三角形中位线定理的证明

三角形中位线定理的证明
三角形中位线定理的证明

备课偶得——

三角形中位线定理的再证明

王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。

已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC

证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC

∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF

为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD

∴BD CF ∴四边形DBCF 为平行四边形

∴DF BC ∴DE=EF ∴DE ∥BC 且

证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF

∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD

∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE

∴DE=EF ∴D E ∥BC 且

证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则

∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点

∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF

即 ∴DE ∥BC 且

图1 B

C

A

D

E

图2

B

C

A

D

E

F

图3

B

C

A

D E

F

C

图4

B

A

D

E

F E ′ 图5

B

C

A

D

E

1

2

DE BC =1

2

DE BC =1

2DE BC =12

DE BC =1

2DE BC =

证法四、(相似法)如图5,

∵D 、E 分别为AB 、AC 中点 ∴ ∵∠A=∠A

∴△AD E ∽△ABC ∴ ∠ADE=∠B ∴DE ∥BC 且

证法五、(旋转拼图法)如图6,以AC 的中点E 为中心,将△ABC 绕点E 旋转180°得△ACF ,取CF 中点G ,连结EG 、DG ,则四边形ABCF 为平行四边形

AF BC ∵D 、G 分别为AB 、CF 的中点 ∴AD FG ∴四边形ADGF 为平行四边形

∴DG AF BC ∵CF ∥AB ∴∠DAE=∠GCE ∴△ADE ≌△CGE (SAS )

∴∠AED=∠CEG ∴D 、E 、G 在一条直线上 ∴DE ∥BC ∵△ADE ≌△CGE

∴DE=EG ∴ ∴DE ∥BC 且

证法六、(面积法)如图7,取BC 中点F ,连结AF 、EF ,分别过A 、E 作

A H ⊥BC ,EG ⊥BC ,垂足分别为H 、G ,过D 作DM ⊥BC 于M ,则

∴ ∵F 为BC 中点 ∴ 同理 ∴DM EG ∴四边形DMGE 为矩形

∴DE ∥BC 同理 EF ∥AB ∴四边形DBFE 为平行四边形

∴DE=BF ∵ ∴DE ∥BC 且 证法七、(解析法)如图8,以点B 为坐标原点,建立如图所示平面

直角坐标系,不妨设A (a ,b )C (c ,0)(c >0)则,D ( ),E ( )

则DE ∥x 轴,DE= ∵BC=c ∴DE ∥BC 且

证法八、(三角法)如图9,取BC 中点F ,连结EF ,设AB=2c ,AC=2b BC=2a ,∠A=α则AD=c ,AE=b ,在△ADE 中,

在△ABC 中,

图6

B C

A

D

E

F

G 图7

B

C

M A

D

E

1

2

AD AE AB AC ==1

2

DE

AD

BC AB ==12

DE BC =1

2

DE BC =12

DE BC =,ABF ACF AEF CEF S S S S ==1

4CEF ABC

S S =12CF BC =111242CF EG BC AH =?1

2

DM AH =1

2

BF CF BC

==12

DE BC =12

EG AH =,22

a b

,22

a c

b +222

a c

a c +-=12

DE BC =22

2222cos 2cos AD AE A bc c b DE AD AE α=+-=+-2

2

2

2

2

2cos 2(2)(2)cos (2)(2)AB AC A c b c b BC AC

AB α=+-=+-??

∴ ∴BC=2DE ∵F 为BC 的中点 ∴DE=BF 同理 EF=BD ∴四边形DBFE 为平行四边形

∴DE ∥BF 即DE ∥BC 且

图9

B

C

A

D E

F 22

4(2cos )bc c b α

=+-2

2

4BC DE =1

2

DE BC =

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三角形的证明-知识点汇总

三角形的证明知识点汇总 知识点1 全等三角形的判定及性质 判定定理简称 判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等 全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL (Rt △) 斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容 几何语言 条件与结论 等腰三角形的性质定理 等腰三角形的两底角相等。简述为:等边对等角 在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C 推论 等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC ,AB=AC ,AD ⊥BC , 则AD 是BC 边上的中线,且 AD 平分∠BAC 条件:等腰三角形中已知顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理 等边三角形的三个内角都相等,并且每个角都等于60度 解读 (1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容 几何语言 条件与结论 等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读 对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展 判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念 证明的一般步骤

