脉冲式磁控溅射5

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

磁控溅射高频脉冲(A-2K)电源的研制1

中南民族大学 硕士学位论文 磁控溅射高频脉冲(A<'2>K)电源的研制 姓名:刘亚东 申请学位级别:硕士 专业:等离子体物理 指导教师:孙奉娄 20080501

摘要 根据调研和文献,对不同的溅射技术进行了比较,针对脉冲磁控溅射(Pulse Megnetron Sputtering(PMS))的特点及受限于电源技术的瓶颈,提出了A2K(Active Arc Killer)电源指标:输出频率最高达300kHz,负向电压在0~-500V可调,负向最大峰值电流达2A,正向电压在0~100V可调,正向最大峰值电流达1A,负向占空比10%~60%范围可调的双向脉冲电源。 为了实现电源指标,分析了拟设计电源的难点:主要是受电力电子器件的限制,电压、电流和频率同时达到所需水平的电力电子器件目前在国内无法找到,即使找到了成本也是相当高。因此,本文从结构上入手,提出了整体的电源解决方案,它由两个独立的DC/DC变换(分别用于调节正、负向电压)、一个斩波系统(用于形成正向脉冲)和一个逆变倍频系统(用于形成负向脉冲)构成。逆变倍频系统及其与斩波系统的配合是核心问题,方案在一定程度上突破了电力电子器件的限制,为溅射电源设计提供了新的方案。 根据总体方案,详细论述了主电路的拓扑选择、功率器件的选择、磁性器件的设计、缓冲电路的选择、控制电路和驱动电路的设计。在比较了各种拓扑优缺点之后,根据电源指标要求,选择了全桥电路作为负向调压系统的DC/DC变换拓扑,正激电路作为正向调压系统的DC/DC变换拓扑,逆变倍频系统也采用全桥逆变,副边采用可控整流。由于对频率有较高要求,功率开关管全部采用功率MOSFET。讨论了中高频下Miller效应对功率开关管驱动的影响及其解决方案,还讨论了缓冲电路的作用及参数选择。 本文还从工程经验上详细描述了电源调试中出现的问题和如何解决这些问题的详细过程。通过示波器检测驱动信号实时波形,验证了Miller效应的影响。通过检测负载电压和电流波形、电源在功能上达到了设计指标。 实际用于磁控溅射实验,与RF、DC溅射进行比较,验证了脉冲溅射的优势和电源的实用性,此电源可作为实验室磁控溅射试验电源。 关键词:脉冲磁控溅射;高频脉冲电源;逆变倍频;Miller效应

磁控溅射法沉积TCO薄膜的电源技术

磁控溅射法沉积TCO薄膜的电源技术1前言 透明导电氧化物薄膜(TCO薄膜)有着广泛的用途,如作为LCD、OLED显示器面板的电极,作为触摸屏的感应电极,作为薄膜太阳能电池的电极以及作为LED芯片前电极等[1]。 目前,主要的TCO薄膜有氧化铟锡(ITO)、氧化锡(SnO2)、氧化锌铝(AZO)三种[2],其中SnO2薄膜是最早应用的TCO薄膜,但由于其光电特性相对较差,目前主要应用在一些较低端的使用领域。ITO薄膜是目前光电特性最好,使用范围最广的TCO薄膜,但其同时存在使用稀有元素In,生产成本较高、In元素有毒、在氢等离子工艺氛围中性能退化等缺点。近年来,成本低、性能优良、无毒害的ZnO:Al(AZO)薄膜[3]得到了广泛的关注与研究,有希望替代ITO薄膜。 因此,ITO与AZO材料是当前研究和生产的最主要的TCO材料。 目前,产业界制备ITO、AZO薄膜主要是采用磁控溅射镀膜技术[4][5]。磁控溅射技术基于等离子技术,通常是在存在高电势差的靶(阴极)与阳极之间注入气体(一般为Ar气),通过等离子辉光放电实现对气体原子的离化,电场与磁场对离子加速和变向,进而轰击靶材表面,导致靶材原子被轰击到空间中,溅射在一块衬底材料上聚集形成薄膜[6]。 对于磁控溅射装置,磁控溅射电源决定了磁控溅射工艺过程等离子体状态,对镀膜工艺和膜层生长质量起着至关重要的作用[7]。随着生产和科技不断发展,用户对产品质量性能的要求越来越高。所以要求磁控溅射镀膜设备具有良好的可靠性、稳定性,有较高的镀膜效率和镀膜质量。 本文将主要描述磁控溅射ITO、AZO两大主要TCO薄膜的核心电源技术的发展现状、最新进展以及未来面临的挑战。 2磁控溅射TCO薄膜的电源技术发展概述 2.1磁控溅射直流电源 磁控溅射电源类型有直流电源、中频电源和射频电源。其中中频电源与射频电源成本较高,且沉积速率偏慢,尤其是射频电源沉积速率慢且由于驻波效应等,不适宜进行大面积镀膜,因此在制备大面积TCO薄膜技术领域应用较少。 TCO薄膜制备以直流磁控溅射技术为主。直流磁控电源简单可靠、工作稳定、功率大、沉积速率快。直流电源主要有恒流、恒压、恒功率等控制模式以恒流磁控溅射直流电源系统为例,其基本原理如图1所示。电路由主电路部分和控制部分组成。电网输入单相交流电,通过工频整流,电感电容整流后为直流电。功率电子器件在控制电路的控制下将直流转换为脉冲交流电。经高频变压器,将交流脉冲升压。然后通过二极管整流和电感滤波输出直流。控制部分由PWM控制、IGBT驱动、恒流控制、过流保护等部分组成。

