘿瘤。

11、噬菌体载体:

12、基因芯片:gene chip固定有寡核苷酸、基因组DNA或互补DNA等的生物芯片。利用这类芯片与标记的生物样品进行杂交,可对样品的基因表达谱生物信息进行快速定性和定量分析。

13、cDNA文库:cDNA library:是以特定的组织或细胞mRNA为模板,逆转录形成的互补DNA(cDNA)与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌形成重组DNA克隆群,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织或细胞的cDNA文库。cDNA文库特异地反映某种组织或细胞中,在特定发育阶段表达的蛋白质的编码基因,因此cDNA文库具有组织或细胞特异性。

14、转化:(transformation)是某一基因型的细胞从周围介质中吸收来自另一基因型的细胞的DNA而使它的基因型和表型发生相应变化的现象。

15、转导:(transduction)由噬菌体将一个细胞的基因传递给另一细胞的过程。它是细菌之间传递遗传物质的方式之一。其具体含义是指一个细胞的DNA或RNA通过病毒载体的感染转移到另一个细胞中。

16、克隆子:摄取外源DNA并令其稳定维持的受体细胞。

17、报告基因:(reporter gene)是一种编码可被检测的蛋白质或酶的基因,也就是说,是一个其表达产物非常容易被鉴定的基因。把它的编码序列和基因表达调节序列相融合形成嵌合基因,或与其它目的基因相融合,在调控序列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控,筛选得到转化体。

18、DNA杂交:(DNA hybridization)一种用互补碱基配对的程度,来分析不同生物品种来源的两条或多条DNA链间彼此关系密切程度的实验技术。

19、southern印迹杂交:利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量。

20、northern印迹杂交:一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。RNA印迹技术正好与DNA相对应,故被称为Northern印迹杂交,与此原理相似的蛋白质印迹技术则被称为Western blot。

二、思考题

1、基因工程操作流程

目的基因或DNA片段的获取、重组DNA分子的构建、重组DNA分子引入受体细胞、目的基因或DNA片段的扩增或表达。

2、原核生物与真核生物基因及转录的区别

基因的区别:真核生物基因编码区有内含子与外显子的区别,内含子不能编码蛋白质;原核生物没有内含子。

转录的区别:1)真核生物有由核膜包裹的细胞核,因此,基因的转录和翻译有时间和地点的差别;而原核生物没有细胞核,转录和翻译可以同时同地点进行。2)真核生物基因有内含子,转录所得的前提mRNA需要经过修饰,除去由内含子转录得到的mRNA序列而得到成熟mRNA;原核生物基因因没有内含子,转录得到的mRNA不需要经过修饰。

3、EcoR1的识别序列,酶切位点

EcoR1是从大肠杆菌R菌株中分离出来的第一个限制酶,EcoR表示是从大肠杆菌的R型菌株分离来的,“Ⅰ”表示是从大肠杆菌R菌株中分离出来的第一个限制酶。EcoR1切割序列,切割位点在G与A之间,形成黏性末端。

4、PCR基本原理

PCR是一种体外DNA 扩增技术,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性——低温退火——引物延伸”三步反应的多次循环,使DNA片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段。

5、MCS连杆衔接头

6、PBR322、λ噬菌体载体、cosmid载体、YAC载体的结构、特点、主要用途

PBR322质粒:大小为4362bp,含有两个抗药性基因,一个复制起始点和多个用于克隆的限制酶切点。有7种限制酶的识别位

点位于四环素抗性基因内部,,两种限制酶识别位点位于该基因启动区内,3种限制酶识别位点位于氨苄青霉素抗性基因内。

λ噬菌体载体:λ噬菌体的基因组长达50 Kb,共61个基因,其中38个较为重要。可分为裂解周期和溶原周期。细菌处于溶原

化状态时,细胞质中有一些λ CI基因的产物CI蛋白,这是一种阻遏蛋白,可以阻止λ左、右两个早期起动子的转录,使之不能产

生一些复制及细胞裂解的蛋白。λ的DNA随着宿主的染色体复制而复制。但在UV诱导下Rec蛋白可降解CI蛋白诱导90%的细胞

裂解。有时λ也可自发地从宿主的染色体上游离出来,进行复制,最终导致宿主细胞的裂解,此称为治愈(curing)。游离在细胞质中的λ可以进行滚环复制,产生多个拷贝,并合成头部和尾部蛋白,包装成完整的λ噬菌体,使细胞裂解,释放出λ噬菌体再感染新的细胞。因为λ噬菌体的DNA也有整合在染色体上和游离于细胞质中两种状态,所以也称做附加体。但和F因子不同,λ噬菌体

有细胞外形式,而F因子无细胞外形式。

cosmid载体:cosmid 是英文 cos site-carrying plasmid 的缩写, 也称粘粒、柯斯载体。本意是带有粘性末端位点的质粒, 因此, 柯斯质粒是人工建造的的含有λDNA的cos序列和质粒复制子的特殊类型的质粒载体。这是一类用于克隆大片段DNA的载

体,它是由λ噬菌体的cos(cohesive)末端及质粒(plasmid)重组而成的载体。cosmid载体带有质粒的复制起点、克隆位点、

选择性标记以及λ噬菌体用于包装的cos末端等,因此该载体在体外重组后,可利用噬菌体体外包装的特性进行体外包装,利用噬菌体感染的方式将重组DNA导入受体细胞。但它不会产生子代噬菌体,而是以质粒DNA的形式存在于细胞内。柯斯质粒的构建一般都是利用质粒的复制子、选择标记, 加上λ的cos位点序列及与包装有关的序列,构建的科斯质粒可以很好地用于基因克隆。

YAC载体:YAC含有酵母染色体端粒(telesome)、着丝点(centromere)及复制起点等功能序列,可插入长度达200-

500kb的外源DNA,导入酵母细胞可以随细胞分裂周期复制繁殖供作克隆,成为人基因组研究计划的重要

7、获取目的基因的途径基因组文库与cDNA基因文库中基因的区别

获取目的基因的途径:从生物基因组中直接分离目的基因、人工合成目的DNA片段、PCR反应合成目的DNA、mRNA差异显示

法获得目的基因。

将某种生物的DNA全部提取出来,选用适当的限制酶,将DNA切成一定范围大小的DNA片段,然后,将这些DNA片段分别与

载体连接起来,导入受体菌的群体中储存,每个受体菌都含有了一段不同的DNA片段。也就是说,这个群体包含了这种生物的所

有基因,叫做生物的基因组文库。

cDNA文库是以特定的组织或细胞mRNA为模板,逆转录形成的互补DNA(cDNA)与适当的载体(常用噬菌体或质粒载

体)连接后转化受体菌形成重组DNA克隆群,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织或细胞的cDNA文库。

