单调谐高频小信号放大器

单调谐高频小信号放大器
单调谐高频小信号放大器

实验一单调谐高频小信号放大器

一、实验目的

1.熟悉电子元器件和高频电路实验箱。

2.熟悉谐振回路的幅频特性分析--通频带与选择性。

3.熟悉和了解放大器的动态范围及测试方法。

4.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

二、实验仪器

1.双踪示波器SS-7804

2.扫频仪PD1250

3.高频信号发生器WY1052

4.万用表

5.实验板1

三、预习要求

1、复习谐振回路的工作原理。

2、了解谐振放大器的电压放大倍

数、动态范围、通频带及选择性相互

之间的关系。

3、实验电路中,若电感量L=1uh, 回

路总电容C=220pf (分布电容包括在

内),计算回路中心频率f。

四、实验内容及步骤

图1-1 单调谐回路谐振放大器原理图(一)单调谐回路谐振放大器。

1.实验电路见图1-1

(1)按图1-1所示连接电路(注意接线前先测量+12 V电源电压,无误后,关断电源再接线)

(2)接线后仔细检查,确认无误后接通电源。

2.静态测量

实验电路中选Re=1K

测量各静态工作点,计算并填表1.1

表 1.1

实测实测计算根据V CE判断V是否工作

在放大区

原因

V B V E I C V CE 是否

* V B , V E是三极管的基极和发射极对地电压。

3. 动态研究

(1)测放大器的动态范围V i~V O(在谐振点)

选R=10K , Re=1k 。把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压V i, 调节频率f 使其为10.7MH Z, 调节C T使回路谐振,使输出电压幅度为最大。此时调节V i由0.02伏变到0.8伏,逐点记录Vo电压,并填入表1.2 。Vi的各点测量值可根据(各自)实测情况来确定。

表 1.2

V i(v) (峰值)0.02 0.8

V0(v) Re =1KΩRe =500ΩRe =2KΩ

(2)用扫频仪调回路谐振曲线。

仍选R=10K, Re=1K。将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当的位置,如30dB),调回路电容C T, 使f 0 = 10 .7 MHz 。

(3)测量放大器的频率特性

当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时的回路谐振频率为f0=10.7MHZ 为中心频率,然后保持输入电压Vi 不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1-3。频率偏离范围可根据(各自)实测情况来确定。

f(MHz) 10.7

V0 R=10KΩR=2KΩR=470Ω

计算fo=10.7MHz时的电压放大倍数及回路的通频带和Q值。

(4)改变谐振回路电阻,即R分别为2KΩ、470Ω时,重复上述测试,并填入表1-3。比较通频带情况。

五.实验报告要求

1.写明报告目的.

2.画出实验电路的直流和交流等效电路,计算直流工作点,与实验实测结果比较。

3.写明实验所用仪器、设备及名称、型号。

4.整理实验数据,并画出单调谐回路接不同回路电阻时的幅频特性和通频带,整理并分析原因。

5.本放大器的动态范围是多少(放大倍数下降1dB 的折弯点V O定义为放大器动态范围),讨论I C对动态范围的影响。

实验二高频功率放大器(丙类)

一、实验目的

1.了解丙类功率放大器的基本工作原理,掌握丙类放大器的计算与设计方法。

2.了解电源电压V C与集电极负载对功率放大器功率和效率的影响。

二、预习要求

1.复习功率谐振放大器原理及特点。

2.分析图2-1所示的实验电路,说明各元器件作用。

三、实验仪器

1.双踪示波器

2.扫频仪

3.高频信号发生器

4.万用表

5.实验板1

四、实验内容及步骤

1.实验电路见图2-1

按图接好实验板所需电源,将C、D 两点短接,利用扫频仪调回路谐振频率,使谐振在6.5MHz的频率上,方法是调节电容C2、C5使输出幅度最大。

图2-1 C D

2.加负载50Ω,在输入端接f=6.5MHz、Vi=120mV信号,测量各工作电压,同时用示波器测量输入、输出峰值电压,将测量值填入表2.1内。

f=6.5MHz

实测实测计算

V B V E

V CE

V i V0I0 Ic P i P0P aη

V c=12V V i=120mV

R L=50Ω

R L=75Ω

R L=120ΩV i=84mV

R L=50Ω

R L=75Ω

R L=120Ω

V c=5V

V i=120mV

R L=50Ω

R L=75Ω

R L=120Ω

V i=84mV

R L=50Ω

R L=75Ω

R L=120Ω

其中:V i:输入电压峰—峰值

V0:输出电压峰—峰值

I0:电源给出总电流

P i:电源给出总功率(P i =V C I O) (V C:为电源电压)

P0:输出功率

P a:为管子损耗功率(P a=I C V CE )