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

三角形中位线证明平行

三角形中位线证明线面平行使用条件及运用方式 一、学习目标: 1、理解线面平行证明的基本定理,通过一组线线平行证明出题目需要的线面平行 2、重点:根据题目给出的中点条件,构造三角形的中位线得出线线平行 3、难点:中位线对应的三角形的构造 二、学习过程: 1、基本概念及定义 线面平行判定定理: 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 如图: 即???????a l a l //αα?l ∥α 由上定理可知,证明线面平行,终归到底是线线平行的证明,而高考中的考查重点及难点就在于如何在平面上找到与该直线平行的直线,由不同题目提供的不同条件,我们需要使用不同的方法,其中一种方法就是构造三角形中位线,使定理中的l 和a 刚好成为三角形的一条边和与之平行的中位线 三角形中位线运用 运用条件:存在一条直线(设为l 0)同时与直线l 和平面α有交点,设为A 、B ,E 在直线l 上,并且A 为BE 中点 图(1) 图(2) 解法:C 为l 上任意一点,连结CE 交平面α于点D ,如图(2) 易证D 为CE 中点,所以由???中点 为中点为CE D BE A 得AD ∥BC 从而证出BC ∥平面α

在具体题目中,以上的大部分点为题目中的已知点,而直线CE和D点则通常是我们需要作出的辅助线和辅助点 2、例题讲解 例题: 如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E是PD的中点. 证明:PB∥平面AEC; 解析:在题目的具体运用上,我们可以先在找出平面AEC中是否存在某条线段的中点,易知可找出E为PD中点,并且可以发现我们需要证明的直线PB与PD 交于P点,此时可尝试以PB和PD构造出一个三角形,以此为思考的切入点连结BD与AC交于点O,连结EO ∵在矩形ABCD中,O为BD中点,且已知E为PD中点 ∴PB∥OE又∵OE?面AEC ∴PB∥面AEC 3、随堂训练 (1)如图,四边形CDEF为矩形,M为EA 的中点,求证:AC∥平面MDF 证:设EC与DF交于点N,连结MN,

三角形的证明知识点汇总

百度文库- 让每个人平等地提升自我 1 三角形的证明知识点汇总 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等 全等三角形对 应边相等、对 应角相等SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL(Rt△)斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容几何语言条件与结论 等腰三角形的性质定理等腰三角形的两底角相等。 简述为:等边对等角 在△ABC中,若AB=AC,则 ∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC,AB=AC,AD⊥BC, 则AD是BC边上的中线,且 AD平分∠BAC 条件:等腰三角形中已知顶点的 平分线,底边上的中线、底边上 的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理等边三角形的三个内角都相等,并且每个角都等于60度 解读(1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容几何语言条件与结论 等腰三角形的判定定理有两个角相等的三角形是等腰 三角形,简述为:等校对等边 在△ABC中,若∠B=∠C则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念证明的一般步骤

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

相似三角形预备定理证明

课题:相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决 问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点: 预备定理的证明与应用。 教学难点: 预备定理的证明。 教学方法: 启发+探究+讲授 教学手段: 常规教学用具,计算机及课件 教学过程: 教学过程 教师活动 学生活动 设计意图 出示情境问题: 1、 什么叫相似三角形?什么叫相似比? 2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m 宽的小路。小路的内外边缘所围成的 矩形相似吗? □—''~:—:—A ?—'—>:—?—A 3、 如图两个三角形相似吗?若相似,你是若 何判 断的,相似比是多少?若不相似,也请说 明。 4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出: 本节课将研究如何用相似三角形的定义判断 两三角形相似。 板书课题:相似三角形的判定 创 设 情 境 复习相似形 的有关概 思考回答问题: 念,明确否 1、2 口答 定两图形相 3题可能的方法: 似,指出一 ⑴直觉(引导有理有 个不满足的 据); 条件即可, ⑵度量角与边,再计 而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑) 对边成比 ⑶根据格点特性计算 例。 (积极鼓励) 而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定 理,后继学