8、常用选择标记(报告)基因及其用途

最常用的报告基因大多是编码抗生素抗性蛋白的基因,通过检查产物是否具有抗生素的抗性来确定基因的表达情况。(1)、氯霉素乙酰基转移酶(CAT):可催化乙酰CoA的乙酰基转移到氯霉素3羟基,而使氯霉素解毒。CAT在哺乳细胞无内

源性表达,性质稳定,半衰期较短,适于瞬时表达研究。可用同位素、荧光素和酶联免疫吸附测定(enzyme—linkedimmunosorbantassay,ELISA)检测其活性,也可进行蛋白质印迹(Westernblotting)和免疫组织化学分析。CAT与

其他报告基因相比,线性范围较窄,灵敏性较低。(2)、β半乳糖苷酶:可催化半乳糖苷水解。最大优势是易于用免疫组织化学法观测其原位表达,是最常用的监测转染率的报道基因之一。(3)荧光素酶:将荧光素酶报告基因载体转染到细胞

中,可用荧光素酶检测系统灵敏方便地测定荧光素酶基因的表达。(4)、分泌型碱性磷酸酶(SEAP):SEAP可催化D—荧光素—O—磷酸盐水解生成D—荧光素,后者又可作为荧光素酶的底物,此即两步生物发光法检测酶活性的原理。此方法灵敏

度高,接近于荧光素酶报告基因的检测。还可用一步化学发光法检测酶活性。

作为报告基因,在遗传选择和筛选检测方面必须具有以下几个条件:(1)已被克隆和全序列已测定; (2)表达产物在受体细胞中本不存在,即无背景,在被转染的细胞中无相似的内源性表达产物; (3)其表达产物能进行定量测定。

9、鉴定重组子的方法

第三章

1、细胞工程:应用细胞生物学和分子生物学的方法,通过类似于工程学的步骤在细胞整体水平或细胞器水平上,遵循细胞的遗传和生理活动规律,有目的地制造细胞产品的一门生物技术。

2、细胞融合:细胞融合是在自发或人工诱导下,两个不同基因型的细胞或原生质体融合形成一个杂种细胞。

3、组织培养:应用无菌操作方法培养生物的离体器官、组织或细胞,使其在人工条件下生长和发育的技术。

4、次生代谢产物:次生代谢产物(Secondary metabolites)是由次生代谢(Secondary metablism)产生的一类细胞生命活动或植物生长发育正常运行的非必需的小分子有机化合物,其产生和分布通常有种属、器官、组织以及生长发育时期的特异性。

5、原生质体:protoplast脱去细胞壁的植物、真菌或细菌细胞。是一生物工程学的概念。动物细胞也可算做原生质体。

6、不对称融合:

7、抗性互补筛选:

8、体细胞无性系变异:

9、人工种子:通过组织培养技术,把植物组织的细胞培养成在形态及生理上与天然种子胚相似的胚状体,也叫作体细胞胚。这种体细胞胚有于叶、根、茎分生组织的结构。科学家把体细胞胚包埋在胶囊内形成球状结构,使其具备种子机能。

10、单克隆抗体技术:将产生抗体的B淋巴细胞与骨髓瘤细胞杂交,获得既能产生抗体,又能无限增殖的杂种细胞,并生产抗体的技术。

11、原生质体培养:将细胞去除细胞壁后形成裸露的原生质体,把原生质体放在无菌的人工条件下使其生长发育的技术。(原生质体培养的其特点是:①比较容易摄取外来的遗传物质,如DNA;②便于进行细胞融合,形成杂交细胞;③与完整细胞一样具有全能性,仍可产生细胞壁,经诱导分化成完整植株):

12、分批发酵:指发酵过程中一次投料,一次接种,一次收获的间歇培养。在分批发酵中细胞、基质、产物浓度均随时间而不断变化。

:13、抗生素:抗生素的概念:抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。

抗生素的作用机理:抗生素等抗菌剂的抑菌或杀菌作用,主要是针对“细菌有而人(或其它高等动植物)没有”的机制进行杀伤,有4大类作用机理:

1)、阻碍细菌细胞壁的合成,导致细菌在低渗透压环境下膨胀破裂死亡,以这种方式作用的抗生素主要是β-内酰胺类抗生素。哺乳动物的细胞没有细胞壁,不受这类药物的影响。

2)、与细菌细胞膜相互作用,增强细菌细胞膜的通透性、打开膜上的离子通道,让细菌内部的有用物质漏出菌体或电解质平衡失调而死。以这种方式作用的抗生素有多粘菌素和短杆菌肽等。

3)、与细菌核糖体或其反应底物(如tRNA、mRNA)相互所用,抑制蛋白质的合成——这意味着细胞存活所必需的结构蛋白和酶不能被合成。以这种方式作用的抗生素包括四环素类抗生素、大环内酯类抗生素、氨基糖苷类抗生素、氯霉素等。

4)、阻碍细菌DNA的复制和转录,阻碍DNA复制将导致细菌细胞分裂繁殖受阻,阻碍DNA转录成mRNA则导致后续的mRNA翻译合成蛋白的过程受阻。以这种方式作用的主要是人工合成的抗菌剂喹诺酮类(如氧氟沙星)。

