三角形中位线定理证明应用题

三角形中位线定理证明应用题
三角形中位线定理证明应用题

三角形中位线定理证明应用练习

1.已知:如图,在△ABC中,CF平分∠ACB,CA=CD,AE=EB.求证:EF=

1

2

BD.

2. 已知E为平行四边形ABCD边的延长线上的一点,且CE=DC,连结AE,分别交BC、

BD于F、G,连结AC交BD于O点,连AF。求证:AB=2OF

F

O

A

B C

3. 已知如图,E、F、G、H分别是AB、BC、CD、DA的中点。

求证:四边形EFGH是平行四边形

A

D

C

B

H

G E

4.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E?为BC中点.求DE的长.

B C

D

E

5. 在四边形ABCD 中,ACBD 相交于O 点,AC=BD, E 、F 分别是AB 、CD 的中点,连接EF 分别交AC 、BD 于M 、N ,判断三角形MON 的形状,并说明理由。

6.如图,已知AB=12;AB ⊥BC 于B ,AB ⊥AD 于A ,AD=5,BC=10.点E 是CD 的中点,求AE 的长.

7. 如图,在△ABC 中,AC >AB ,D 点在AC 上,AB=CD ,E.F 分别是BC.AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC=60°,连接GD ,判断△AGD 形状并证明.

8.已知:如图,在△ABC 中,AB=AC ,E 是AB 的中点,延长AB 到D ,使BD=AB . 求证:CD=2CE .

M

N O

F

E B

C D E B F A D G

C

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形的证明测试题

A.10 B.12 C.2 D.1 7.如图,AB=AC, BE X AC 于点E , CF 丄AB 于点F , BE 、CF 相交于点 D ,则①△ ABE ^4 ACF;②厶BDF ^4 CDE ③点D 在/ BAC 的平分线上。以上结论正确的是( ) C.①② D.①②③ DC 丄 BC , E 是 BC 上一点,/ BAE=/ DEC=60°, AB=3, CE=4,则 C.24 D.48 三角形的证明测试题 一、选择题(每小题4分,共48分) 1?等腰三角形的一个角是 80 °则它顶角的度数是( )A. 80 ° B.80 或 20 ° 2?下列命题的逆命题是真命题的是( A.如果 a >0, b >0,贝U a+b >0 C. 两直线平行,同位角相等 C. 80 或 50 ° D.20 ) B. 直角都相等 D. 若 a=6,贝U |a|=|6| 34 ABC 中,/ A : / B :Z C=1: 2: A.5cm B.6cm 3,最小边BC=4cm ,最长边AB 的长是( C. 7cm D.8cm 5. 如图,在△ ABC 中,/ B=30° BC 的垂直平分线交 AB 于E ,垂足为D 。若 ED=5,则 6. 如图,D 为4 ABC 内一点,CD 平分/ ACB, BE X CD,垂足为 D ,交AC 于点E,Z A= 那么添加下列一个条件后,仍无法判定△ ADF B4 C.BE=DF D.AD // BC C.5 D.2.5 CE 的长为( ) A A.10

9?如图所示,在厶ABC 中,AB=AC, D 、E 是厶ABC 内两点,AD 平分/ BAG / EBC=Z E=60° ) C.9 D.10 / C=90° / B=30°以A 为圆心,任意长为半径画弧分别 交 12. 如图,在平面直角坐标系 xOy 中,A (0, 2), B (0, 6),动点C 在直线y=x 上。若以A 、 13. 如图,在等腰 Rt A ABC 中,/ C=90° AC=8, F 是AB 边上的中点,点D , E 分别在 AC , BC 边上运动,且保持 AD=CE 连接DE, DF , EF 。在此运动变化的过程中,下列结论: ① 厶DFE 是等腰直角三角形; ② 四边形CDFE 不可能为正方形, ③ DE 长度的最小值为4; ④ 四边形CDFE 的面积保持不变; ⑤ △ CDE 面积的最大值为8。 其中正确的结论是( ) A.①②③ B.①④⑤ C.①③④ D.③④⑤ 二、填空题(每小题4分,共24分) 14. 用反证法证明命题 三角形中必 M 、N 为圆心,大于寺MN 的长为半径画弧,两弧交于点 则 下列说法中正确的个数是( AC 于点M 和N ,再分别以 结AP 并延长交BC 于点D , ①AD 是/ BAC 的平分线;②/ ADC=60 ;③点D 在AB 的中垂线上;④ &DAC : P,连 S\ ABC =1 : C.3 D.4 AB 、 B 、C 三点为顶点的三角形是等腰三角形,则点 1 川 / \ L 1 J C 的个数是( ) C.4 D.5 10.如图,在厶ABC 中, A.2 B.3