脉冲

-1- 磁控溅射技术广泛应用于薄膜制备领域,可以制备工业上所需要的超硬薄膜、耐腐蚀耐摩擦薄膜、超导薄膜、磁性薄膜、光学薄膜,以及各种具有特殊电学性能的薄膜等[1~3]。但传统的磁控溅射处理技术有很多的局限性,例如,直流磁控溅射靶功率密度受靶热负荷的限制,即当溅射电流较大时,过多的阳离子对靶进行轰击使溅射靶过热而烧损。所以,传统的直流磁控溅射的溅射电流不能太大,一般在0.3~1A左右,溅射靶功率密度在50W/cm2。 近年来国外发展起来了一种高速率溅射—高功率脉冲磁控溅射(high power impulse magnetron sputtering(HIPIMS))技术,大大弱化了这种限制。高功率脉冲磁控溅射的峰值功率是普通磁控溅射的100倍,约为1000~3000W/cm2,溅射材料离化率极高,且这个高度离子化的束流不含大颗粒。对于大型磁控靶,更是可以产生兆瓦级溅射功率。由于脉冲作用时间在几百微秒以内,故平均功率与普通磁控溅射相当,这样就不会增加对磁控靶冷却的要求。一般溅射材料能级只有5~10电子伏特,而高功率脉冲磁控溅射材料能级最大可达100电子伏特。高功率脉冲磁控溅射的瞬时功率虽然很高,但其平均功率并不高,一般在600W左右。为了进一步提高脉冲磁控溅射的溅射速率,可以采用两步脉冲,第一步脉冲的功率密度与普通脉冲溅射相当,第二步则达1000~3000W/cm2。但是,高功率脉冲磁控溅射存在打弧现象和脉冲起辉延迟。为解决这些问题,近几年又发展了高功率复合脉冲磁控溅射技术,这种技术是将直流磁控溅射和高功率脉冲磁控溅射叠加起来。其中的直流磁控溅射部分有两个作用:第一、离子预离化,使脉冲到来时脉冲起辉容易,缩短脉冲起辉延迟时间;第二、提够一个持续的直流溅射功率,提高了磁控溅射的平均功率。所以,高功率复合脉冲磁控溅射同时具有直流磁控溅射和脉冲磁控溅射的优点。现在,高功率脉冲磁控溅射技术已成为全世界磁控溅射领域的研究前沿和研究热点,高功率复合脉冲磁控溅射更是倍受关注。 国外关于高功率复合脉冲磁控溅射的研究和文献还较少,对其溅射机理、溅射规律和工艺优化都有待于更深入地研究,国内还没有这方面的研究报道。为了促进高功率复合脉冲磁控溅射技术的发展,本文研制了一台用于该技术的高功率电源,将有助于了解复合脉冲作用下等离子行为,为高功率复合脉冲磁控溅射技术提供理论依据。 1.2磁控溅射 1852年Grove首次描述了溅射这种物理现象,20世纪40年代溅射技术作为一种