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DF FC BCFD 是平行四边形,BD,则四边形BC有AD FC,所以。因为1DE ,所以.BC 2,有F,则作FC 交DE的延长线于法2C 因为,DF BC。为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DE BC 2 ,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD ,所以FC 为平行四边形,为平行四边形,有1BC.DE ,所以BCDF 。因为2 法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都

CENAEM 1。DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC 2 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。 ⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A BEDC 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? A

ED BC 图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成. 生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。第二,要知道中位线定理的使用形式,如: A DE是△ABC的中位线∵ ED1BCDE ,BC∥∴ DE2CB. 第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理。 题1 如图4.11-7,Rt△ABC,∠BAC=90°,D、E分别为AB,BC的中点,点F 在CA延长线上,∠FDA=∠B. (1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.

中位线定理证明题

中位线定理证明题 1、 如图,若CD AB //,E 、F 分别是BC 、AD 的中点, 且a AB =,b CD =,求EF 的长 2、已知矩形ABCD 中,cm AB 15=,cm BC 8=,E 、 F 、 G 、 H 分别是AB 、BC 、CD 、DA 的中点,求 四边形EFGH 的周长和面积 3、 如图,已知四边形ABCD 中,BC AD //, 若DAB ∠的角平分线AE 交CD 于E ,连结BE , 且BE 平分ABC ∠,求证:BC AD AB += 4、如图,在ABC ?中,C B ∠=∠2,BC AD ⊥,垂足为D ,M 是BC 的中点,cm AB 10=,求MD 的长 5、 如图,D 、E 、F 分别是ABC ?三边的中点,G 是AE 的中点, BE 与DF 、DG 分别交于P 、Q 两点,求BE PQ :的值 6、 如图,在ABC ?中,AD 平分BAC ∠,AD BD ⊥, AC DE //,交AB 于E ,若5=AB ,求DE 的长 7、连接凸四边形一组对边中点的线段等于另一组对边和的一半,问这个凸四边形是什么四边形试证明你的结论

8、分别以ABC ?的边AC 和BC 为一边,在ABC ?外作正方形ACDE 和 CBFG ,点P 是EF 的中点,如图,求证:点P 到边AB 的距离是AB 的一半 9、如图,在梯形ABCD 中,BC AD //,?=∠30B , ?=∠60C ,E 、M 、F 、N 分别是AB 、BC 、CD 、DA 的中点, 已知7=BC ,3=MN ,求EF 的值 10、如图,已知梯形ABCD 中,BC AD //,?=∠=∠90ADC DCB ,E 为AB 中点,求证:DE CE = 11、如图,已知梯形ABCD 中,CD AB //,?=∠=∠90D DAB ,ACB ?是等边三角形,梯形中位线m EF 4 3 = ,求梯形的下底AB 的长 12、如图,梯形ABCD 的面积是12,求此梯形四边的中点组成的四边形EFGH 的面积 13、如图,已知A 为DE 的中点,设DBC ?、ABC ?、EBC ?的面积分别为1S 、 2S 、3S ,求1S 、2S 、3S 之间的关系 14、如图,在ABC ?中,?=∠120BAC ,以AB 、AC 为向形外作等边三角形ABD 和ACE ,M 为AD 中点,N 为AE 中点,P 为BC 中点,试求MPN ∠的度数

15相似三角形判定定理的证明知识讲解基础

相似三角形判定定理的证明(基础) 【学习目标】 1.熟记三个判定定理的内容. 2.三个判定定理的证明过程. 3.学选会用适当的方法证明结论的成立性. 【要点梳理】 要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′. 证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则 ∠ADE=∠B,∠AED=∠C, ADAE?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABAC过点D作AC的平行线,交BC与点F,则 ADCF?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABCBAECF?∴ACCB∵DE∥BC,DF∥AC, ∴四边形DFCE是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ADAEDE??. ∴ABACBC而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE∽△ABC. ∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE∽△A′B′C′. ∴△ABC∽△A′B′C′. 要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时辅助线的做法.