初中几何中三角形中位线定理的应用

初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系; (2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH=21BD ,HF=21AC,因为AC=BD,从而 得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH=21BD ,EH//BD ,HF=21AC ,FH//AC (三角形中位线定理) 而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵EH//BD ,HF//AC ,∴∠HEF=∠ DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

三角形的证明测试题(最新版含答案)

第一章三角形的证明检测题 (本试卷满分:100分,时间:90分钟) 一、选择题(每小题3分,共30分) 1.下列命题: ①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等; ③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等; ⑤等腰三角形都是锐角三角形. 其中正确的有() A.1个 B.2个 C.3个 D.4个 2.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4.AD 平分∠BAC 交BC 于点D ,则BD 的长为( ) A.157 B. 125 C. 207 D.215 3. 如图,在△ABC 中,,点D 在AC 边上,且 , 则∠A 的度数为() A. 30° B. 36° C. 45° D. 70° 4.(2015?湖北荆门中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( ) A.8或10 B.8 C.10 D.6或12 5.如图,已知, , ,下列结论: ①;② ; ③ ;④△ ≌△ . 其中正确的有( ) A.1个 B.2个 C.3个 D.4个 6.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最短边cm , 则最长边AB 的长是() A.5 cm B.6cm C.5cm D.8 cm 7.如图,已知, ,下列条件 能使△≌△的是( ) A. B. C. D.三个答案都是 8.(2015·陕西中考)如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个

三角形中线的阿波罗尼斯定理及其应用

三角形中线的阿波罗尼斯定理及其应用 阿波罗尼斯定理 三角形两边平方的和,等于所夹中线及第三边之半的平方和的2倍. 具体地说,就是:设AD 是△ABC 的中线,则)(22222BD AD AC AB +=+. 证明 如图1,作BC 边上的高AH . 由勾股定理,得 222DH AH AD +=,2 2 2BH AH AB +=, 2 2 2 CH AH AC +=. 所以222222CH BH AH AC AB ++=+. 由 CD BD =, 可 得 )(2)()(2 2 2 2 2 2 DH BD DH BD DH BD CH BH +=-++=+. 所以)(2)(22222222BD AD BD DH AH AC AB +=++=+. 该定理应用广泛,不但可以用来计算三角形中线的长度,而且对于多线段的平方和问题,尝试构造三角形的中线后运用它往往也能凑效.下面举例说明此定理的应用. 1.直接使用 当题设条件中出现三角形的中线时,可考虑使用阿波罗尼斯定理建立相关线段的联系,以助解题. 例 1 AD 、BE 、CF 是△ABC 的三条中线.若a BC =,b CA =,c AB =,则 = ++2 2 2 CF BE AD ______. (2005年山东省初中数学竞赛) 分析 AD 、BE 、CF 是△ABC 的三条中线,故可直接使用三角形中线的阿波罗尼斯定理进行计算. 解 如图2, AD 是BC 边上的中线,由阿波罗尼斯定理得 ?? ? ??+=+222 2 412BC AD AC AB . 代入已知数据,变形得2 2 2 24 12 121a b c AD - + =. 同 理 2 2 2 2 4 12 12 1b a c BE - + = ,2 2 2 2 4 12 12 1c b a CF - + = . 故()2 2 2 2 224 3c b a CF BE AD ++= ++. 例2 如图3,△ABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且 点G 在点B 和点H 之间.已知HM BG =,2=AB ,2>BC .那么,当BC 、CA 为何值 D C B E A 图2 F A B 图1