双脉冲高功率磁控溅射放电特性及CrN薄膜沉积研究

哈尔滨工业大学工学硕士学位论文 目录 摘要 ................................................................................................................................... I Abstract ........................................................................................................................... I I 第1章绪论 .. (1) 1.1 课题背景 (1) 1.2 磁控溅射技术 (1) 1.2.1 磁控溅射原理 (2) 1.2.2 高功率磁控溅射技术 (3) 1.3 双脉冲磁控溅射技术的提出 (14) 1.4 本文主要研究内容 (15) 第2章试验材料材料及方法 (16) 2.1 试验材料制备及试验设备 (16) 2.1.1 实验材料 (16) 2.1.2 试样制备 (16) 2.1.3实验设备 (16) 2.2 试验方法 (17) 2.2.1 双脉冲高功率放电特性及光谱试验 (17) 2.2.2 CrN薄膜的制备 (20) 2.2.3 分析测试方法 (21) 第3章双脉冲高功率放电特性的研究 (22) 3.1 双脉冲高功率与单脉冲高功率放电特性的对比 (22) 3.2 引燃脉冲电压对双脉冲高功率放电特性的影响 (24) 3.3 引燃脉冲脉宽对双脉冲高功率放电特性的影响 (27) 3.4 工作脉冲电压对双脉冲高功率放电特性的影响 (30) 3.5 工作脉冲脉宽对双脉冲高功率放电特性的影响 (33) 3.6 气压对双脉冲高功率放电特性的影响 (36) 3.7 本章小结 (39) 第4章双脉冲高功率光谱特性的研究 (41) 4.1 双脉冲高功率与传统高功率光谱特性的对比 (41) 4.2 引燃脉冲电压对双脉冲高功率光谱特性的影响 (44) 4.3 引燃脉冲脉宽对双脉冲高功率光谱特性的影响 (45) -IV-

磁控溅射问题及解决

磁控溅射镀膜工艺六大常见问题点及改善对策: 1.膜层灰暗及发黑 (1)真空度低于0.67Pa。应将真空度提高到0.13-0.4Pa。 (2)氩气纯度低于99.9%。应换用纯度为99.99%的氩气。 (3)充气系统漏气。应检查充气系统,排除漏气现象。 (4)底漆未充分固化。应适当延长底漆的固化时间。 (5)镀件放气量太大。应进行干燥和封孔处理 2.膜层表面光泽暗淡 (1)底漆固化不良或变质。应适当延长底漆的固化时间或更换底漆。 (2)溅射时间太长。应适当缩短。 (3)溅射成膜速度太快。应适当降低溅射电流或电压 3.膜层色泽不均 (1)底漆喷涂得不均匀。应改进底漆的施涂方法。 (2)膜层太薄。应适当提高溅射速度或延长溅射时间。 (3)夹具设计不合理。应改进夹具设计。 (4)镀件的几何形状太复杂。应适当提高镀件的旋转速度 4.膜层发皱、龟裂 (1)底漆喷涂得太厚。应控制在7—lOtan厚度范围内。 (2)涂料的粘度太高。应适当降低。 (3)蒸发速度太快。应适当减慢。 (4)膜层太厚。应适当缩短溅射时间。 (5)镀件温度太高。应适当缩短对镀件的加温时间 5.膜层表面有水迹、指纹及灰粒 (1)镀件清洗后未充分干燥。应加强镀前处理。

(2)镀件表面溅上水珠或唾液。应加强文明生产,操作者应带口罩。 (3)涂底漆后手接触过镀件,表面留下指纹。应严禁用手接触镀件表面。 (4)涂料中有颗粒物。应过滤涂料或更换涂料。 (5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。应更换除尘器,并保持工作环境的清洁 6.膜层附着力不良 (1)镀件除油脱脂不彻底。应加强镀前处理。 (2)真空室内不清洁。应清洗真空室。值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。 (3)夹具不清洁。应清洗夹具。 (4)底涂料选用不当。应更换涂料。 (5)溅射工艺条件控制不当。应改进溅射镀工艺条件

磁控溅射技术研究进展

磁控溅射技术研究进展 薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。 1 磁控溅射技术原理 溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。图1所示为平面圆形靶磁控溅射原理。 磁控溅射技术得以广泛的应用是由该技术的特点所决定的。可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。随着磁控溅射技术的发展,发展起了反应磁控