3.加75Ω负载电阻,同2测试并填入表2.1内。

4.加120Ω负载电阻,同2测试并填入表2.1内。

5.改变输入端电压V i =84mV ,同2 、3、4测试并填入表2.1测量。6.改变电源电压V c =5V,同2 、3、4、5测试并填入表2.1内。

五、实验报告要求

1.根据实验测量结果,计算各种情况下I C、P O、P i、n 。2.说明电源电压、输出电压、输出功率的相互关系。

3.总结在功率放大器中对功率放大晶体管有哪些要求。

实验三振幅调制器与解调器的设计

一、实验目的

1.学习应用MC1496模拟乘法器设计组成振幅调制电路和同步检波器,培养设计、调试和测量电路的能力。

2.掌握用集成模拟乘法器实现全载波调幅(AM)和抑制载波双边带调幅(DSB)的方法与过程,并研究已调波与二输入信号的关系。

3.掌握测量调幅系数m a的方法。

二、预习要求

1、本实验为设计综合性实验,要求实验前预习幅度调制器和解调器有关知识。查

找MC1496器件的资料。预习报告:给出详细的MC1496内部电路图和工作原理。

2、设计用MC1496模拟乘法器构成普通调幅波调幅电路、双边带调幅电路以及同

步检波器电路,预习报告给出完成上述实验的必要条件,提出完成实验的测试方法及必备仪器。

3、预习报告给出设计电路的主要参数,根据实验内容要求给出实现AM 或DSB

波的载波信号Vc(t)和调制信号Vs(t)的频率(fc、fs)和幅度(Vc、Vs)范围值。

可借助Multisim软件或Pspice10.0 软件验证设计。

4、制订实验步骤。

三、实验室提供的仪器及主要技术指标:

1、SS-7804双踪模拟示波器40MHz

2、高频信号发生器载波频率范围0.1—40 MHz;

载波输出幅值>120dBμV

3、高频电路学习机可提供正弦波信号频率范围2Hz—20KHz

四、实验原理及参考电路说明

幅度调制就是载波的振幅受调制信号的

控制作周期性的变化。变化的周期与调制信

号周期相同。即振幅变化与调制信号的振幅

成正比。通常称高频信号为载波信号,低频

信号为调制信号,调幅器即为产生调幅信号

的装置。

1.MC1496芯片内部电路图3-1为

MC1496芯片内部电路图,它是一个四象限

模拟乘法器的基本电路,电路采用了两组差

动对由V1-V4组成,以反极性方式相连接,图3-1 MC1496芯片内部电路

而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚

⑥、⑿之间)输出。

2.调幅器电路设计参考

全载波或普通调幅波(AM):普通调幅波包含上下边频分量还有载波分量,除了加入调制信号V S以外,还应该有直流分量。这就是通过调节电位器,使脚1、4两端直流电位差不为零,相当于输入电压为直流电压加调制信号V S,通过乘法器后,输出为普通调幅波。设计电路时注意②、③脚外接电阻取值,该电阻是引入的负反馈电阻,目的为了扩大V S的取值范围。

抑制载波调幅(即平衡调幅):是指其输出信号为双边带调幅波,其载波信号被抑制。实验中应保证在IN2仅加入调制信号V S,而不含有直流成分。这就需要通过调节R P1使调制端平衡:使脚1、4两端直流电位差为零。

3.解调器设计参考

解调器可采用同步检波器,由乘法器和低通滤波器两部分组成,设计电路时仍选用MC1496构成乘法器,这就需要除了有需要进行解调的调幅信号电压外,还必须外加一个频率和相位与输入信号完全相同的本地载波信号电压,为简化设计线路,该信号可取调制端的载波信号,需要注意的时这一点与实际解调系统是不同的。对于滤波器建议选择π型低通滤波器,根据预习内容要求3中设计的信号频率确定滤波器参数。

利用一个和调幅信号的载波同频同相的载波信号与调幅波相乘,再通过低通滤波器滤除高频分量而获得调制信号。

五、实验内容

1.振幅调制器直流调制特性研究

(1)载波输入端平衡调节:在调制信号输入端IN2加正弦信号,要求幅度与频率取值使输出端信号不失真,(如峰值为100mv,频率为1KHz),调节⑧、⑩之间电位器R P2使输出端信号最小,然后去掉输入信号。

(2)在载波输入端IN1加正弦信号,要求幅度与频率取值使输出端信号不失真,(如峰值V C为10mv,频率为100KHz ),用万用表测量①、④之间的电压V AB,用示波器观察OUT输出端的波形,V AB=0.1V为步长,记录R P1由一端调至另一端的输出波形及其峰值电压,注意观察相位变化,根据公式V0=KV AB V C(t)计算出系数K值。并记录V0对应V AB变化的值。