生物技术基础名词解释

生物技术基础名词解 释 Revised on November 25, 2020

第一章 1、现代生物技术:也称生物工程。在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。 2、基因重组:gene recombination 造成基因型变化的核酸的交换过程。 3、酶工程:enzyme engineering 酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。 4、蛋白质工程:protein engineering 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。 5、快速无性繁殖: 7、生物工程:bioengineering应用生命科学及工程学的原理,借助生物体作为反应器或用生物的成分作工具以提供产品来为社会服务的生物技术。包括基因工程、细胞工程、发酵工程、酶工程等。 8、细胞工程:cell engineering应用细胞生物学和分子生物学的方法,通过类似于工程学的步骤在细胞整体水平或细胞器水平上,遵循细胞的遗传和生理活动规律,有目的地制造细胞产品的一门生物技术。 9、发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。 10、转基因工程:转基因工程又叫重组DNA技术,重组是指在体外将分离到的或合成的目的基因(object gene),通过与质粒、病毒等载体(vector)重组连接,然后将其导入不含该基因的受体细胞(host cell),使受体细胞产生新的基因产物或获得新的遗传特性。 11、生物固氮:是指固氮微生物将大气中的氮气还原成氨的过程。 12、人类基因组计划:human genome project于20世纪80年代提出,由美、英、日、中、德、法等国参加并于2001年完成的针对人体23对染色体全部DNA的碱基对(3×109)序列进行排序,对大约25 000基因进行染色体定位,构建人类基因组遗传图谱和物理图谱的国际合作研究计划。 13、愈伤组织:callus;calli(复) 原指植物体的局部受到创伤刺激后,在伤口表面新生的组织。它由活的薄壁细胞组成,可起源于植物体任何器官内各种组织的活细胞。现多指切取植物体的一部分,置于含有生长素和细胞分裂素的培养液中培养,诱导产生的无定形的组织团块。 第二章 一、名词解释 1 、DNA变性:在某些理化因素作用下,DNA双链解开成两条单链的过程叫DNA的变性。DNA的变性是DNA二级结构破坏、双螺旋解体的过程。DNA的变性中以DNA的热变性最常见。 1.增色效应:DNA变性时其溶液0D260增高的现象。:热变性的DNA是在一个相当窄的温度范围内完成。在这一范围内。医学教`育网搜集整理紫外光吸收值达到最大值的50%时的温度称为DNA 的解链温度,又称融解温度(meltingtemperature,Tm)。其大小与G+C含量成正比。 2、复制子:(replicon)是DNA复制是从一个DNA复制起点开始,最终由这个起点起始的复制叉完成的片段。DNA 中发生复制的独立单位称为复制子。每个复制子使用一次,并且在每个细胞周期中只有一次。 3、启动子:promoter DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,在许多情况下,还包括促进这一过程的调节蛋白的结合位点。 4、内含子:(introns)是真核生物细胞DNA中的间插序列。这些序列被转录在前体RNA中,经过剪接被去除,最终不存在于成熟RNA分子中。内含子和外显子的交替排列构成了割裂基因,在前体RNA中的内含子常被称作“间插序列”。 5、限制性内切酶:生物体内可以识别并切割特意的双链DNA序列的一种内切核酸酶,简称限制酶。它们能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。 6、酶切位点:DNA上一段碱基的特定序列,限制性内切酶能够识别出这个序列并在此将DNA序列切成两段。 7、PCR:聚合酶链式反应,其英文Polymerase Chain Reaction是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.

细胞生物学名词解释

名词解释题 细胞:是生命体活动的基本单位。 原位杂交:确定特殊的核苷酸序列在上染色体或细胞中的位置的方法称为原位杂交 脂质体:根据磷脂分子可在水相中形成稳定的脂双层的趋势而制备的人工膜。单层脂分子铺展在水面上时,其极性端插入水相而非极性尾部面向空气界面,搅动后形成乳浊液,即形成极性端向外而非极性尾部在部的脂分子团或形成双层脂分子的球形脂质体。 主动运输:有载体介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式。此种转运的方式需要消耗能量。 转移序列:存在与新生肽连中使肽连终止转移的一段信号序列,可导致蛋白质锚定在膜的脂双层中。因终止转移信号作用而形成单次跨膜的蛋白质,那么该蛋白质在结构上只有一个终止转移信号序列,没有部转移信号,但在N端有一个信号序列作为起始转移信号。 P34cdc2/cdc28:是有芽殖或裂殖酵母cdc2/cdc28基因表达一种分子量为34X103细胞周期依赖的蛋白激酶。 细胞全能性:细胞经分裂和分化后仍具有产生完整有机体的潜能或特性 膜系统(endomembrane system): 指在结构、功能及发生上密切相关的,由膜围绕的细胞器或细胞结构,主要包括质网、高尔基体、溶酶体、过氧化物酶体、核膜、胞体和分泌泡等。 Caspase家族: Caspase活性位点是半胱氨酸(Cysteine),裂解靶蛋白位点是天冬氨酸残基后的肽键,因此称为Cysteine aspartic acic specific protease,即Caspase 细胞分化:在个体发育中,有一种相同的细胞类型经细胞分裂后逐渐在形态、结构、和功能上形成稳定性差异,产生不同的细胞类群的过程称细胞分化。或:由于基因选择性的表达各自特有的专一蛋白质而导致细胞形态、结构与功能的差异。 分泌型胞吐途径:真核细胞都从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程。 细胞骨架:是由蛋白纤维交织而成的立体网架结构,它充满整个细胞质的空间,与外侧的细胞膜和侧的核膜存在一定的结构联系,以保持细胞特有的形状,并与细胞运动有关。(也可以这样回答:从广义上讲,细胞骨架包括细胞质骨架、细胞核骨架、细胞膜骨架和细胞外基质。从狭义上讲,细胞骨架即为细胞质骨架,包括微管、纤丝两大类纤维成分)。 膜的流动性:是生物膜的基本特征之一,包括膜脂的流动性和膜蛋白的流动性,膜脂的流动性主要是指脂分子的侧向运动。 钙粘素:属亲同性CAM,其作用依赖于Ca2+。钙粘素分子结构同源性很高,其胞外部分形成5个结构域,其中4个同源,均含Ca2+结合部位。决定钙粘素结合特异性的部位在靠N末端的一个结构域中,只要变更其中2个氨基酸残基即可使结合特异性由E-钙粘素转变为P-钙粘素。钙粘素分子的胞质部分是最高度保守的区域,参与信号转导。 接合素蛋白:它既能结合网格蛋白,又能识别跨膜受体胞质面的尾部肽信号,从而介导跨膜受体及其结合配体的选择性运输。