脉冲磁控溅射沉积微晶硅薄膜工艺研究梁凤敏

脉冲磁控溅射沉积微晶硅薄膜工艺研究* 梁凤敏,周灵平,彭 坤,朱家俊,李德意 (湖南大学材料科学与工程学院,长沙410082 )摘要 采用脉冲磁控溅射法制备氢化微晶硅薄膜,利用X射线衍射、拉曼光谱、扫描电子显微镜和四探针测试仪对薄膜结构和电学性能进行表征和测试,研究了衬底温度、氢气稀释浓度和溅射功率对硅薄膜结构和性能的影响。结果表明:在一定范围内,通过控制合适的衬底温度、增大氢气稀释浓度及提高溅射功率,可以制备高质量的微晶硅薄膜。在衬底温度为400℃、氢气稀释浓度为90%及溅射功率为180W的条件下制备的微晶硅薄膜,其晶化率为72.2%,沉积速率为0.48nm/s 。关键词 脉冲磁控溅射 微晶硅薄膜 结晶性能 沉积速率中图分类号:TK514;TB321 文献标识码:A Study on Pulsed Magnetron Sputtering Process for Preparing  MicrocrystallineSilicon Thin  FilmsLIANG Fengmin,ZHOU Lingping ,PENG Kun,ZHU Jiajun,LI Deyi(College of Materials Science and Engineering,Hunan University,Chang sha 410082)Abstract Hydrogenated microcrystalline silicon(μc-Si∶H)thin films were prepared by pulsed magnetronsputtering.XRD,Raman sp ectrum,SEM and four-point probe were employed to characterize the structure and elec-tric properties of the films,and the influences of substrate temperature,hydrogen concentration and sputtering poweron the structure and electric properties of silicon thin films were investigated.The results show that within a certainrange,high quality microcrystalline silicon thin film can be deposited by controlling substrate temperature,increasinghydrogen concentration and sputtering power.By  adopting the optimal process condition with substrate temperature400℃,hydrogen concentration 90%and sputtering power 180W,microcrystalline silicon thin film with crystallinevolume fraction up  to 72.2%can be prepared,and the deposition rate is 0.48nm/s.Key  words pulsed magnetron sputtering,microcrystalline silicon thin film,crystallinity,deposition rate *湖南科技计划项目( 2011GK4050) 梁凤敏: 女,1987年生,硕士生,主要从事微晶硅薄膜材料方面的研究 E-mail:870208lfmab@163.com 周灵平:通讯作者,男,1964年生,教授,主要从事薄膜制备及电子封装材料方面的研究 E-mail:lp zhou@hnu.edu.cn 硅薄膜作为薄膜太阳能电池的核心材料越来越引起人们的重视,非晶硅薄膜太阳能电池由于存在转换效率低和由 S-W效应引起的效率衰退等问题[1] , 其推广应用受到了限制。微晶硅薄膜具有较高电导率、较高载流子迁移率的电学 性质及优良的光学稳定性,可以克服非晶硅薄膜的不足,已经成为光伏领域的研究热点 [2-5] 。硅薄膜的结晶性能是制备 高质量微晶硅薄膜的重要参考指标,直接影响硅薄膜太阳能电池的转化效率和稳定性。目前微晶硅薄膜的制备方法主要有等离子体增强化学气相沉积法、热丝化学气相沉积法和磁控溅射法,相比于化学气相沉积法,采用磁控溅射法沉积硅薄膜不需要使用SiH4等有毒气体及相应的尾气处理装置, 有利于降低设备成本,且工艺参数容易控制,逐渐成为制备硅薄膜的重要方法。 Jung  M J等[6] 研究发现磁控溅射制备硅薄膜过程中,对 衬底施加偏压有利于薄膜晶化,但施加偏压需要在绝缘衬底上镀上导电层,有可能引起金属离子扩散到薄膜中。Tabata A等[7] 的研究结果表明, 只有控制合适的靶偏压才能制备结晶良好的硅薄膜,只要偏压发生较小的波动就会对薄膜的结晶性能产生明显影响。尽管研究者已采用磁控溅射法制备出微晶硅薄膜,但其研究还处于摸索阶段,对于制备工艺缺乏系统研究,薄膜晶化率与沉积速率难以兼顾,因此,研究在较高沉积速率下获得高晶化率硅薄膜的制备方法对硅基薄膜太阳能电池的应用具有重要推动作用。 本研究在较高沉积速率下制备了结晶性能良好的微晶硅薄膜,考察了衬底温度、氢气稀释浓度和溅射功率对硅薄膜结晶性能的影响。 1 实验 利用MIS800型多功能离子束磁控溅射复合镀膜设备沉 积微晶硅薄膜。本底真空为10-5  Pa数量级,靶材采用纯度为99.999%的多晶硅靶,工作气体为氢气和氩气的混合气体,其中氢气稀释浓度为70%~90%, 溅射功率为60~· 74·脉冲磁控溅射沉积微晶硅薄膜工艺研究/梁凤敏等