2.实现全载波调幅(AM)

(1)调节①、④之间的电位器R P1使V AB不为零(如V AB=0.1V),在IN2加载波信

号(如V C (t)=10sin2π×105 t (mV)),将低频信号V S (t)=V S sin2π×103t (mV) 加至调制器输入端IN2,调节V S 实现m a =30%和m a =100%全载波调幅波。画出m a =30%和m a =100% 的调幅波形(标明波峰—波峰值V max 与波谷—波谷值V min ) ,(Vm in

Vm ax Vm in -Vm ax m a +=

(2) 改变V S 或V AB 值,加大示波器扫描速率(对应示波器的旋钮TIME/DIV ),观察

并记录m a =100% 和m a >100% 两种调幅波在零点附近的波形情况。 (3) 载波信号V C (t)不变,将调制信号改为V S (t)=100sin2π×103 t (mV) 调节R P 1观察

输出波形V AM (t)的变化情况,记录m a =30%和m a =100%调幅波所对应的V AB 值。

3. 实现抑制载波调幅(DSB )

(1) 调R P 1使调制端平衡:在载波信号输入端IN1加V C (t)=10Sin2π×105t(mV)信号,

调制信号端IN2不加信号,节R P 1观察输出端波形使输出端最小。 (2) 载波输入端不变,调制信号输入端IN2加V S (t)=100sin2π×103t(mV)信号,观察

并记录波形,并标明峰—峰值电压。(为正确观察波形须微调载波频率)。 (3) 加大示波器扫描速率,观察记录已调波在零点附近波形,比较它与m a =100%调

幅波的区别。 (4) 所加载波信号和调制信号均不变,微调R P 2为某一个值,观察记录输出波形。 (5) 在(4)的条件下,去掉载波信号,观察记录输出波形,并与调制信号比较。

4. 实现解调全载波信号(AM )

(1)按调幅实验中实验内容2(1)的条件获得调制度分别为30%,100%及>100%的

调幅波。将它们依次加至解调器V AM 的输入端, 并在解调器的载波输入端加上与调幅信号相同的载波信号,分别记录解调输出波形,并与调制信号相比。 (2)去掉滤波电路,观察记录m=30%的调幅波输入时的解调器输出波形,并与调制信

号相比较。然后使电路复原。

5、 解调抑制载波的双边带调幅信号(DSB )

(1)按调幅实验中实验内容3(2)条件获得抑制载波调幅波,并加至解调器电路V AM

输入端,其它连线均不变,观察记录解调输出波形,并与调制信号相比较。 (2)去掉滤波电路观察记录输出波形。

六、实验报告要求

1.整理实验数据,用坐标纸画出直流调制特性曲线。

2.画出调幅实验中m a=30% 、m a=100% 、m a>100%的调幅波形,在图上标明峰—峰值电压。

3.当改变V AB时能得到几种调幅波形,分析其原因。

4.画出100%调幅波形及抑制载波双边带调幅波形,比较二者的区别。

5.画出实现抑制载波调幅改变R P2后的输出波形,分析其现象。

6.总结完成实验的心得与体会、解决问题的方法,以及对今后开展设计综合性实验的建议。

实验四频率调制器及模拟锁相环频率解调电路

一、实验目的

1.了解压控振荡器和用它构成频率调制的原理

2.了解集成电路VCO频率调制器的工作原理

3.了解用锁相环构成调频波的解调原理。

4.学习掌握集成电路频率调制器/解调器系统的工作原理。

二、预习要求

1.查阅有关集成电路压控振荡器资料。了解566(VCO的单片集成电路)的内部电路及原理。搞清566外接元件的作用。

2.查阅有关锁相环内部结构及工作原理,弄清锁相环集成电路与外部元器件之间的关系。

三、实验仪器设备

1.双踪示波器

2.高频实验学习机

3.万用表

四、实验电路说明

1.566型单片集成VCO构成的调

频器

图4-1为566型单片集成VCO

的框图及管脚排列

图4-1中幅度鉴别器,其正向触

发电平定义为V SP,反向触发电平定

义为V SM,当电容C充电使其电压V7(556管脚⑦对地的电压)上升至V SP,此时幅度鉴别器翻转,输出为高电平,从而使内部的控制电压形成电路的输出电压,该电压V O为高电平;当电容C放电时,其电压V7下降,降至V SM时幅度鉴别器再次翻转,输出为低电平从而使V O也变为低电平,用V O的高、低电平控制S1和S2两开关的闭合与断开。V0为低电平时S1闭合,S2断开,这时I6 =I7=0,I O