【典型例题】类型一、两角分别相等的两个三角形相似,求证:△ADE∽△ABC.D, CE⊥AB,垂足为E1、在△ABC中,∠A=60°,BD⊥AC,垂足为 断可判∠AEC=∠ADB=90°,利用∠EAC=∠DAB路点拨】由BD⊥AC,CE⊥AB得到【思 ,加上∠EAD=∠CAB,根据三角形相似的==,利用比例性质得△AEC∽△ADB,则判定方法即可得到结论.【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,而∠EAC= ∠DAB,∴△AEC∽△ADB,∴,=∴,= ∵∠EAD=∠CAB,∴△ADE∽△ABC.有两组有两组角对应相等的两三角形相似;【总结升华】考查了相似三角形的判定与性质:对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三°,ADE=60,且∠在BC、AC上,点是等边三角形D,E分别ABC【变式】如图,△CE. CD=AC?证求:BD? 【答案】证明:∵△ABC是等边三角形, ∴∠B=∠C=60°,AB=AC, ∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°, ∴∠BAD=∠CDE, ,DCE△∽ABD△∴.ABBDCC BCD=AC BCD=AC 2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延

《三角形中位线定理》

课题:三角形中位线定理 科目:数学教学对象:八年级课时:§18.1平行四边形第4课时提供者:大城县第四中学毕宝清 一、教学目标 1.知识与技能: 理解三角形中位线的概念;探索并掌握三角形中位线定理;能正确应用三角形中位线定理解决问题。 2.过程与方法: 经历探索三角形中位线定理的过程,感受数学转化思想。 3.情感态度与价值观: 培养学生大胆猜想、合理论证、归纳结论的科学精神。 二、教学重点、难点 1.重点:探究三角形中位线定理并应用,应用三角形中位线定理解决有关问题。2.难点:三角形中位线定理的证明。 三、教具准备 多媒体、三角形纸片 四、教学过程 教 学 环 节 教学内容师生活动设计意图 一、情境设置 导入新课蚕丝吐尽春未老,烛泪成灰秋更稠。 春播桃李三千圃,秋来硕果满神州。 为感恩教师,七年级六班召开主题 班会,班长要求每个同学把手中的 三角形原料裁成四面完全相同的彩 旗装扮教室,应该怎么裁剪呢? 教师引 导学生观察 图片,思考问 题后出示课 题. 教育学生懂得感 恩,从学生的生活实际 出发,创设情境,提出 问题,激发学生强烈的 好奇心和求知欲.

环 节 教学内容师生活动设计意图 二、 动手操作 观察发现探究一:三角形中位线的概念 活动一:请同学们按要求画图: (1)画一个任意的△ABC; (2)取AB、AC的中点D、E; (3)连接DE 三角形中位线定义: 连接三角形两边中点的线段叫做三 角形的中位线。 问题1:一个三角形有几条中位线? 请学生画出三角形中所有中位线。 问题2:三角形的中位线和三角形 的中线有何异同? 教师引 导学生在练 习本上作图, 实践操作后 分析线段DE 的特征,独立 思考并总结 归纳出三角 形中位线的 定义. 教师 用红笔标出 定义的关键 词:“线段中 点”、“线段” 让学生在作图过 程中充分感知三角形 中位线并加深印象。 通过学生实践操 作把握概念的本质,有 利于学生今后更加准 确运用。 三、 探究性质定理 深化认知探究二:三角形的中位线定理 问题3:如图,DE是△ABC的中位 线,DE与BC有什么 关系? 通过拼图活动 寻求辅助线做法。 (1)把三角形 纸片沿中位线DE裁开。 (2)变换△ADE的位置,想办 法去构造一条线段等于2DE, (3)画出变换后的图形,并把 △ADE移动后的对应的位置用虚线 画出来。 (4)请仔细观察哪条线段是 DE的2倍。 (5)我们只要证明哪两条线 段相等就可以。 (6)辅助线做法该怎么写? (7)请构思并书写证明过程。 教师引导 学生从2个 方面探究两 条线段之间 的关系。 学生独立 思考寻求方 法探究结论, 小组讨论交 流并根据探 究结果猜想 三角形的中 位线定理。 教师板书证 明过程,并用 展台展示其 他证明方法。 调动已有知识经 验,结合学生实践操作 感知思考、交流合作探 究三角形中位线的定 理。 通过学生亲自拼 图操作,进一步探究辅 助线做法,并为定理的 证明作好准备工作 经历这个探究的 过程让学生意识到讨 论、合作是学生完成学 习任务的一种手段,而 交流则促进学生智慧 成果共享。