JGP磁控溅射仪操作步骤

JGP –650型双室超高真空多功能磁控溅射系统操作步骤 一、开机前的准备工作: 1、开动水阀,接通冷水,检查水压是否足够大,水压控制器是否起作用,保证水路畅通。 2、检查总供电电源配线是否完好,地线是否接好,所有仪表电源开关是否处于关闭状态。 3、检查分子泵、机械泵油是否到标注线。 4、检查系统所有的阀门是否全部处于关闭状态,确定磁控溅射室完全处在抽真空前封闭状态。 二、换样品过程: 1、先打开真空显示仪,检查溅射室是否处于真空状态,若处于真空状态,首先要放气,室内的大气压与外界的大气压平衡,打开溅射室内的照明灯,看看机械手是否放在靶档板下面,定位锁是否已经抽出时(拔起),才能决定把屏蔽罩升起。 2、按动进步电机升开关,让屏蔽罩缓缓升起,到合适位置为止,当屏蔽罩升到最高位置时,进步电机升开关将不起作用。 3、换样品(靶材)时:松动螺丝,用清洗干净的镊子小心取出靶材,把靶材放到干净的容器内,以防污染;用纱布沾高纯酒精把溅射室清洗干净;放靶材时,一定要让靶材和靶面接触(即靶材必须是一平面,不平者勿用),把靶材放在中心(与靶的边界相距2-3mm.一定要用万用表来测量靶材(正极与靶外壁(负极)要断开,否则将要烧坏;然后把基片放在上面的样品架上(松动螺丝,把基片放在样品架上,然后上紧螺丝)。把样品架卡在转盘上。 4、按动进步电机降开关,让屏蔽罩缓缓下降,当下降到接近溅射室时,一定要把定位仪贴在屏蔽罩壁上,可以用左手按进步电机降开关,右手推动屏蔽罩使其安全降下来,注意千万不要使溅射室上真空圈损坏,一旦真空圈损坏,整个溅射室就无法抽真空,仪器不能正常工作。 三、抽真空过程 1、换好样品后,磁控溅射室、进样室、和分子泵都处于大气状态,插板阀G2

(整理)高功率脉冲电源

高功率脉冲电源 学院(系):电气工程学院班级:1113班 学生姓名:高玲 学号:21113043 大连理工大学 Dalian University of Technology

1分类及结构原理 高功率脉冲最早始于30年代,随着用电容器放电产生X射线的出现,经过了几十年的发展,目前高功率脉冲电源应用范围非常广泛,例如用于闪光X射线照相、高功率激光、大功率微波、电磁脉冲、电磁发射(或推进)、粒子束武器和电磁成形等离子体物理与受控核聚变研究、核爆炸模拟等方面。‘ 如图1所示。高功率脉冲电源包括初级能源、中间储能脉冲成形系统及转换系统等几个部分。 图1. 高功率脉冲电源组成框图 脉冲功率的形成过程是:首先经过慢储能,使初级能源具有足够的能量;其次,向中间储能和脉冲形成系统注入能量;再次,能量经过储存、压缩、形成脉冲或转化,等复杂过程之后,最后快速释放给负载。 (1)初级能源为小功率的能量输入设备,如电容器的充电机、电感线圈的励磁电源、飞轮电机的拖动电机,其能源来在电网。 (2)中间储能设备有以电容器和Marx发生器为例的电场储能,以常温或超导电感线圈为例的磁场储能,以各类具有转动惯量的脉冲发电机为主的机械储能,以蓄电池、磁流体发电机、爆炸磁通压缩发生器为代表的化学储能,以及以核能磁流体发电机为例的核能初级能源,等等。 (3)能量转换与释放系统主要包括各种大容量闭合开关和断路开关及各种波形调节技术设备。 脉冲功率装置初级能源的储能方式主要包括:以电场形式储能的电容器、以磁场方式储能的电感器、机械能发电机、化学能装置以及核能等。如表1所示。 (1)电容储能简单、技术成熟,因此它的应用最为广泛,如惯性约束、强激光、粒子束武器、大功率微波等。世界上一些著名的脉冲功率装置都采用电容储能放电回路,如美国的PBFA.II等。 (2)电感储能最大的优点是储能密度大,所以倍受研究者的关注。电感储能技术在诸如受控等离子体物理、受控核聚变、电磁推进等现代科学技术领域中,都有着极为重要的应用。 (3)机械储能具有储能密度高、结构紧凑、易做成移动式,且提取十分方便等优点,因此也得到了广泛的应用。目前,其主要的应用领域有:近代同步加速器、托卡马克热核装置、等离子体。箍缩、大型风洞装置、大截面金属对头焊接等。