生物名词解释整理

1. 双名法:每种生物的学名采用属名和种名命名 2. 蛋白质的四级结构、多肽:在含有两条或多条多肽链的蛋白质中,各条多肽链因其排列顺序而彼此关联。 多个氨基酸以肽键链接起来形成的就是多肽 3. 胞间连丝:植物细胞壁上有孔,相邻细胞的细胞膜伸入孔中,光面内质网也彼此相通,即成胞间连丝。可以沟通相邻细胞。 4. 叶绿体基粒内囊体:叶绿体内有一系列排列整齐的扁平囊,这些扁平囊称为类囊体。有规律地重叠在一起的,是基粒类囊体。基粒类囊体堆叠成基粒。 5. 开放维管束:指双子叶植物和裸子植物茎的维管束,在韧皮部和木质部之间有束内形成层,维管束之间存在束间形成层,形成层连接成圆环状,能不断增生,使茎增粗,所以称为开放维管束 6. 微体:一种特殊的细胞器。体积比溶酶体小,由单层膜包围,其内含有极细的颗粒状物质,中央常有一高电子密度的核心结晶。 7. 五界分类系统:即将生物分为:原核生物界,原生生物界,植物界,真菌界,动物界 8. 生物膜:围绕在细胞表面的质膜,各种细胞器的膜和核膜总称为生物膜系统 9. 氧化磷酸化:由呼吸底物脱下的氢,通过呼吸链电子传递到达氧,所发生的ADP磷酸化行程ATP的作用,成为氧化磷酸化作用。 10. 辅酶:结合蛋白酶类分子由蛋白质部分和非蛋白质部分组成,非蛋白质部分(有机分子或金属离子)称酶的辅基(即辅酶)。 11. 系统发育:指生物种族发展史,也即生物进化的历史。 12. 遗传学第三定律:即基因的连锁和交换定律。 原来为同一亲本所具有的两个性状,在F2中常常有连系在一起遗传的倾向,这种现象称为连锁。减数分裂中,同源染色体的非姐妹染色单体之间会发生交换而导致基因的交换现象。 13. 同源染色体:体细胞中,成对染色体的两个成员,它们的形态和结构是相同的,在减数分裂中能相互配对,这样的一对染色体称为同源染色体。 14. 细胞周期:亲代细胞分裂完成到子代细胞分裂结束所经历的一个完整细胞世代称为细胞周期 15. 输导组织:植物体内运输水分和各种营养物质的组织。 16. 维管形成层:裸子植物和双子叶植物的根茎中,位于木质部和韧皮部之间的分生组织,可以不断产生次生木质部和次生韧皮部 17. 病毒:由一个核酸分子(DNA或RNA)与蛋白质构成或仅由蛋白质构成的非细胞形态的靠寄生生活的生命体。 18. 共质体途径和质外体途径:水、无机离子(小分子)和大分子穿过生活细胞的胞间连丝,顺离子浓度梯度进行的运输途径是共质体途径。 水液(大分子)在相邻细胞的细胞壁和细胞间隙中运行是质外体途径。 19. 孢子生殖:是由母体先形成专管生殖的特定部分,然后由孢子囊产生许多孢子的生殖方式。孢子囊成熟时孢子三处,遇到适宜条件就萌发成新个体 20. 双受精现象:被子植物中,两个精子分别与卵细胞和极核融合的现象 21. 生活史:被子植物的生活史指包括无性世代(植物体以产生孢子进行生殖)和有性世代(以产生配子进行生殖) 22. 重组率:杂合体产生重组型配子的频率,也即重组型配子数占配子总数的百分率 23. 噬藻体:侵染蓝藻的病毒(不确定) 24. 菌根:指土壤中某些真菌与植物根的共生体(不确定)

生物技术制药_及_名词解释 2

第一章绪论 生物技术药物分类1.重组DNA技术制造的多肽、蛋白类药物2.基因药物,包括基因治疗药、基因疫苗、反义药物、核酶3.来自动、植物、微生物的天然药物4.合成与半合成的生物药物 按照医学用途分类:1.治疗药物,治疗疾病是生物药物的主要功能。2.诊断药物,具有速度快、灵敏度高、特异性强的特点。3.预防药物,对于许多传染性疾病来说,预防比治疗更重要。 生物技术药物的特性 1.分子结构复杂 2.具有种属特异性 3.治疗针对性强,疗效高 4.稳定性差 5.基因稳定性 6.免疫原性 7.体内t1/2短 8.受体效应 9.多效性和网络性效应10.检验的特殊性 2.高投入 3.长周期 4.高风险 5.高收益 1.基因工程制药:(1)基因工程药物品种的开发;(2)基因工程疫苗;(3) (5)应用基因工程技术建立新药的筛选模型;(6)应用基因工程技术改良菌种,产生新的微生物药物;(7)基因工程技术在改进药物生产工艺中的应用;(8)利用转基因动、植物生产蛋白质类药物。 现代生物技术的发展趋势主要体现在下列几个方面:①基因操作技术日新月异,不断完善。②新技术、新方法一经产生便迅速地通过商业渠道出售专项技术,并在市场上加以应用。③基因工程药物和疫苗的研究和开发突发猛进。④新的生物治疗制剂的产业化前景十分光明,21世纪整个医药工业将面临全面的更新改造。⑤转基因植物和动物取得重大突破⑥现代生物技术在农业上的广泛应用将给农业和畜牧业生产带来新的飞跃。⑦阐明生物体基因组及其编码蛋白质的结构与功能是当今生命科学发展的一个主流方向,⑧基因治疗取得重大进展,有可能革新整个疾病的预防和治疗领域。⑨蛋白质工程是基因工程的发展,它将分子生物学、结构生物学、计算机技术结合起来,形成一门高度综合的学科。⑩信息技术的飞跃发展渗透到生命科学领域中,形成形成引人注目、用途广泛的生物信息学。 第二章基因工程制药 基因工程技术生产药物的优点:(1)可以大量生产过去难以获得的生理活性蛋白和多肽。(2)可以提供足够数量的生理活性物质以供研究。(3)可以发现、挖掘更多的内源性生理活性物质。(4)可以通过基因工程和蛋白质工程对内源生理活性物质进行改造。(5)可获得新型化合物,扩大药物筛选来源。 基因工程药物的缺陷:生物利用度低,半衰期短;异体蛋白具有免疫原性 基因工程制药基本环节上游阶段:制备目的基因→构建重组质粒→构建工程细胞 下游阶段:培养工程细胞→分离纯化产物→除菌→半成品、成品检定→包装 目的基因的常用制备方法 化学合成法:较小的蛋白质或多肽的编码基因可以用化学合成法合成。必须知道目的基因的核苷酸顺序或目的蛋白质的氨基酸顺序。再按相应的密码子推导出DNA的核甘酸序列。用化学法合成目的基因DNA不同部位的两条链的寡核苷酸短片段,再退火成为两端形成粘性末端的DNA双链片段,然后将这些双链片段按正确的次序进行退火使连接成较长的DNA片段,再用连接酶连接成完整的基因。人工化学合成基因的限制有:⒈不能合成太长的基因⒉遗传密码的简并使选择密码子困难,⒊费用高。 RT—PCR法(反转录PCR法):mRNA经逆转录合成cDNA第一条链,不需合成第二条链,在特异引物协助下,用PCR法进行扩增,特异合成目的cDNA链,用于重组,克隆. 逆转录法:逆转录法就是先分离纯化目的基因的 mRNA,再反转录成 cDNA,然后进行 cDNA 的克隆表达。⒈ mRNA的纯化⒉ cDNA第一链的合成⒊ cDNA第二链的合成⒋ cDNA的克隆⒌将重组体导入宿主细胞:⒍ cDNA文库的鉴定:抗性基因失活法、噬菌斑颜色改变法⒎目的cDNA克隆的分离和鉴定:核酸探针杂交法、免疫反应鉴定法 重组DNA导入宿主细胞 导入大肠杆菌:CaCl2法;转染法导入酵母:电转化法;化学转化法;原生质转化法重组DNA导入哺乳动物细胞:显微注射法;DEAE葡聚糖转染法;DNA-磷酸钙转染法;阳性脂质体介导法;电穿孔法;细胞融合法;病毒感染法 重组子的筛选与鉴定 遗传标记筛选法:抗生素抗性筛选法;α互补筛选法(蓝白斑筛选——载体含有LacZα基因,X-gal

