均值与方差的点估计

均值与方差的点估计
均值与方差的点估计

§4 均值与方差的点估计

简述以样本均值估计总体均值的理由

简述以样本均值估计总体均值的理由 概率论与数理统计中样本均值为什么是总体均值最好的估计量 哈佛孙一峰 哈佛孙一峰 首先什么是最优估计量,以下是定义: An estimator W of a parameter, say τ(θ), is called the best unbiased estimator, or uniform minimum variance unbiased estimator 换成中文来说就是一个估计量如果它无偏并且方差最小那么他就是最优的。样本均值是总体均值的无偏估计用大数定理就自然而然知道了(当然这里就要假设期望有界了)。那怎么知道他是方差最小的呢?我们需要用到Cramer-Rao Inequality. 简而言之就是任何一个估计量的方差是有下界的。这个部分的证明并不复杂。用Cauchy-Schwarz Inequality可以很轻松的证明出来。

因为要涉及的概念实在太多了,所以略过很多复杂的证明,最后直接跳到结论就是在指数分布族里,样本均值是分布均值的无偏估计且方差就是估计量方差下界。 更具体的可以搜索Lehmann Scheffe theorem。虽然这部分我觉得本科生的概率论并不会接触到。 (sample),是指从总体中抽出的一部分个体。样本中所包含个体数目称样本容量或含量,用符号N或n表示。 总体(population)是指客观存在的,并在同一性质的基础上结合起来的许多个别单位的整体,即具有某一特性的一类事物的全体,又叫母体或全域。简单地说,总体也就是我们所研究的性质相同个体的总和。 样本是受审查客体的反映形象或其自身的一部分。按一定方式从总体中抽取的若干个体,用于提供总体的信息及由此对总体作统计推断。又称子样。例如因为人力和物力所限,不能每年对全国的人口进行普查,但可以通过抽样调查的方式来得到需要的信息。从总体中抽取样本的过程叫抽样。最常用的抽样方式是简单随机抽样,按这种方式抽

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22(())X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为221 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得

总体平均数与方差的估计

.总体平均数与方差的估计

————————————————————————————————作者:————————————————————————————————日期:

第5章用样本推断总体 5.1总体平均数与方差的估计 【知识与技能】 1.掌握用样本平均数估计总体平均数 2.掌握用样本方差估计总体方差. 【过程与方法】 通过对具体事例的分析、探讨,掌握简单随机样本在大多数情况下,当样本容量足够大时,样本的平均数和方差能反应总体相应的情况. 【情感态度】 感受数学在生活中的应用. 【教学重点】 样本平均数、方差估计总体平均数、方差的综合应用. 【教学难点】 体会统计思想,并会用样本平均数和方差估计总体平均数和方差. 一、情景导入,初步认知 一所学校要从两名短跑速度较快的同学中选拔一名去参加市里的比赛,为了使选拔公平,每名同学都进行10次测试,结果两名同学测试的结果的平均数是相同的,那么,派谁去参加比赛更好呢? 【教学说明】通过具体事例的引入,提高学生学习的兴趣. 二、思考探究,获取新知 1.我们在研究某个总体时,一般用数据表示总体中每个个体的某种数量特性,所有这些数据组成一个总体,而样本则是从总体中抽取的部分数据,因此,样本蕴含着总体的许多信息,这使我们有可能通过样本的某些特性去推断总体的相应特性. 2.从总体中抽取样本,然后通过对样本的分析,去推断总体的情况,这是统计的基本思想,用样本平均数,样本方差分别去估计总体平均数,总体方差就是