射频磁控溅射详细操作流程与真空系统

磁控溅射操作流程 1、开循环水(总阀、分子泵),放气(两个小金属片打开;旁抽阀;V6)放完气后关闭; 2、开总电源,开腔装样品,开机械泵,抽到10pa以下; 3、开电磁阀,抽到10pa以下,开分子泵(按下绿色start按钮,分子泵加速,显示为400) 时,关旁抽阀,再打开高阀;开溅射室烘烤,将电压调节至75V,烘烤时间为1h; 4、抽到1·10-4pa后,抽管道(缓慢打开V1截止阀,V2阀);打开质量流量计电源,待示 数稳定后,将阀开关拨至“阀控”位置,再将设定旋钮向右调节至最大,待示数变为“0” 时,将阀门开关拨至“关闭”,同时将设定旋钮设定为0; 5、开气瓶(一定要确定阀开关处于“关闭”位置,调节分压阀数值约为0.1mp;待质量流 量计示数稳定后,将阀开关拨至“阀控”位置,调节到所需设定值,如20sccm; 6、开A靶、水冷盘、其他靶的循环水; 7、慢慢讲高阀回调,调节气压至1~3pa,起辉(开总控制电源、A靶射频电源、A靶),调 节功率至60w,(A靶处的tune、load先处于WN状态,要进行调节时,应调节至Auto),调节tune为50%,Load值为10%~20之间(调节后需调回WN状态);再按R.F起辉; 8、将高阀门调至最外,待气压稳定之后预溅射15分钟,在此期间要对齿轮挡板进行定位(先 将小刚圈上提右转放下,然后向外旋转“马达”旁边的齿轮,直到听到“啪”的一声,最后左转上提小刚圈); 9、打开电脑后面右边的三个电源开关,开电脑; 10、实验。调节好实验所需压强、功率、气体等,设置“样品位置”,“样品编号”,“挡板位 置”(样品位置以A靶为标准,样品编号即为此时位于A靶上方样品的编号,挡靶位置在装挡板时就已位于B靶处,所以挡板默认为B靶所在位置,所有参数、位置设定好后即可开始镀膜; 11、每次镀膜完,要对其参数进行设定—应用—运行,待齿轮旋转不动时,用机械手推动挡 板至B靶所在位置(上中下三孔对齐),—确定—两个360°—样品放在E靶—挡板放在B靶—开始。 12、镀膜结束。先关闭电脑,然后关闭R.F,将功率调节至0,依次关闭三个电源(最后关 总溅射电源),关闭气瓶总阀,调节气体质量流量计至最大,待其示数变小为零;关闭分压阀,待流量计示数变为零,关闭质量流量计,依次关闭V2、V1阀,随后关闭高阀,按分子泵Stop键,待其示数降为零,再关闭分子泵电源; 13、依次关闭电磁阀、溅射室机械泵、设备总电源,关闭所有循环水。