细胞生物学名词解释

细胞生物学名词解释 1受体,配体:受体(receptor):存在于细胞膜上细胞内、能接受外界的信号,并将这一信号转化为细胞内的一系列生物化学反应,从而对细胞的结构或功能产生影响的蛋白质分子。 配体(ligand):受体所接受的外界信号,包括神经递质、激素、生长因子、光子、某些化学物质及其他细胞外信号。受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性结合反应,产生相应的生物效应.与之结合的相应的信息分子叫配体。 2. 细胞通讯,信号传导,信号转导,细胞识别: 细胞通讯:指一个细胞发出的信息通过介质传递到别一个细胞产生相应的反应。 信号传导:相当于是将上面细胞的刺激冲动传向下一个细胞,起着一种传递承接的作用,生化性质上没有什么改变。信号转导:指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。 细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。是细胞通讯的一个重要环节。

3. 分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。 4. 核孔复合体:在内外膜的融合处形成环状开口,直径为50~100nm,核孔构造复杂,含100种以上蛋白质,并与核纤层紧密结合。是选择性双向通道。功能是选择性的大分子出入(主动运输),酶、组蛋白、mRNA、tRNA等存在电位差,对离子的出入有一定的调节控制作用。 5. 常染色质,异染色质 : 在细胞核的大部分区域,染色质结构的折叠压缩程度比较小,即密度较低,进行细胞染色时着色较浅,这部分染色质称常染色质.着丝点部位的染色质丝,在细胞间期就折叠压缩的非常紧密,和细胞分裂时的染色体情况差不多,即密度较高,细胞染色时着色较深,这部分染色质称异染色质. 6. 核仁组织区:即rRNA序列区,它与细胞间期核仁形成有关,构成核仁的某一个或几个特定染色体片断。这一片段的DNA转录为rRNA, rRNA所在处。 7. 多聚核糖体:在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体。 8. 紧密连接,粘着带,桥粒,间隙连接:

生物学名词解释大全

生物学名词解释大全(中英) sample 样本:提供群体信息的亚单位,样本要求大小合适,并随机取样才具有代表性。 sampling error 样本误差:在一个小样本中预期的比例会发生随机改变的现象。 satellite DNA卫星DNA:真核生物基因组中的一种高度重复顺序,富含A-T ,当进行CsCl密度梯度离心时,基因组呈现一条宽的带,而在其上方高度重复顺序显示了单独的一条细带,故称卫星DNA。 scaffold attachmentation region (SARs) :骨架附着区:DNA上的特异位置,附着在染色体的骨架上。 secondary law 第二定律:见自由组合定律(independent assortment)。 secondary nondisjunction 次极不分离:初极不分离产生的雌性后代中X染色体再度不分离。 second-site mutation 第二位点突变:见抑制基因突变(suppressor mutation)。 selection coefficient 选择系数:计算对一种基因型的选择相对强度。 selection differential 选择差数:在自然和人工选择中,被选择亲代的表型平均值和未被选择的群体平均表型之间的差异。 self-assembly 自组装、自动装配:由亚基按特定的模式自动聚集成某种功能结构的过程。 self-fertilization (selfing) 自体受精:同一个体产生的雌性和雄性配子相互结合。 self-splicing 自我剪接:某些前体RNA分子内含子的切除,此过程在有的生物中是蛋白依赖性反应。 semiconservative replication mode 半保留复制模型:在DNA复制两条子DNA链中,每条双链都含有一条亲代的单链。 semidiscontinuous 半不连续(复制):DNA复制时前导链上DNA的合成是连续的,后随链上是不连续的,故称半不连续复制。 sense codon 有义密码子:mRNA上相对一个氨基酸的密码子。 Sequence Tagged Site, (STS)序列位置标签:一段短的DNA序列(200-500个碱基对),这种序列在染色体上只出现一次,其位置和碱基顺序都是已知的。在PCR反应中可以检测处STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特定序列的相对位置。ETS是cDNA上的STS。 sex chromosome 性染色体:在真核生物中和性别相关的染色体,如X, Y和Z,W。这些

电子技术基础习题答案

三、选择题:(每小题2分,共20分) 1、单极型半导体器件就是( C )。 A、二极管; B、双极型三极管; C、场效应管; D、稳压管。 2、P型半导体就是在本征半导体中加入微量的( A )元素构成的。 A、三价; B、四价; C、五价; D、六价。 3、稳压二极管的正常工作状态就是( C )。 A、导通状态; B、截止状态; C、反向击穿状态; D、任意状态。 4、用万用表检测某二极管时,发现其正、反电阻均约等于1KΩ,说明该二极管( C )。 A、已经击穿; B、完好状态; C、内部老化不通; D、无法判断。 5、PN结两端加正向电压时,其正向电流就是( A )而成。 A、多子扩散; B、少子扩散; C、少子漂移; D、多子漂移。 6、测得NPN型三极管上各电极对地电位分别为V E=2、1V,V B=2、8V,V C=4、4V,说明此三极管处在( A )。 A、放大区; B、饱与区; C、截止区; D、反向击穿区。 7、绝缘栅型场效应管的输入电流( C )。 A、较大; B、较小; C、为零; D、无法判断。 8、正弦电流经过二极管整流后的波形为( C )。 A、矩形方波; B、等腰三角波; C、正弦半波; D、仍为正弦波。 9、三极管超过( C )所示极限参数时,必定被损坏。 A、集电极最大允许电流I CM; B、集—射极间反向击穿电压U(BR)CEO; C、集电极最大允许耗散功率P CM; D、管子的电流放大倍数 。 10、若使三极管具有电流放大能力,必须满足的外部条件就是( C ) A、发射结正偏、集电结正偏; B、发射结反偏、集电结反偏; C、发射结正偏、集电结反偏; D、发射结反偏、集电结正偏。 三、选择题:(每小题2分,共20分) 1、基本放大电路中,经过晶体管的信号有(C)。 A、直流成分; B、交流成分; C、交直流成分均有。 2、基本放大电路中的主要放大对象就是(B)。 A、直流信号; B、交流信号; C、交直流信号均有。 3、分压式偏置的共发射极放大电路中,若V B点电位过高,电路易出现(B)。 A、截止失真; B、饱与失真; C、晶体管被烧损。 4、共发射极放大电路的反馈元件就是(B)。 A、电阻R B; B、电阻R E; C、电阻R C。 5、功放首先考虑的问题就是(A)。