全部给电容C充电,使V7上升,由于I0为恒流源,

V7线性斜升,升至V SP时V O跳变为高电平,V0高电

平时控制S2闭合,S1断开,恒流源I0全部流入A支

路,即I6=I0由于电流转发器的特性,B支路电流I7 应

等于I6,所以I7=I0,该电流由C放电电流提供,因此

V7线性斜降,V7降至V SM时V0跳变为低电平,如此周而复始循环下去,I7及V O波形如图4-2。图4-2

图4-1

566输出的方波及三角波的载波频率(或称中心频率)可用外加电阻R 和外加电容C 来确定。

其中:R 为时基电阻 C 为时基电容 V 8 为566管脚⑧至地的电压

V 5为566管脚⑤至地的电压

3.集成电路(锁相环)565构成的频率解调器

图 4-5为565(PLL 单片集成电路)的框图及管脚排列,锁相环内部电路由相位鉴别器、压控振荡器、放大器三部分构成,相位鉴别器由模拟乘法器构成,它有两组输入信号,一组为外部管脚②、③输入信号e 1,其频率为f1;另一组为内部压控振荡器产生信号e 2,经④脚输出,接至⑤脚送到相位鉴别器,其频率为f2,当f1和f2差别很小时,可用频率差代表两信号之间的相位差,即f1-f2的值使相位鉴别器输出一直流电压,该电压经过⑦脚送至VCO 的输入端,控制VCO ,使其输出信号频率f2发生变化,这一过程不断进行,直至f2=f1为止,这时称为锁相环锁定。

集成电路(锁相环)565构成的频率解调器电路如图 4-6 五、实验内容

步骤1、2实验电路 见 图 4-3;步骤3、4实验电路图 4-3和图 4-6电路。

1. 观察R 、C1对频率的影响(其中R=R3+R p 1)。按图接线,将C1接入566管脚⑦,R P 2及C2接至566管脚⑤;接通电源(±5V)。

调节Rp2使 V5=3.5V ,将示波器接至566管脚③,改变R P 1观察方波输出信号频图 4-3 566构成的调频器 图 4-4 输入信号电路

图4-5

率,记录当R为最大和最小值时的输出频率。当R分别为R max和R min及C1=2200时,计算这二种情况下的频率,并与实际测量值进行比较。用双踪示波器观察并记录R=R min时方波及三角波的输出波形。

2.观察输入电压对输出频率的影响

(1)直流电压控制:先调R P1至最大,然后改变R P2调整输入电压,测当V5在2.2V~4.2V变化时输出频率f的变化,V5按0.2V递增。将测得的结果填入表5.1

V5(V) 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

f (MHz)

(2) 用交流电压控制:仍将R设置为最大,断开⑤脚所接C2、R P2,将图4-4(即输入信号电路)的输出OUT接至图4-3中566的⑤脚

(a)、将函数发生器的正弦波调制信号e m(输入的调制信号)置为f=5KHz、V P-P=1V,然后接至图4-4电路的IN端。用双踪示波器同时观察输入信号e m和566管脚③的调频(FM)方波输出信号,观察并记录当输入信号幅度VP-P和频率f m有微小变化时,输出波形如何变化.注意:输入信号e m的V P-P不要大于1.3V。

注意:为了更好的用示波器观察频率随电压的变化情况,可适当微调调制信号的频率,即可达到理想的观察效果。

(b)、调制信号改用方波信号e m,使其频率f m=1KHz,V P-P=1V,用双踪示波器观察并记录e m和566管脚③的调频(FM)方波输出信号。

图4-6 集成电路(锁相环)565构成的频率解调器电路

3、正弦波解调器

调Rp使其中VCO的输出频率f0(④脚)为50KHZ。先按实验内容2(2)(a)的要求获得调频方波输出信号(③脚),要求输入的正弦调制信号e m为:Vp-p=0.8V,f=1KHZ,然后将其接至565锁相环的IN输入端,调节566的Rp1(逆时针旋转)使R最小,用双踪示波器观察并记录566的输入调制信号e m和565“B”点的解调输出信号。

4、相移键控解调器:

用峰-峰值Vp-p=0.8V,f m =1KHZ的正弦波做调制信号送给调制器566,分别观察调制器566的调制信号和比较器311的输出信号。

六、实验报告要求

1.阐述566(VCO的单片集成电路)的调频原理。

2.整理实验结果,画出波形图,说明调频概念。

3.根据实验,说明接在566管脚⑥上R的作用,计算当R最大、最小时566的频率,并与实验结果进行比较。

4.整理全部实验数据、波形及曲线。

5.分析用集成电路(566、565)构成的调频器和解调器在联机过程中遇到的问题及解决方法。

《高频电子线路》实验指导书

电子信息及通信工程专业适用

王玉花

信息工程学院通信实验室

实验要求

1.实验前必须充分预习,完成指定的预习任务。预习要求如下:1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。2)完成各实验“预习要求”中指定的内容。3)熟悉实验任务。4)复习实验中所用各仪器的使用方法及注意事项。