中位线定理专题

中位线定理专题 烟台市祥和中学初春晓2013年7月16日09:33浏览:149评论:13鲜花:0专家浏览:4指导教师浏览:13指导教师孙春红于13-7-17 09:11推荐精心进行主题单元设计,思维导图设计得很细致,充分利用几何画板引导学生进行探究活动,实现了信息技术与学科的有效整合,一篇原创的,很精彩的作业。 省专家谢志平于13-7-17 15:32推荐本主题单元设计体现中观设计之妙,思维导图内容完整,对单元规划作用明显,专题活动内容设计丰富,信息技术手段与课程的整合运用较好。不足之处对应课标部分建议按照新课标修改。 主题单元标题中位线定理 作者姓名初春晓 学科领域 思想品德音乐 化学 信息技术劳动与技术语文 美术 生物 科学 √数学 外语 历史 社区服务 体育 物理 地理 社会实践 其他(请列出): 适用年级初中八年级 所需时间共三课时 主题单元学习概述

“中位线定理”主题单元结构包括“三角形中位线定理”、“梯形中位线定理”、“简单应用”三部分,这部分的专题设计,考虑到知识之间的关联,承接上部分学习的证明(三)中,利用公理和定理对特殊四边形的证明进行系统的复习,趁热打铁探索新的中位线定理,先通过创设一些问题情境,引入三角形中位线定义,从而引出三角形中位线定理的证明,并利用这个定理得到中点四边形与原四边形的关系,自然的学生会想到梯形的中位线及定理,从而自然的引入下一节内容,也就将这些内容紧密联系,层层递进,易于激发学生的学习兴趣也有利于帮助学生理解知识之间的联系,展示数学知识的整体性。专题三的简单应用是这两节内容的升华,中位线定理为我们提供了两条线段的数量和位置上的关系,在几何图形的计算和证明中起到了重要的依据,再通过在生活中的应用,让学生经历从实际问题抽象出数学问题,建立数学模型,应用已有知识解决问题的过程,从而加深对本部分知识的理解,提高思维能力。 主题单元规划思维导图 思维导图看不清楚的请打开超链接

初中数学-《三角形的证明》测试题(有答案)

初中数学-《三角形的证明》测试题 一、选择题 1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为() A.12 B.15 C.12或15 D.18 2.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是() A.18°B.24°C.30°D.36° 3.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C 作射线OC.由此做法得△MOC≌△NOC的依据是() A.AAS B.SAS C.ASA D.SSS 4.如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是() A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN 5.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是() A.两条边长分别为4,5,它们的夹角为β B.两个角是β,它们的夹边为4

C.三条边长分别是4,5,5 D.两条边长是5,一个角是β 6.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为() A.BD=CE B.AD=AE C.DA=DE D.BE=CD 二、填空题 7.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=. 8.在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是的.(填“正确”或“错误”) 9.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为. 10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三角形中位线定理的运用

教学案例:《三角形中位线定理教学设计》 ⒈创设问题情境,诱导学生发现结论 ⑴怎样测算操场中被一障碍物隔开的两点A、B的距离?小明测量的方法是:在AB外选一点C,连结AC、BC,取AC、BC的中点M、N。连结MN,量出MN=20m,这样能算出AB的长吗?AB与MN有何关系?经观察,你猜测 AB与MN的关系是:①②。 ⑵MN这条线段既特殊又重要,我们把它叫做△ABC的 中位线。即连结三角形两边点的线段叫三角 形的。 ⑶一个三角形有条中位线,画出图4的三角形的所有中位线,观察、测量发现: ( )∥( ),( )=( );( )∥( ),( )= ( );( )∥( ),( )= ( )。用语言叙述上述结论:三角形的中位 线并且 . ⑷再画出图2的△ABC的三条中线,它与中位线有何区别? 说明:⑴以上内容让学生按印发的学习提纲在课前完成。⑵三角形中位线定义的引入、定理的结论课本是直接给出的,这不符合过程性原则.我们①以“应用性问题”导入,揭示了数学知识在生产、生活中的广泛应用,强化学习动机,变“要我学”为“我要学”;②让学生通过实验操作、观察比较、估计猜测,自己发现结论,