细胞生物学名词解释整理终版题库

名词解释 1. genome 基因组p235 某一个生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组 2. ribozyme 核酶p266 核酶是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 3. signal molecule 信号分子p158 信号分子是细胞的信息载体,包括化学信号如各种激素,局部介质和神经递质以及各种物理信号比如声、光、电和温度变化。各种化学信号根据其化学性质通常可分为3类:1、气体性信号分子,包括NO、CO,可以自由扩散,进入细胞直接激活效应酶产生第二信使cGMP,参与体内众多生理过程。2、疏水性信号分子,这类亲脂性分子小、疏水性强,可穿过细胞质膜进入细胞,与细胞内和核受体结合形成激素-受体复合物,调节基因表达。3、亲水性信号分子,包括神经递质、局部介质和大多数蛋白类激素,他们不能透过靶细胞质膜,只能通过与靶细胞表面受体结合,经信号转换机制,在细胞内产生第二信使或激活蛋白激酶或蛋白磷酸酶的火星,引起细胞的应答反应。 4. house-keeping gene管家基因p319 管家基因是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所需要的,如糖酵解酶系基因等。这类基因一般在细胞周期S期的早期复制。分化细胞基因组所表达的基因大致可分为2中基本类型一类是管家基因,另外一类是组织特异性基因。 5. cis-acting elements顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。 6. epigenetics 表观遗传学p251(重新查!!!1) 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。是在基因组水平上对表观遗传学改变的研究。表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等 7. Hayflick limitation Hayflick界线 Leonard Hayflick利用来自胚胎和成体的成纤维细胞进行体外培养,发现:胚胎的成纤维细胞分裂传代50次后开始衰退和死亡,相反,来自成年组织的成纤维细胞只能培养15~30代就开始死亡。Hayflick等还发现,动物体细胞在体外可传代的次数,与物种的寿命有关;细胞的分裂能力与个体的年龄有关,由于上述规律是Hayflick研究和发现的,故称为Hayflick 界线。关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick 界线。 8. proto-oncogene原癌基因p312 原癌基因是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

高中生物名词解释

绪论 1、应激性:任何生物体对外界的刺激都能发生一定的反应。趋向有利刺激,逃避不利刺激。 2、反射:人和动物在神经系统的参与下,对体和外界环境的各种刺激所发生的规律性的反应。 细胞的化学成分 3、原生质:是细胞的生命物质。它的主要成分是蛋白质、脂类和核酸。细胞是由原生质构成的。构成细胞的这一小团原生质又分化为细胞膜、细胞质和细胞核等部分。 4、结合水:水在细胞中以两种形式存在。一部分与细胞的其他物质结合,叫结合水。结合水是细胞结构的组成成分。 5、自由水:大部分以游离的形式存在,可以自由流动,叫自由水。 6、缩合:氨基酸分子互相结合的方式是:一个氨基酸分子的羧基(—COOH)和另一个氨基酸分子的氨基(—NH2)相连接,同时失去一分子的水,这种结合方式叫缩合。 7、肽键:连接两个氨基酸分子的那个键(—NH—CO—)叫做肽键。 8、二肽:由两个氨基酸分子缩合而成的化合物,叫做二肽。 9、多肽:由多个氨基酸分子缩合而成的含有多个肽键的化合物,叫做多肽。 10、核酸:核酸最初是从细胞核中提取出来的,呈酸性,因此叫做核酸。 11、脱氧核糖核酸:核酸可以分为两大类:一类是含有脱氧核糖的,叫做脱氧核糖核酸,简称DNA. 12、核糖核酸:另一类是含有核糖的,叫做核糖核酸,简称RNA. 细胞的结构和功能 13、显微结构:在普通光学显微镜中能够观察到的细胞结构。 14、亚显微结构:又称超微结构。指在普通光学显微镜下观察不能分辨清楚的细胞各种微细结构。 15、细胞膜:又称原生质膜或质膜,是细胞的原生质体分化形成,并位于其外表面的一层极薄的膜结构。

16、膜蛋白:指细胞各种膜结构中蛋白质成分。 17、载体蛋白:膜结构中与物质运输有关的一种跨膜蛋白质。这种膜运输蛋白质具有专一的结合部位,对所结合的物质具有高度选择性,只能同专一物质结合的特性类似于酶同底物的反应。当某种载体蛋白的外端表面的结合部位与专一性物质结合后,载体蛋白分子就发生构象变化,将该物质分子运转到膜的表面,随之释放到细胞质中。 18、细胞质:在细胞膜以、细胞核以外的原生质,叫做细胞质。在光学显微镜下观察活细胞,可以看到细胞质是透明的胶状物,细胞质主要包括基质和细胞器。 19、细胞质基质:细胞质呈液态的部分是基质。 20、细胞器:细胞质中具有特定功能的各种亚细胞结构的总称。 21、染色质:在细胞核中分布着一些容易被碱性染料染成深色的物质,这些物质是由DNA和蛋白质组成的。在细胞分裂间期,这些物质成为细长的丝,交织成网状,这些丝状物质就是染色质。 22、染色体:在细胞分裂期,细胞核长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。 细胞分裂 23、细胞周期:连续分裂的细胞,从上一次分裂完成时开始,到下一次分裂完成时为止,这是一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期。 24、分裂间期:从细胞在上一次分裂结束之后到下一次分裂之前,是分裂间期。 25、分裂期:在分裂间期结束之后,就进入分裂期。 新代概述 26、新代:生物体与外界环境之间物质和能量的交换,以及生物体物质和能量的转变过程,叫做新代。 27、同化作用(合成代):在新代过程中,生物体把从外界环境中摄取的营养物质转变成自身的组成物质,并储存能量,这叫做同化作用。 28、异化作用(分解代):生物体把组成自身的一部分物质加以分解,释放出其中的能量,并把代的最终产物排出体外,这叫做异化作用。