2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。

4.高频电路实验注意:1)将实验板插入主机后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。2)由于高频电路频率较高,分布参数及相互感应的影响较大。所以在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。

3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫、或有异味)应立即关断电源,保持现场,报告指导教师。找出原应、排除故障,经指导教师同意再继续实验。

6.实验过程中需要改接线时,应关断电源后才能拆、接线。

7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。

8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。

9.实验后每个同学必须按要求独立完成实验报告。

目录

实验一单调谐高频小信号放大器 (1)

实验二高频功率放大器 (4)

实验三振幅调制器与解调器的设计 (6)

实验四频率调制器及模拟锁相环频率解调电路 (13)

第三章《单级低频小信号放大器》单元测试题

第三章单元测试题 班级________________学号____________姓名__________________成绩______________ 一.填空题:(每小格1分,共35分) 1.放大器必须对电信号的________________________有放大作用,否则,就不能称为放大器。 2.写出电压放大倍数A V与电压增益G V之间的关系式:_______________________________写出功率放大倍数G P与功率增益G P之间的关系式:________________________________ 3.电压放大倍数出现正负号表示___________________关系,其中“+”号表示____________关系,而“—”号表示_____________________关系;但电压增益出现“—”号则表示该电路不是_________________________而是_____________________。 4.放大器由于_______________________________________________________所造成的失真,称为非线性失真;而非线性失真又分为_________________失真和______________失真两种。 5.在共射放大电路中,输入电压和输出电压,频率__________________,波形_______________,而幅度得到了________________________,但它们的相位___________________________。 6.画直流通路时,把__________________________视为开路,而其他不变;画交流通路时,把________________________和______________________________视为短路。 7.所谓的建立合适的静态工作点,就是要求将静态工作点设置在_______________的中点位置。 8.放大器的输入电阻越_______________越好,这样有利于减轻____________________的负担; 而输出电阻越__________________越好,这样可以提高_________________________的能力。 9.放大电路的基本分析方法有____________________________、_______________________和_____________________________三种。 10.射极输出器电路属于____________________电路,其对__________________没有放大能力,但对_________________和___________________却有放大能力,它的输入电阻很__________,而输出电阻很___________________。 11.常见的放大电路有______________________________、____________________________和 __________________________________三种类型。 二、选择题 1、分压式共射放大电路中。若更换晶体三极管使β由50变为100,则电路的电压放大倍数将 () A、约为原来的50% B、基本不变 C、约为原来的2倍 D、约为原来的4倍 2、某放大电路如图所示,设VCC>>VBE,ICEO=0,则在静态时三极管处于() A、放大区CC B、饱和区 C、截止区 D、区域不定L 3、放大电路如图所示,若增大Re,则下列说法正确的是()

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

单调谐高频小信号放大器

实验一单调谐高频小信号放大器 一、实验目的 1.熟悉电子元器件和高频电路实验箱。 2.熟悉谐振回路的幅频特性分析--通频带与选择性。 3.熟悉和了解放大器的动态范围及测试方法。 4.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 二、实验仪器 1.双踪示波器SS-7804 2.扫频仪PD1250 3.高频信号发生器WY1052 4.万用表 5.实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍 数、动态范围、通频带及选择性相互 之间的关系。 3、实验电路中,若电感量L=1uh, 回 路总电容C=220pf (分布电容包括在 内),计算回路中心频率f。 四、实验内容及步骤 图1-1 单调谐回路谐振放大器原理图(一)单调谐回路谐振放大器。 1.实验电路见图1-1 (1)按图1-1所示连接电路(注意接线前先测量+12 V电源电压,无误后,关断电源再接线) (2)接线后仔细检查,确认无误后接通电源。 2.静态测量 实验电路中选Re=1K 测量各静态工作点,计算并填表1.1

表 1.1 实测实测计算根据V CE判断V是否工作 在放大区 原因 V B V E I C V CE 是否 * V B , V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围V i~V O(在谐振点) 选R=10K , Re=1k 。把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压V i, 调节频率f 使其为10.7MH Z, 调节C T使回路谐振,使输出电压幅度为最大。此时调节V i由0.02伏变到0.8伏,逐点记录Vo电压,并填入表1.2 。Vi的各点测量值可根据(各自)实测情况来确定。 表 1.2 V i(v) (峰值)0.02 0.8 V0(v) Re =1KΩRe =500ΩRe =2KΩ (2)用扫频仪调回路谐振曲线。 仍选R=10K, Re=1K。将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当的位置,如30dB),调回路电容C T, 使f 0 = 10 .7 MHz 。 (3)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时的回路谐振频率为f0=10.7MHZ 为中心频率,然后保持输入电压Vi 不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1-3。频率偏离范围可根据(各自)实测情况来确定。 f(MHz) 10.7 V0 R=10KΩR=2KΩR=470Ω