这可培养学生对数学的内在兴趣,让学生认识到数学不是少数天才创造的,而是经过努力一般人都可以发现的,数学来源于现实世界,而又是解决实际问题的有力工具,符合从“感性到理性”的认识规律。 ⒉创设思维情境,启导学生发现证明结论的思路和方法 ⑴检查课前自学情况。教师提问有关问题,学生回答,并用多媒体展示答案。 ⑵教师指出:同学们观察发现的这些结论是否正确,还需严格证明。教师板书,学生在提纲上写已知、求证。 ⑶启导全班学生思考、讨论证法,教师巡视与学生一起研究,收集信息,了解情况。 ①本题与以前学过的哪些知识、方法有关?是什么关系?学生进行联想,回答。△ADE与△ABC有何关系?若过D作平行于BC的直线,发现什么(用多媒体演示)?②怎样证一条线段等于另一条的一半?学生回答:截(把长的平分)与补(把短的加倍)。经过探讨,学生不难发现以下三种证法:(过程略) 证法㈠:利用相似三角形证法㈡: 证法㈢: 说明:定理的证明,不拿现成的方法给学生,而是创设思维情境,启导学生“联想”到学过的有关知识和方法,使新旧知识得到顺利同化,并引导学生展开讨

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

三角形的证明测试题(新北师大版)

第一章 三角形的证明 检测题A 数学八年级下册(北师大最新版本) 第Ⅰ卷(选择题,共36分) 一、选择题(每小题4分,共36分) 1、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为( ) A 、22厘米 B 、17厘米 C 、13厘米 D 、17厘米或22厘米 2、下列关于等腰三角形的性质叙述错误的是( ) A 、等腰三角形的两底角相等 B 、等腰三角形是轴对称图形 C 、 等腰三角形是轴对称图形 D 、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 3、如图1-Z-1所示,在△ABC 中,AC=DC=DB ,∠ACD=100°则∠B 等于( ) A 、50° B 、40° C 、 25° D 、 20 ° 4、如图1-Z-2所示,在△ABC 与△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF , 不能添加的条件是( ) A 、∠B=∠E ,BC=EF B 、BC=EF ,AC=DF C 、∠A=∠ D ,∠B= ∠E , D 、 ∠A=∠D ,BC=EF 5、已知:如图1-Z-3所示,m ∥n ,等边三角形ABC 的顶点B 在直线m 上,边BC 与直线m 所夹的锐角为 20°则∠a 的度数是( ) A 、60° B 、30° C 、40 ° D 、45° 6、如图1-Z-4所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A 、6 B 、7 C 、8 D 、9 7、如图1-Z-5所示,在△ABC 中,CD 平分∠ABC ,∠A=80°,∠ACB=60°,那么∠BDC =( ) A 、80° B 、90° C 、100° D 、110° 8、如图1-Z-6所示,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离 DE=3.8cm ,则线段BC 的长为( ) A 、3.8cm B 、7.6cm C 、11.4cm D 、11.2cm 9、如图1-Z-7所示,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P 、O 、A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( ) A 、2个 B 、3个 C 、4个 D 、5个 二、填空题(每小题4分,共20分) 10、 如图1-Z-8所示,已知△ABC 是等边三角形, AD ∥BC ,CD ⊥AD ,垂足为D ,E 为AC 的中点,则∠ACD= °, AC= cm , ∠DAC= °,△ADE 是 三角形 D E B A 图1-Z-2 C C B A 图1-Z-4 B 图1-Z-5 A 图1-Z-6 x 图1-Z-8