2020年(生物科技行业)生命科学专业普通生物学名词解释

(生物科技行业)生命科学专业普通生物学名词解释

普通生物学名词解释 湿地生态系统:它处于陆地生态系统(如森林和草地)和水生生态系统(如深水湖和海洋)之间。换言之,湿地是陆生生态系统和水生生态系统之间的过渡带 细胞学说: 1、所有生物都是由细胞和细胞产物所构成; 2、新细胞总是由原来的细胞分裂产生; 3、所有细胞都具有基本上相同的化学组成和代谢活性; 4、生物体总的活性能够见成是组成生物体的各相关细胞的相互作用和集体活动的总和。 变性:当天然蛋白质分子受到某些物理因素(热、紫外线照射、高压和表面张力等)或化学因素(有机溶剂、酸碱、重金属盐等)的影响时,其生物活性丧失、溶解度降低、不对称性增高以及其他物理化学常数发生改变的现象。 胞质溶胶:细胞匀浆经超速离心除去所有细胞器和颗粒后的上清液部分。 微丝:又称肌动蛋白丝,参和形成肌原纤维、应力纤维和微绒毛,引起胞质流动或细胞的运动 微管:由微管蛋白组成的管状结构,起支架作用、胞内运输作用和形成纺锤体。对低温、高压和秋水仙素敏感。 中间纤维:直径10nm左右,最稳定的细胞骨架成分,围绕核成束成网分布,且扩展到细胞质膜,和质膜相连结,起支持和运动功能。 细胞连接:细胞紧密靠拢的组织中,细胞膜在相邻细胞之间分化而成特定的连接。胞间连丝:植物相邻细胞的细胞膜穿过细胞壁上的孔,彼此相连,俩细胞的光面内质网也彼此相通,即成胞间连丝。直径约20~40nm。功能上和间隙连接类似,在相邻细胞间起通讯作用。

共质体:植物细胞的原生质体通过胞间连丝彼此连成壹片,称为共质体。 质外体:细胞壁连成壹片,称为质外体。 生物膜:各种细胞器的膜和核膜、质膜在分子结构上壹样. 酶:生物体内壹类具有催化活性的生物大分子,其中绝大多数是蛋白质,少数是RNA。 辅助因子:酶分子中的非蛋白质部分,按和酶蛋白结合的松紧程度不同,分为辅酶(松弛)和辅基(紧密)。 酶的抑制剂:能使酶分子上的某些重要基团发生变化,引起酶分子活力降低或丧失的物质。 不可逆的抑制作用:抑制剂和酶的必需基团以共价结合,不能用透析等物理方法使酶复活。 可逆抑制作用:抑制剂和酶以非共价结合,能用透析等物理方法除去抑制剂使酶复活。 同工酶:?催化相同的化学反应,但其蛋白质分子结构、理化性质和免疫性能等方面都存在明显差异的壹组酶。 核酶:具有催化功能的RNA分子。又称核酸类酶、酶RNA、类酶RNA。 扩散:分子从相对高浓度的区域移到低浓度的区域 渗透:水分子从高浓度壹侧穿过膜而进入低浓度壹侧的扩散。 主动运输:分子从低浓度区域向高浓度区域的运输过程。 吞噬作用:细胞吞噬较大的固体颗粒,如细菌、细胞碎片等的作用。 光反应:发生水的光解、O2的释放和ATP及NADPH的生成。 暗反应:利用光反应形成的ATP和NADPH,将CO2仍原为糖。

细胞生物学名词解释

名词解释 Cell Biology:广泛采用现代生物学的实验技术和手段,应用分析和综合的方法,将细胞的整体活动水平,亚细胞水平和分子水平三方面的研究有机地结合起来,以动态的观点观察细胞和细胞器的结构和功能,以期最终阐明生命的基本规律。 脂筏(lipid raft)是质膜上富含胆固醇和鞘磷脂的微结构域(microdomain)。大小约70nm 左右,是一种动态结构,位于质膜的外小叶。 质膜主要由膜脂和膜蛋白组成,另外还有少量糖,主要以糖脂和糖蛋白的形式存在。 膜骨架membrane associated skeleton 细胞膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞膜的形状并协助质膜完成多种生理功能。 被动运输(passive transport):通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 简单扩散(simple diffusion)疏水的小分子或小的不带电荷的极性分子的热运动可以使分子从膜的一侧通过细胞膜到另一侧,其结果是分子沿着浓度梯度降低的方向转运。因无需细胞提供能量,也没有膜蛋白的协助,故名。 协助扩散(facilitated diffusion) 小分子物质沿其浓度梯度(或电化学梯度)减小方向的跨膜运动,是由膜转运蛋白“协助”完成的。 主动运输active transport 由载体蛋白所介导的物质逆着浓度梯度或电化学梯度由低浓度侧到高浓度侧转运,需要供给能量。ATP直接供能、间接供能、光能。 协同运输(cotransport):由离子泵与载体蛋白协同作用,利用跨膜的离子浓度梯度或电化学梯度,使特定离子的顺梯度运动与被转运分子或离子的逆梯度运输相偶联。直接动力是膜两侧的离子浓度梯度。 胞吞作用:质膜内陷形成囊泡将外界大分子裹进并输入细胞的过程。 胞吐作用:与胞吞作用的顺序相反,将细胞内的分泌泡或其它某些膜泡中的物质通过细胞膜运出细胞的过程。 外膜(outer membrane):单位膜结构,厚约6nm。含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的直径2-3nm的亲水通道,10KD以下的分子包括小型蛋白质可自由通过。内膜(inner membrane):厚约6-8nm。含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。 膜间隙(intermembrane space):内外膜之间的腔隙,延伸到嵴的轴心部。宽约6-8nm。其中含有许多可溶性酶类,底物和辅助因子。标志酶为腺苷酸激酶。 基质(matrix):内膜之内侧,类似胶状物,含有很多Pr.和脂类。三羧酸循环,脂肪酸和丙酮酸氧化的酶类都在其中。另外还有线粒体DNA、核糖体、tRNA、rRNA、DNA聚合酶、AA活化酶等。其标志酶为苹果酸脱氢酶。 外被(outerenvelop):双层膜,每层厚6~8nm,膜间隙为10~20nm。外膜通透性大,细胞质中大多数营养分子可自由进入膜间隙。内膜对物质透过的选择性比外膜强,其上有特殊载体称为转运体,可运载物质过膜。 类囊体(Thylakoid):在叶绿体基质中由单位膜所形成的封闭扁平小囊。 光合磷酸化:由光照所引起的电子传递与磷酸化作用相偶联而生成A TP的过程,称为photophosphorylation 细胞质膜系统(cytoplasmic membrane system):是指细胞内那些在生物发生上与质膜相关的细

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3.氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其