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

低频小信号放大器电路实验

低频小信号放大器电路实验 〈1〉实验目的 1、加深对共射极单级小信号放大器特性的理解。 2、掌握单级小信号放大器的调试方法和特性测量。 3、熟悉示波器等常用电子仪器的使用方法。 〈2〉实验前准备 复习晶体管放大器工作原理,掌握单级放大器基本线路和放大倍数的计算方法。熟悉基本偏置电流大小与晶体管工作状态关系,以及对输出波形的影响。 〈3〉实验原理 1、晶体管单级放大器是组成各放大电路的基本单元,原理图见图1。 2、放大器静态工作点和负载电阻是否恰当将影响放大器的增益和输出波形。所 以当放大器的Vcc及Rc确定后,正确调整静态工作点是很重要的。 3、调节图中的R1可改变放大器的工作点。 4、静态工作点一般测量Ie、Vce和Vbe. 〈4〉实验器材 1、XST电学实验台。 2、示波器、万用表各一只。 3、其他按图选用元器件模块及导线。 〈5〉实验步骤 1、在通用电路板上按图1所示联接电路。 2、检查电路联接无误后,将实验台的Ⅰ组支稳压直流电源电压调至与电路需求 电压相同并接入电路中。 3、调节R1使集电极电流为1.5mA左右。 4、在输入端加入f=1KHz,Vi=10mV的正玄信号。用示波器观察输入与输出波 形。 5、调节R1,当输出波形的正峰或负峰刚要出现削波失真时,切断输入信号,分 别记下Ib和Vce的值。 6、接上信号源,保持输入信号f=1KHz,逐渐增大低频信号发生器输出信号幅度, 调节R1,使放大器输出波形正峰与负峰恰好出现削波失真为止,此时工作点已经调正确。 7、放大倍数测试:当R4=1K时,给f =1KHz,10mV信号电压,用示波器观察V o 的波形。在不失真的条件下,测定R L=∞及R L=5.1K时,电压放大倍数,并记录在表2中。 8、观察集电极负载电阻的改变,对放大器的输出波形的影响: 不接R L逐渐增大输入信号,使输出波形恰好不失真。改变Rc阻值为510Ω和10KΩ观察,对输出波形的影响,并记录在表4中。 〈6〉实验报告

高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器 实验报告 14044012 孙胤邦 14 级电子一班

?输出电压幅值U/mV 1 \ j \ J____ ■ 实验表格及图像 单调谐放大器的电压幅值 输入信号频率f/fHz 5. 4 5. 5 5. 6 5. 7 5. 8 5. 9 6 6. 1 6. 2 6. 3 6. 4 6. 5 6. 6 6. 7 6. 8 6. 9 输出电压幅值 U/m V 1. 6 1. 76 2 2. 16 2. 4 2. 7 3. 12 3. 84 4. 8 6. 32 7. 92 8. 08 7. 52 6. 08 4. 8 3. 84 单调谐放大器幅频特性 输入信号频率 9 8 7 2 1

如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。 输入 信号 频率 f/MHz 4 8 5 5 2 5 4 5 6 5 7 5 8 5 9 6 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 7 1 输出 电压 幅值 U/mV 0 6 1 1 4 2 5 7 4 6 8 5 8 5 4 5 6 6 4 7 2 7 4 6 2 4 4 3 6 2 2 8 1 6 8 1 4 1 1 2 双调谐回路幅频特性 如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。 这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。 双调谐放大器具有良好的选择性、 较宽的通频带。而且由图可以看出双调谐的选 择性明显优于单调谐放大器。 值幅压电岀输 2 3 4 5 输入信号频率 6 7 8 8 7 6 5 4 3 2 1 0

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

低频小信号放大器电路设计毕业论文

摘要 低频小信号放大器电路设计 摘要 实用性低频小信号放大器电路设计,它主要用于使用前置放大器的低频小信号的电压经过集成块LM358的放大使其增益二十几倍,达到信号放大的作用,本文介绍了其基本原理,内容,与低频放大微弱信号放大能力的技术路线,设计电路图方案等。 本系统是基于(IC)LM358设计而成的一种低频小信号放大器,整个电路主要由稳压电源,前置放大电路,波形变换电路3部分。电源主要是为前置放大器提供稳定的直流电源。前置放大器主要是由ML358一级放大电路和ML358二级放大电路组成,第一级可以将电压放大5倍,第二级可以放大1-5倍,总增益20-25倍,接通电源后,信号发生器产生信号,示波器用于变换的波形显示。通过波形的数据变化,计算出增益效果,是否满足设计需求。 该设计的电路结构简单,实用,充分利用了集成功放的优良性能。实验结果表明,前置放大器的带宽,失真,效率等方面具有较好的指标,具有较高的实用性,为小信号放大器的设计是一个广泛的思考。 关键词:低频小信号,电压放大,前置放大级电路,集成块LM358