三角形中位线在初中几何中的应用

1 初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要 取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH= 21BD ,HF=2 1 AC,因为AC=BD,从而得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH= 21BD ,EH//BD ,HF=2 1 AC ,FH//AC (三角形中位线定理)而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵ EH//BD ,HF//AC ,∴∠HEF=∠DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证: ∠AEF=∠DFE 分析:欲证:∠AEF=∠DFE 。由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN=∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有 12GM AB ∥,1 2 GN CD ∥,由于AB=CD ,进而有GM=GN , ∠GMN=∠GNM 然后再转化∠EPN=∠Q ,从而证出结论。 证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD , 取BD 的中点G ,连结GM 、GN 。∵G 、M 分别为△ABD 的边BD 、AD 的中点∴ 12GM AB ∥。同理可证:12 GN AB ∥,又∵AB=CD ,∴GM=GN ,∴∠GMN=∠GNM , ∵GM//AB ,GN=CD ,∴∠GMN=∠EPN ,∠GNM=∠Q ,∴∠EPN=∠Q ,又 EF ⊥MN ,

中位线定理证明题

中位线定理证明题 1、 如图,若CD AB //,E 、F 分别是BC 、AD 的中点, 且a AB =,b CD =,求EF 的长 2、已知矩形ABCD 中,cm AB 15=,cm BC 8=,E 、 F 、 G 、 H 分别是AB 、BC 、CD 、DA 的中点,求 四边形EFGH 的周长和面积 3、 如图,已知四边形ABCD 中,BC AD //, 若DAB ∠的角平分线AE 交CD 于E ,连结BE , 且BE 平分ABC ∠,求证:BC AD AB += 4、如图,在ABC ?中,C B ∠=∠2,BC AD ⊥,垂足为D ,M 是BC 的中点,cm AB 10=,求MD 的长 5、 如图,D 、E 、F 分别是ABC ?三边的中点,G 是AE 的中点, BE 与DF 、DG 分别交于P 、Q 两点,求BE PQ :的值 6、 如图,在ABC ?中,AD 平分BAC ∠,AD BD ⊥, AC DE //,交AB 于E ,若5=AB ,求DE 的长 7、连接凸四边形一组对边中点的线段等于另一组对边和的一半,问这个凸四边形是什么四边形试证明你的结论

8、分别以ABC ?的边AC 和BC 为一边,在ABC ?外作正方形ACDE 和 CBFG ,点P 是EF 的中点,如图,求证:点P 到边AB 的距离是AB 的一半 9、如图,在梯形ABCD 中,BC AD //,?=∠30B , ?=∠60C ,E 、M 、F 、N 分别是AB 、BC 、CD 、DA 的中点, 已知7=BC ,3=MN ,求EF 的值 10、如图,已知梯形ABCD 中,BC AD //,?=∠=∠90ADC DCB ,E 为AB 中点,求证:DE CE = 11、如图,已知梯形ABCD 中,CD AB //,?=∠=∠90D DAB ,ACB ?是等边三角形,梯形中位线m EF 4 3 = ,求梯形的下底AB 的长 12、如图,梯形ABCD 的面积是12,求此梯形四边的中点组成的四边形EFGH 的面积 13、如图,已知A 为DE 的中点,设DBC ?、ABC ?、EBC ?的面积分别为1S 、 2S 、3S ,求1S 、2S 、3S 之间的关系 14、如图,在ABC ?中,?=∠120BAC ,以AB 、AC 为向形外作等边三角形ABD 和ACE ,M 为AD 中点,N 为AE 中点,P 为BC 中点,试求MPN ∠的度数