这一思想的体现,实践和理论都表明:对于简单的随机样本,在大多数情况下,当样本容量足够大时,这种估计是合理的. 3.思考:(1)如何估计某城市所有家庭一年内平均丢弃的塑料袋个数? (2)在检查甲、乙两种棉花的纤维长度时,如何估计哪种棉花的纤维长度比较整齐? 【归纳结论】由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可以用简单随机样本的平均数与方差分别去估计总体的平均数与方差. 4.探究:某农科院在某地区选择了自然条件相同的两个试验区,用相同的管理技术试种甲、乙两个品种的水稻各100亩.如何确定哪个品种的水稻在该地区更有推广价值呢? 为了选择合适的稻种,我们需要关心这两种水稻的平均产量及产量的稳定性(即方差),于是,待水稻成熟后,各自从这100亩水稻随机抽取10亩水稻,记录它们的亩产量(样本),数据如下表所示: 我们可以求出这10亩甲、乙品种的水稻的平均产量.因此,我们可以用这个产量来估计这两种水稻大面积种植后的平均产量. 我们还可以计算出这10亩甲、乙品种的水稻的方差,从而利用这两个方差来估计. 这两种水稻大面积种植后的稳定性(即方差),从而得出哪种水稻值得推广. 5.通过上面的探究,怎样用样本去估计总体,才能使估计更加合理? 【归纳结论】①抽取的样本要具有随机性;②样本容量要足够大. 6.如何用样本方差估计总体方差? 【归纳结论】方差能够反映一组数据与其平均值的离散程度的大小.方差越大,离散程度越大,稳定性越差.用样本方差估计总体方差的具体方法为:①计算样本平均数;②计算样本方差;③用样本方差估计总体方差. 【教学说明】引导学生思考,让学生讨论,合作完成.培养学生互助、协作的精神.

样本方差与总体方差的区别

样本方差与总体方差的区别 之前一直对于样本方差与总体方差的概念区分不清,对于前者不仅多了样本”两个字,而且公式中除数是N-1 ,而不是N。现在写下这么写东西,以能彻底把他们的区别搞清楚。 总体方差: 也叫做有偏估计,其实就是我们从初高中就学到的那个标准定义的方差,除数是N。女0果实现已知期望值,比如测水的沸点,那么测量 立的(期望值不依测量值而改变,随你怎么折腾,温度计坏了也好,看反了也好,总之,期望值应该是100度),那么E『(X-期望)人2』,就有10个自由度。事实上,它等于(X- 期望)的方差,减去(X-期望)的平方。”所以叫做有偏估计,测量结果偏于那个”已知的期望值“。样本方差: 无偏估计、无偏方差(unbiased varianee )。对于一组随机变量,从中随机抽取N个样本, 这组样本的方差就是Xi^2平方和除以N-1。这可以推导出来的。如果现在往水里撒把盐, 水的沸点未知了,那我该怎么办?我只能以样本的平均值,来代替原先那个期望100度。同 样的过程,但原先的(X-期望),被(X-均值)所代替。设想一下(Xi-均值)的方差,它 不在等于Xi的方差,而是有一个协方差,因为均值中,有一项Xi/n是和Xi相关的,这就 是那个”偏"的由来 刊屮)二 Ei a.—-£(A;-W) f=l 9 =rr 一 证明: 10次,测量值和期望值之间是独

DGH 兀) 担工加D (X ;)) g ? u 曰右力m-工P) 占E (m :-寸) __________ ■!■ A^(E :=iCV —2A ;T + X-)) 闵肯) ) + £:D) n(<7- + //-) E(X 力二丫) nE(X~) MD(X) + E2(X)) M 吟+ “?) 尙e + //-) - 角F + "') t7- 证毕?? D(X)二 --- ◎ E(f)= D(X) + Eh 工) E{S-)= £(E ; =1 A ;y )=