Abstract Design of low frequencysmall signal amplifier Abstract: The utility of low frequency small signal amplifier circuit design, it is mainly used for voltage low frequency small signal using a pre amplifier after amplification integrated block LM358 has gain 20 times, achieve signal amplification effect, this paper introduces the basic principle, content, and low frequency amplification technology route of weak signal amplification ability, circuit design scheme. The system is based on (IC) a low frequency small signal amplifier LM358 designed, the whole circuit is mainly composed of a regulated power supply, preamplifier circuit, a waveform transform circuit 3 parts. The power supply is mainly to provide a stable DC power for the preamplifier. The preamplifier is mainly composed of ML358 amplifier and ML358 two stage amplifier circuit, the first stage of the voltage can be magnified 5 times, second can be magnified 1-5 times, 20-25 times of the total gain, power, signal generator generates a signal, oscilloscope is used to transform the waveform display. By the waveform data changes, calculated the gain effect, whether meet the design requirements. The design of the circuit structure is simple, practical, make full use of the excellent performance of the integrated amplifier. The experimental results show that, the pre amplifier bandwidth, distortion, has better efficiency indicators, and has higher practicability, designed for small signal amplifier is a broad thinking. Keywords:Lowfrequency smalsignal,voltage amplification,preamplifiercircuit,Integrated block LM358

高频小信号放大器与高频功率放大器的仿真分析

1 课程名称: 高频电路原理 实验名称:高频小信号放大器与高频功率放大器的仿真 一、实验目的: 1.进一步掌握高频小信号调谐放大器和高频功率放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器和高频功率放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim 软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a )所示。该电路由晶体管Q 1、选频回路T 1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S =12MHz 。基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量;

∑C 为调谐回路的总电容,∑C 的表达式为 ie oe C P C P C C 2 221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=-=∑2 22 1212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电 压V i 相位差不是180o 而是为180o+Φfe 。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a )中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = f 0/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20 上式说明,当晶体管选定即y fe 确定,且回路总电容∑C 为定值时,谐振电压放大倍数A V0与通频带BW 的乘积为一常数。这与低频放 大器中的增益带宽积为一常数的概念是相同的。 通频带BW 的测量方法:是通过测量放大器的谐振曲线来求通频带。测量方法可以是扫频法,也可以是逐点法。逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f 0及电压放大倍数A V0然后改变高频信号发生器的频率(保持其输出电压V S 不变),并测出对应的电压放大倍数A V0。由于回路失谐后电压放大倍 数下降,所以放大器的谐振曲线如图1-2所示。

高频小信号调谐放大器设计-要点

《高频电子线路》课程设计说明书高频小信号调谐放大器设计与制作 院、部:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1103班 完成时间:2013年12月16日

摘要 高频小信号调谐放大器是为了对一些幅度比较小的高频信号进行有目的放大,在广播和通信设备中有广泛的应用,通常用于各种发射机的接收端。 本设计围绕高频小信号调谐放大器设计工作进行研究和实现,详细介绍了高频小信号调谐的整体结构,硬件设计,系统方案,单元电路模块和仿真情况的具体实现,介绍了一种利用三极管放大,LC并联谐振选频将特定的信号进行放大和选出相对应频率的信号,达到了设计要求,该设计适用于高频电路发射机的接收端。 关键词高频小信号; LC谐振;放大器;谐振电压放大倍数

ABSTRACT High frequency small signal for some smaller amplitude tuned amplifier is to have a purpose on high frequency signal amplification, widely used in radio and communication equipment. This design around the high frequency small signal tuned amplifier design work for research and implementation, introduces in detail the overall structure of the high frequency small signal tuning, hardware design, system solutions, unit circuit module and the concrete realization of the simulation conditions, the paper introduces a using triode amplifier, LC parallel resonant frequency selective specific signal amplification and to select the corresponding frequency of the signal, meet the design requirements, the design is suitable for hf transmitter circuit at the receiving end. Keywords triode High frequency small signal; LC resonance; Amplifier; Resonant voltage magnification