勾股定理和三角形证明相关习题

勾股定理及三角形证明相关测试题 1.已知a 、b 、c 是?ABC 三边长,则2)(c b a --+c b a -+的值是( ) A.2a B.2b C.2c D.2(a-c) 2.如图所示,AB=BC=CD=DE=1,AB ⊥BC,AC ⊥CD,AD ⊥DE,则AE=( ) A.1 B.2 C.3 D.2 3.如图在棱长为1的正方体ABCD-A 1B 1C 1D 1中,一只蚂蚁从点A 出发,沿正方体表 面爬行到面对对角线A 1B 上的一点P ,再沿截面A 1BCD 1,则整个过程中蚂蚁爬行 的最短路程为( ) A.2 B.2 62+ C.2+2 D.22+ 4.下列4个命题中正确的个数是( ) (1)两边及第三边上的中线对应相等的两个三角形全等 (2)两边及第三边上的高线对应相等的两个三角形全等 (3)直角三角形两条边的长分别为3和4,则第三边边长为5. (4)如果a ≥0,那么(a )2=a. A.1 B.2 C.3 D.4

5.若一个直角三角形的三边长为a,b,c,且a2=9,b2=16,则c2= . 6.已知一个直角三角形的两条直角边长为5cm,12cm,则第三边长为 . 7.如图,一棵大树在一次强台风中离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 m 8.如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm,4cm、12cm,插吸管处的出口到相邻两边的距离都是1cm,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口大小)则设计的吸管总长度L的范围是 . 9.如图,在?ABC中,AB=3+1,AC=6,BC=2,求?ABC三个内角的度数.

(完整版)人教版八年级下三角形中位线定理

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

(中位线定理)

教材单元分析 教材人教版单元内容三角形中位线定理课本页码第页至第页年级初二教师 1.本单元教材的作用与地位: 三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形等知识内容的应用和深化,对进一步学习非常有用,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了化归思想,它是一种重要的思想方法,无论在今后的学习还是在科学研究中都有着重要的作用,它对拓展学生的思维有着积极的意义。 2.教学指导思想: 本课以探究活动层层深入,环环紧扣,让同学们自己猜想归纳定理,并用自己的方法证明自己的猜想,这体现了“学生为主体”的课堂要求,让同学们充分的参与课堂教学中来,与以往的“满堂灌”教学方法有着本质的不同,不仅凝炼了教学环节,更让学生亲历了知识的生成过程,有效突破了教学的重点和难点。 3.教学目标: 1)知识目标:理解三角形中位线的定义;掌握三角形中位线定理及其应用。 2)能力目标:通过小组活动,提高了同学们的动手能力与合作交流能力;通过对三角形中位线定理的猜想及证明,提高了同学们提出问题,分析问题及解决问题的能力。 3)情感目标:让学生充分经历“探索—发现—猜想—证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。 4.教材的重点、难点与关键: 重点:理解并应用三角形中位线定理。 难点:三角形中位线定理的运用。 5.教学方法和手段的设计: 采用了“引导探究”式的教学模式,通过引导学生实验、观察、比较、分析和总结,使学生充分地动手、动口、动脑,参与教学全过程。 6.关于思想教育、行为习惯的培养及学习方法指导的设计: 本节课在实验操作的基础上,以问题为核心,创设情景,通过教师的适时引导,学生间、师生间的交流互动,启迪学生的思维,让学生掌握实验与观察、分析与比较、讨论与释疑、概括与归纳、巩固与提高等科学的学习方法;学会举一反三,灵活转换的学习方法,学会运用化归思想去解决问题。