样本平均数分布的方差

σ2与总体方差σ2、样本容量n的关系是xσ2=(σ2 1.样本平均数分布的方差x /)。 2.样本中各观察值与其平均数的差数的平方的总和为(P42 )。 3.样本中各观察值与其平均数的差数的总和为(0 );样本中各观察值与平 均数的差数的平方的总和为(P42 )。 4.一般而言,假设测验可能犯( 2 )类错误。 5.一般正态分布的正态离差U=();样本平均数分布的正态离差U= ()。 6.一个4因素3水平试验的所有可能处理组合数为(81 )。 7.由回归方程估计x为某一定值时条件总体平均数的95%置信区间为 ();估计x为某一定值时条件总体预测值的95%置信区间为()。 8.有12个处理,要进行随机区组设计,可查得随机数字表中任一页的任一行,去掉 (00 )、(97 )、(98 )和(99 )四个数字后,凡大于12的数均被12除后得余数,将重复数字划去,即得12个处理的排列次序。 9.有6个处理,每处理3次重复,用对比法设计,至少要安排(9 )个对照。 10.有8个处理,每处理3次重复,用对比法设计,至少要安排(12 )个对照。 11.有一个总体共有4个个体,分别为2,4,6,8,从总体中进行复置随机抽样,每次抽2 个观察值,抽出所有样本,则共有()个可能样本;所有样本平均数分布的平均数为(),标准差为()。 12.有一样本,其6个观察值分别为6,3,8,4,1,3;则其中数为( 3.5 ),均 方为(22.5 )。 13.有一样本,其6个观察值分别为7,3,8,4,2,3;则其中数为( 3.5 )。 14.有一样本,其6个观察值分别为7,4,8,5,2,3;则其中数为( 4.5 )。 15.有一样本的5个观察值为2,7,7,5,4;则其样本均方为(28.6 )。 16.有一正态分布N(16,4),已知U0.05=1.96,则其分布中间有95%观察值的全距为 (7.84 )。 17.有一正态分布N(30,9),则落于24与36之间的观察值的百分数为()。 18.有一正态分布N(36,9),已知U0.01=2.58,则其分布中间有99%观察值的全距为 (10.32 )。

均值,方差等(精品)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 均值,方差等(精品) 样本均值样本均值又叫样本均数。 即为样本的均值。 均值是指在一组数据中所有数据之和再除以数据的个数。 它是反映数据集中趋势的一项指标。 例如 1、 2、 3、 4 四个数据的均值为(1+2+3+4) /4=2. 5。 样本(sample),是指从总体中抽出的一部分个体。 样本中所包含个体数目称样本容量或含量,用符号 N 或 n 表示。 总体(population)是指客观存在的,并在同一性质的基础上结合起来的许多个别单位的整体,即具有某一特性的一类事物的全体,又叫母体或全域。 简单地说,总体也就是我们所研究的性质相同个体的总和。 样本是受审查客体的反映形象或其自身的一部分。 按一定方式从总体中抽取的若干个体,用于提供总体的信息及由此对总体作统计推断。 又称子样。 例如因为人力和物力所限,不能每年对全国的人口进行普查,但可以通过抽样调查的方式来得到需要的信息。 从总体中抽取样本的过程叫抽样。 最常用的抽样方式是简单随机抽样,按这种方式抽样,总体中 1 / 19

每个个体都有同等的机会被抽入样本,这样得到的样本称简单随机样本。 样本的平均值称样本均值,样本偏离样本均值的平方的平均值称为样本方差,在数理统计中,常常用样本均值来估计总体均值,用样本方差来估计总体方差。 样本方差样本方差定义样本方差样本关于给定点 x 在直线上散布的数字特征之一,其中的点 x 称为方差中心。 样本方差数值上等于构成样本的随机变量对离散中心 x 之方差的平方和。 设X、,,各是同分布实随机变量,点 x 是选定的方差中心(x〔 R)。 那么,量 s。 (x)=艺(x 一x)z 称为关于点x 的样本方差(sample variance),由于 s。 (x)=s。 (见)+n(无一 x), )s。 (无)二 s。 ,其中了二(X、 +十戈)加,可见当 x 二了时关于 x 的样本方差取最小值.较小的 S。 说明样本元素关于见集中;相反,较大的 S。 说明样本元素分散,样本方差的概念,可以自然地推广到多维样本的样本协方差矩阵。

相关文档
最新文档