(完整版)八年级下册第一章三角形的证明测试题含答案

八年级下册第一章三角形的证明测试题 一.选择题 1.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ) A .270° B .135° C .90° D . 315° 2.如图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法正确的个数有( ) ①DC ′平分∠BDE ;②BC 长为a )22( ;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长。 A . 1个; B .2个; C .3个; D .4个。 3.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm ,则△DEB 的周长为( ) A .4cm B .6cm C .8 cm D .10cm 4.如图,EA ⊥AB ,BC ⊥AB ,EA=AB=2BC ,D 为AB 中点,有以下结论: (1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE 。其中结论正确的是( ) A .(1),(3) B .(2),(3) C .(3),(4) D .(1),(2),(4) 5.如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( ) A .2 B .3 C .4 D .5 6等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( ) A .4 B .10 C .4或10 D .以上答案都不对 7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为 A B C A B C B C D E C ′ E

三角形的证明单元测试题

A B P C D O (11题图) 第一章 单元测试题 一、填空题(每小题2分,共20分) 1.在△ABD 和△ACE 中,有下列四个论断: ①AB =AC ;②AD =AE ;③∠B =∠C ;④BD =CE 请以其中三个论断作为条件,余下的一个作为结论,写出一个正确的判断(⊙⊙⊙→⊙的形式写出来) . 2.如图,在△ABC 中,AD =DE ,AB =BE ,∠A =80°则∠DEC = . 3.如图,在△ABC 中,AD 平分∠BAC ,AB =AC +CD ,则∠B 与∠C 的关系是 . (2题图) (3题图) (4题图) 4.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC =4,则PD = . 5.等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角的度数为 度. 6.已知:如图,在△ABC 中,AB=15m ,AC=12m ,AD 是∠BAC 的外角平分线,DE ∥AB 交AC 的延长线于点E ,那么CE = cm . 7.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在C / 的位置,如果BC=2,则 BC ′= . 8.在联欢晚会上,有A 、B 、C 三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏,要求在他们中间放一个木凳,使他们抢坐到凳子的机会相等,试想想凳子应放在△ABC 的三条 线的交点最适当. 9.等腰三角形的周长是2+3,腰长为1,则其底边上的高为__________. 10.以长为1、2、2 、5、3,中的三条线段为边长可以构成 个直角 三角形. A B C D E A B C D

《三角形中位线定理》

课题:三角形中位线定理 科目:数学教学对象:八年级课时:§18.1平行四边形第4课时提供者:大城县第四中学毕宝清 一、教学目标 1.知识与技能: 理解三角形中位线的概念;探索并掌握三角形中位线定理;能正确应用三角形中位线定理解决问题。 2.过程与方法: 经历探索三角形中位线定理的过程,感受数学转化思想。 3.情感态度与价值观: 培养学生大胆猜想、合理论证、归纳结论的科学精神。 二、教学重点、难点 1.重点:探究三角形中位线定理并应用,应用三角形中位线定理解决有关问题。2.难点:三角形中位线定理的证明。 三、教具准备 多媒体、三角形纸片 四、教学过程 教 学 环 节 教学内容师生活动设计意图 一、情境设置 导入新课蚕丝吐尽春未老,烛泪成灰秋更稠。 春播桃李三千圃,秋来硕果满神州。 为感恩教师,七年级六班召开主题 班会,班长要求每个同学把手中的 三角形原料裁成四面完全相同的彩 旗装扮教室,应该怎么裁剪呢? 教师引 导学生观察 图片,思考问 题后出示课 题. 教育学生懂得感 恩,从学生的生活实际 出发,创设情境,提出 问题,激发学生强烈的 好奇心和求知欲.