全等三角形证明定理、习题

全等三角形证明 全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转、对折也会构成全等三角形。 全等三角形判定方法一:SSS(边边边),即三边对应相等的两个三角形全等. 举例:如下图,AC=BD,AD=BC,求证∠A=∠B. 证明:在△ACD与△BDC中{AC=BD,AD=BC,CD=CD. ∴△ACD≌△BDC.(SSS) ∴∠A=∠B.(全等三角形的对应角相等) 全等三角形判定方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等. 举例:如下图,AB平分∠CAD,AC=AD,求证∠C=∠D. 证明:∵AB平分∠CAD. ∴∠CAB=∠BAD. 在△ACB与△ADB中{AC=AD,∠CAB=∠BAD,AB=AB. ∴△ACB≌△ADB.(SAS) ∴∠C=∠D.(全等三角形的对应角相等) 全等三角形判定方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等. 举例:如下图,AB=AC,∠B=∠C,求证△ABE≌△ACD. 证明:在△ABE与△ACD中{∠A=∠A,AB=AC,∠B=∠C. ∴△ABE≌△ACD.(ASA) 全等三角形判定方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等. 举例:如下图,AB=DE,∠A=∠E,求证∠B=∠D. 证明:在△ABC与△EDC中{∠A=∠E,∠ACB=∠DCE,AB=DE. ∴△ABC≌△EDC.(AAS) ∴∠B=∠D.(全等三角形的对应角相等) 全等三角形判定方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等. 举例:如下图,Rt△ADC与Rt△BCD,AC=BD,求证AD=BC. 证明:在Rt△ADC与Rt△BCD中{AC=BD,CD=CD. ∴Rt△ADC与Rt△BCD.(HL) ∴AD=BC.(全等三角形的对应边相等) 附加:平移、旋转或对折的两个三角形全等. 习题 1已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB 于E,且

三角形中位线定理及逆定理的证明教学教材

定理 三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG

又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法四:

延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEF、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理

中位线定理证明

三角形中位线与梯形中位线 一、知识点梳理 1、三角形中位线定义;每个三角形有3条中位线 2、梯形中位线定义;每个梯形有且只有1条中位线 二、定理证明 知识点1:三角形中位线定理 (1)三角形中位线定理:三角形中位线平行于第三边,并且等于第三边的一半。 (数量关系与位置关系 (2)定理的证明 如图,已知点D、E分别是AB、AC的中点。求证:DE∥BC,且DE=1/2BC. 知识点2:梯形中位线定理 (1)定理:梯形的中位线平行于两底,且等于两底和的一半。 (2)定理的证明 如图,在梯形ABCD中,AD∥BC,AE=EB,DF=FC,求证:EF∥BC,EF=1/2(BC+AD) 三、典型例题分析 题型1 三角形的中位线 例1如图在四边形ABCD中,AC=BD,且M、N分别为AD、CB的中点,AC、BD交于点O,MN交BD于点E,交AC于F。求证:OE=OF

例2如图,在四边形ABCD中,E、F分别是AB、CD的中点,G、H分别是对角线AC、BD的中点,求证:EF与GH互相平分。 题型2 梯形的中位线 例 3 如图,已知MN是梯形ABCD的中位线,AC、BD与MN交于点F、E,AD=30cm,BC=40cm.求EF的长。 例4填空: (1)顺次连接四边形各边中点所得图形是。 (2)顺次连接平行四边形四边形各边中点所得图形是。 (3)顺次连接矩形各边中点所得图形是。 (4)顺次连接菱形各边中点所得图形是。 (5)顺次连接正方形形各边中点所得图形是。 (6)顺次连接梯形各边中点所得图形是。 (7)顺次连接直角梯形各边中点所得图形是。 (8)顺次连接四边形各边中点所得图形是。

相关文档
最新文档