高频电子线路 杨霓清 答案 第二章-高频小信号放大器

第二章 思考题与习题 2.1 试用矩形系数说明选择性与通频带的关系。 2.2 证明式(2.2.21)。 2.3 在工作点合理的情况下,图(2.2.6)(b )中的三极管能否用不含结电容的小信号等效电 路等效?为什么? 2.4 说明图(2.2.6)(b )中,接入系数1n 、2n 对小信号谐振放大器的性能指标有何影响? 2.5 如若放大器的选频特性是理想的矩形,能否认为放大器能够滤除全部噪声,为什么? 2.6 高频谐振放大器中,造成工作不稳定的主要因素是什么?它有哪些不良影响?为使放 大器稳定工作应采取哪些措施? 2. 7 单级小信号调谐放大器的交流电路如图2. T.1所示。要求谐振频率0f =10.7 MHz , 0.7BW =500kHz ,0||A υ=100。晶体管参数为 ie y =(2+j0.5)ms ; re y =0; fe y =(20-j5)ms ; oe y =(20+j40)ms 如果回路空载品质因数0Q =100,试计算谐振回路的L 、C 、R 。 图2. T.1 题2.8图 解:根据电路图可画出放大器的高频等效电路如下图所示。 其中20oe g s μ=,6 6 4010 0.59210.710 oe C pF π-?= =??,22 20520.6fe y m s = += 根据题设要求 0100fe y A g υ∑ ==

则 3 20.610 0.206100 fe o y g m s A υ-∑?= = = 因为 00.7e f BW Q = 所以 00.7 10.721.40.5 e f Q BW = == 因为 01 e Q Lg ω∑ = 所以 6 3 01 1 210.7100.20610 21.4 e L g Q ωπ-∑= = ????? =63.3710 3.37s s μ-?= 由等效电路可知 2 6 2 6 011 65.65pF (2)(210.710) 3.3710 C f L ππ∑-= = =???? 6 6 00 11 44.142210.710 3.3710 100 eo g s f LQ μππ-= = =????? 则 65.650.5965.06oe C C C pF ∑=-=-= 6 6 6 11 7.0520610 2010 44.1410 oe eo R k g g g ---∑= = =Ω--?-?-? 2.8 在图2. T.2中,晶体管3DG39的直流工作点是C E Q V =+8V ,E Q I =2 mA ;工作频率 0f =10.7MHz ;调谐回路采用中频变压器,3~1L =4μH ,0Q =100,其抽头为=23N 5匝, =13N 20匝, =45N 5匝。试计算放大器的下列各值:电压增益、功率增益、通频带(设放 大器和前级匹配s g =ie g )。晶体管3DG39在C E Q V =8V ,E Q I =2mA 时参数如下: ie g =2860 μS ;ie C =18 pF oe g =200μS ; oe C =7pF

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

低频小信号放大器的设计

1. 设计任务及要求 1.1 设计任务: 运用放大器原理等知识,设计一个低频小信号放大器。 1.2 设计要求: 1)放大倍数≥1000(60db); 2)共模抑制比K CMR ≥60db; 3)输入阻抗R i ≥10M; 4)频带范围0~100HZ; 5)信噪比SNR≥40db; 2. 方案设计 2.1.1同相放大电路 输入电压u i接至同相输入端,输出电压u o通过电阻R F仍接到反相输入端。 R 2的阻值应为R 2 =R 1 //R F . 根据虚短和虚断的特点,可知I - =I + =0, 则有 o F u R R R u? + = - 1 1 且 u - =u + =u i ,可得: i o F u u R R R = ? + 1 1 1 F i o uf R R 1 u u A+ = = 同相比例运算电路输入电阻为:∞ = = i i if i u R 输出电阻: R of =0 因此选择同相放大电路满足输入阻抗足够大 2.1.2 差分放大电路 差动输入比例运算(即减法运算) 在差动放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这是有用的信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放大倍数。如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化而产生的信号,是一种有害的东西),我们把这种信号叫做共模信号,这时的放大倍数叫做共模放大倍数。 由差模放大倍数和共模放大倍数可求差模增益A vd 和共模增益A cd ,共模抑制 比K CMR =20log(A vd /A cd ) 2.1.3 仪表放大器

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

高频电子线路实验报告高频小信号调谐放大器

太原理工大学现代科技学院高频电子线路课程实验报告 专业班级测控1001班 学号 姓名 指导教师

实验一高频小信号调谐放大器 一、实验目的 小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。学会小信号调谐放大器的设计方法。 二、实验仪器 1.BT-3(G)型频率特性测试仪(选项)一台 2.20MHz模拟示波器一台 3.数字万用表一块 4.调试工具一套 三、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1 小信号调谐放大器 该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:

输入导纳(1-1) 输出导纳(1-2) 正向传输导纳(1-3) 反向传输导纳(1-4) 图1-2 放大器的高频等效回路 式中,gm——晶体管的跨导,与发射极电流的关系为 (1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关 其关系为(1-6) rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法; Cb’e——发射结电容,一般为几十皮法至几百皮法。 由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为: 如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工

相关文档
最新文档