环 节 教学内容师生活动设计意图 二、 动手操作 观察发现探究一:三角形中位线的概念 活动一:请同学们按要求画图: (1)画一个任意的△ABC; (2)取AB、AC的中点D、E; (3)连接DE 三角形中位线定义: 连接三角形两边中点的线段叫做三 角形的中位线。 问题1:一个三角形有几条中位线? 请学生画出三角形中所有中位线。 问题2:三角形的中位线和三角形 的中线有何异同? 教师引 导学生在练 习本上作图, 实践操作后 分析线段DE 的特征,独立 思考并总结 归纳出三角 形中位线的 定义. 教师 用红笔标出 定义的关键 词:“线段中 点”、“线段” 让学生在作图过 程中充分感知三角形 中位线并加深印象。 通过学生实践操 作把握概念的本质,有 利于学生今后更加准 确运用。 三、 探究性质定理 深化认知探究二:三角形的中位线定理 问题3:如图,DE是△ABC的中位 线,DE与BC有什么 关系? 通过拼图活动 寻求辅助线做法。 (1)把三角形 纸片沿中位线DE裁开。 (2)变换△ADE的位置,想办 法去构造一条线段等于2DE, (3)画出变换后的图形,并把 △ADE移动后的对应的位置用虚线 画出来。 (4)请仔细观察哪条线段是 DE的2倍。 (5)我们只要证明哪两条线 段相等就可以。 (6)辅助线做法该怎么写? (7)请构思并书写证明过程。 教师引导 学生从2个 方面探究两 条线段之间 的关系。 学生独立 思考寻求方 法探究结论, 小组讨论交 流并根据探 究结果猜想 三角形的中 位线定理。 教师板书证 明过程,并用 展台展示其 他证明方法。 调动已有知识经 验,结合学生实践操作 感知思考、交流合作探 究三角形中位线的定 理。 通过学生亲自拼 图操作,进一步探究辅 助线做法,并为定理的 证明作好准备工作 经历这个探究的 过程让学生意识到讨 论、合作是学生完成学 习任务的一种手段,而 交流则促进学生智慧 成果共享。

三角形中位线定理模型应用的思维导图

三角形中位线定理模型应用的思维导图 三角形中位线定理是一个重要知识点,更是一种重要的解题工具,熟练掌握定理的两种模型,能助力数学解题效率,提升数学核心素养. 一、定理模型构建 1.双中点模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,点E 是边AC 的中点; 结论:12;2DE BC BC DE DE BC ?==????? ?数量关系:或位置关系:∥. 2.中点+平行线模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,DE ∥BC ; 结论:12;2.DE BC BC DE E AC ?==????? ?数量关系:或位置关系:点是的中点 证明:如图2,过点C 作CF ∥AB ,交DE 的延长线于点F.∵DE ∥BC ,CF ∥AB, ∴四边形BDFC 是平行四边形,∴BD=CF. ∵AD=BD ,∴AD=CF. ∵CF ∥AB, ∴∠A=∠ACF ,∠ADE=∠EFC ,∴△ADE ≌△CFE ,∴AE=EC ,∴点E 是AC 的中点, DE 是△ABC 的中位线,∴DE=1 2BC. 二、定理常用模型 1.双中点模型 此条件下,完全具备定理的条件,可以直接使用. 2.构造托底平行线型 如图3,在△ABC 中,点D 是边AB 的中点,点E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,则DE 是△ABF 的中位线,定理可用 .

3.构造中点平底线型 如图4,在△ABC 中,点D 是边AB 的中点,过点D 作DE ∥BC ,则DE 是△ABC 的中位线,定理可用. 三、应用剖析 1.平行四边形中构造使用定理 例1 (2020?陕西)如图5,在平行四边形ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是平行四边形ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G .若EF ∥AB ,则DG 的长为 ( ) A. 5 2 B .32 C . 3 D .2 解析:如图5,延长CD ,交BF 的延长线于点H ,∵E 是边BC 的中点,∠BFC=90°,∴EB=EF=EC=1 2BC=4,∵EF ∥AB ,CD ∥AB ,∴EF ∥CD ,∵E 是边BC 的中点,∴EF 是三角形BCH 的中位线, ∴CH=8,DH=5,易证△ABF ≌△GHF ,∴AB=GH=5,∴AH=CG=BH-BA=BC-BA=8-5=3, ∴DG=GH-DH=5-3=2,∴选D. 点评:解答时,把握三个关键,一是直角三角形斜边中线原理;二是三角形中位线定理;三是构造中点型全等三角形法,这些都是解题的核心要素. 例2(2020?凉山州)如图6,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交

(完整版)人教版八年级下三角形中位线定理

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

相关文档
最新文档