精选-植物生物技术名词解释

生物技术:也称生物工程, 是指以现代生命科学为基础,结合先进的工程技术手段和其他基础科学的科学原理, 按照预先的设计改造生物体或加工生物原料, 为人类生产出所需要的产品或达到某种目的的一系列技术。 重组DNA技术:采用分子生物学操作方法,在体外将外源DNA与载体DNA构建成具有自我复制能力的DNA分子,通过转化或转染宿主细胞,筛选出含有该外源DNA的转化细胞,在进行增殖。 细胞工程:指应用细胞生物学和分子生物学的方法,在细胞水平进行的遗传操作。 愈伤组织:植物外植体脱分化、经过细胞分裂形成的一团无序生长的薄壁细胞。 体细胞胚:又叫胚状体,是指离体培养条件下没有经过受精过程而形成的胚胎类似物。 人工种子:是将植物离体培养产生的体细胚包埋在含有营养成分和保护功能的物质中,在适宜的条件下发芽出苗。 茎尖培养:取植物茎尖组织放入培养液中进行的无菌培养。 植物组织培养:在含有营养物质及植物生长物质的培养液中,培养离体植物组织(器官或细胞)并诱导使其长成完整植株的技术。 细胞全能性:广义的细胞全能性指一个细胞发育成一个完整有机个体的潜能和特性。植物细胞的全能性指具有完整细胞核的细胞,在适宜的条件下能够分化发育成完整植株的潜在能力。 无病毒苗:未被病毒感染,或经人工处理去除病毒的植物苗株。 外植体:从植株上切离、用于培养的部分或器官称为外植体。 植物胚胎培养:在无菌条件下对植物的胚、子房、胚珠和胚乳进行离体培养,使其发育成完整植株的技术。 单细胞培养:指从植物器官、愈伤组织或悬浮培养物中游离出单个细胞,在无菌条件下,进行外培养,使其生长、发育的过程。 细胞悬浮培养:指将植物的细胞和小的细胞聚集体悬浮在液体培养基中进行培养,使之在体外生长、发育,并在培养过程中保持很好的分散性。 体细胞无性系变异:指植物体细胞在组织培养过程发生变异,进而导致再生植株发生遗传改变的现象。 细胞突变体:指将植物细胞培养在附加一定化学物质的培养基上,用生物化学的方法诱导细胞遗传物质的改变,从细胞水平上大量筛选拟定目标突变体。 花粉培养:将花粉粒接种到培养基上,发育成单倍体植株的过程。 原生质体:用酶解法等除去植物细胞壁而获得的具有生活力的原生质团。 原生质体融合:指通过人为的方法,使遗传性状不同的两个细胞的原生质体进行融合,借以获得兼有双亲遗传性状的稳定重组子的过程。 基因工程:指通过体外DNA重组技术将外源基因转移到受体物种中去,从而使受体生物产生新的遗传特性的遗传操作技术。 器官发生:指培养细胞在适宜的诱导培养条件下形成不定芽和不定根等器官,形成完整植物的过程。胚状体:非合子细胞经过胚胎发生和发育形成的胚状结构。 褐变:指外植体在培养过程中,自身组织从表面培养基释放褐色物质,以致培养基逐渐变成褐色,外植体也随之进一步变褐而死亡的现象。 形态建成:外植体在适宜的培养条件下,经脱分化、再分化产生芽和根或者形成胚状体,发育成苗或完整植株的过程。 体细胞杂交:又称体细胞融合,指将两个遗传性状不同的体细胞融合成一个体细胞的过程。 基因编辑:技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。 遗传转化:(植物的遗传转化)又称植物转基因,是通过某种途径或技术(物理的、化学的和生物的方法),将从动物、植物、微生物中分离的甚至是人工合成的目的基因导入植物受体细胞并整合到基因组中,使之在受体细胞中得以正确表达和稳定遗传,并且赋予受体植物一个新的预期性状的技术体系。 Ti质粒:是存在于根癌农杆菌中的一种能够自我复制的共价闭合的dsDNA分子. 遗传标记:是指可稳定遗传、能用肉眼明确观测的差异化个体外部形态特征。 分子标记:以生物体核酸多态性为基础的遗传标记。如,nDNA、cpDNA、mtDNA标记。 选择标记基因:是指一些具有解除筛选压力的基因。 报告基因:是一种编码易被检测的蛋白质或酶的基因。

高中生物名词解释集锦

高中生物名词解释集锦 1、应激性:任何生物体对外界的刺激都能发生一定的反应。趋向有利刺激,逃避不利刺激。 2、反射:人和动物在神经系统的参与下,对体内和外界环境的各种刺激所发生的规律性的反应。 3、原生质:是细胞内的生命物质。它的主要成分是蛋白质、脂类和核酸。细胞是由原生质构成的。构成细胞的这一小团原生质又分化为细胞膜、细胞质和细胞核等部分。 4、结合水:水在细胞中以两种形式存在。一部分与细胞内的其他物质结合,叫结合水。结合水是细胞结构的组成成分。 5、自由水:大部分以游离的形式存在,可以自由流动,叫自由水。 6、缩合:氨基酸分子互相结合的方式是:一个氨基酸分子的羧基(—COOH)和另一个氨基酸分子的氨基(—NH2)相连接,同时失去一分子的水,这种结合方式叫缩合。 7、肽键:连接两个氨基酸分子的那个键(—NH—CO—)叫做肽键。 8、二肽:由两个氨基酸分子缩合而成的化合物,叫做二肽。 9、多肽:由多个氨基酸分子缩合而成的含有多个肽键的化合物,叫做多肽。 10、核酸:核酸最初是从细胞核中提取出来的,呈酸性,因此叫做核酸。 11、脱氧核糖核酸:核酸可以分为两大类:一类是含有脱氧核糖的,叫做脱氧核糖核酸,简称DNA。 12、核糖核酸:另一类是含有核糖的,叫做核糖核酸,简称RNA。 *13、显微结构:在普通光学显微镜中能够观察到的细胞结构。 *14、亚显微结构:又称超微结构。指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。 15、细胞膜:又称原生质膜或质膜,是细胞的原生质体分化形成,并位于其外表面的一层极薄的膜结构。 16、膜蛋白:指细胞内各种膜结构中蛋白质成分。 17、载体蛋白:膜结构中与物质运输有关的一种跨膜蛋白质。这种膜运输蛋白质具有专一的结合部位,对所结合的物质具有高度选择性,只能同专一物质结合的特性类似于酶同底物的反应。当某种载体蛋白的外端表面的结合部位与专一性物质结合后,载体蛋白分子就发生构象变化,将该物质分子运转到膜的内表面,随之释放到细胞质中。 18、细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。在光学显微镜下观察活细胞,可以看到细胞质是透明的胶状物,细胞质主要包括基质和细胞器。 19、细胞质基质:细胞质内呈液态的部分是基质。 20、细胞器:细胞质中具有特定功能的各种亚细胞结构的总称。 *21、染色质:在细胞核中分布着一些

相关文档
最新文档