关于磁控溅射基础知识

磁控溅射 目前最重要的工业化 大面积真空镀膜技术 之一 其历史发展如下图所 示: 发展的驱动力分为以下几点: 1.降低工艺成本 关注靶材利用率,沉积速率,薄膜均匀性,溅射过程稳定性; 2.解决工艺难题和满足进一步提高薄膜性能的工艺参数优化 由于低能离子轰击在薄膜沉积中的重要作用,主要要求增加溅射原子离化率,能独立控制/调节微观等离子体工艺参数等,以满足实际镀膜中的多种需求。 其中的 HIPIMS 高功率脉冲磁控溅射high power impulse magnetron sputtering; MFMS 中频磁控溅射middle frequency magnetron sputtering; CFUBMS闭合场非平衡磁控溅射closed field unbalanced magnetron sputtering; UBMS 非平衡磁控溅射unbalanced magnetron sputtering; IBAMS 离子束辅助磁控溅射ion beam aiding magnetron sputtering; HCM 空心阴极磁控溅射hollow cathode sputtering; ICPMS 感应耦合等离子磁控溅射inductively couple plasma magnetron sputtering; 一,磁控溅射工艺原理 相对于其他的制备工艺(CVD,PLD,Spray pyrolysis等),磁控溅射是目前制备薄膜最常用的方法之一。其主要优点如下: 1.较低的制备温度(可室温沉积); 2.较高的成膜质量,与衬底附着力好; 3.可控性好,具有较高的沉积速率; 4.可溅射沉积具有不同蒸汽压的合金与化合物; 5.成本较低,重复性好,可实现规模化大面积生产。 按照构造的不同,磁控溅射靶可以分为圆柱靶和平面靶;

高功率脉冲磁控溅射技术的特点及其研究

高功率脉冲磁控溅射技术的特点及其研究班级:机械工程学院材料1301班学号:0335******* 作者:程乾坤摘要:本论文主要介绍高功率脉冲磁控溅射技术的主要特点以及目前的研究状况和未来的发展方向。简介该技术到目前为止世界范围内的进展和发展历程,作者对该技术到目前为止的发展分析以及对该技术所作的一些想法。 关键词:高功率磁控脉冲、离化率、薄膜性能 一、高功率脉冲磁控溅射技术的介绍 磁控溅射(HIPIMS)是在溅射的基础上,运用靶板材料自身的电场与磁场的相互电磁交互作用,在靶板附近添加磁场,使得二次电离出更多的离子,增加溅射效率。这种技术应用于材料镀膜。其中高功率脉冲磁控溅射(high-power impulse magnetron sputtering (HiPIMS) 或 high-power pulsed magnetron sputtering (HPPMS))近来使用较为普遍。磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。高功率磁控溅射是著名已故俄罗斯科学家Vladimir Kouzentsov开发并且拥有专利的一种脉冲物理气象沉积(PVD)的方法。它的主要特点是离化率高,堆积致密,镀膜性能好。高功率,顾名思义,是用非常高的电压产生的脉冲撞击靶材表面而使得靶材离化率大幅增加的技术,但是发射高功率脉冲是对电极的一个考验,所以,这种高功率的发射不是连续的,而是在电极的可承受范围内断续而高频的发射,这种方法既增加了靶材的离化率,又相对延长了电极的使用寿命。由于击中基体的带正电荷的粒子能量和方向均受到施加于基体的负电压(偏压)的有利影响,因此,高的靶材金属离化率相对于传统方法,使涂层结构和特点上得到了改进。1 二、截止目前的发展及研究 1999年,瑞典的V,Kouznetsov及其团队[1]首次采用高功率磁控脉冲作为磁控溅射的供电模式,提出了HPPMS的方法,并沉积了Cu薄膜,相对于普通的直流溅射,HPPMS获得高的CU离化率,膜层高致密度,高的靶材利用率,均匀的厚度[2]。这时有很多做磁控溅射研究的学者开始关注这一研究方向,并且在试验中将这种设备逐渐完善。其中主要包括改进磁控放电的稳定性和改变脉冲结构增加沉积率两个方面。高功率脉冲磁控溅射技术(HPPMS)由于能够产生较高的离化率而受到人们的重视。为了提高离化率/沉积速率协同效应,基于直流和脉冲耦合叠加技术我们研制了高功率密度复合脉冲磁控溅射电源,并对高功率复合 脉冲磁控溅射放电特性进行研究。结果表明脉冲峰值电流随脉冲电压的增加而增加,但随着脉冲宽度的增加而减小。在高功率脉冲期间工件上获得的电流可以增加一个数量级以上,表明磁控离化率得到显著增强。[3]此外,国内的一些学者研究出了复合高功率脉冲磁控溅射,

磁控溅射操作流程及注意事项

磁控溅射操作流程及注意事项 一、打开冷却水箱电源()注:水箱电源是设备的总电源。,水压控制器是否起作 用。0.1MPa)检查水压是否足够大(二、放气 2.1 确认磁控溅射室内部温度已经冷却到室温; 2.2 检查所有阀门是否全部处于关闭状态; 2.3 磁控溅射室的放气阀是V2,放气时旋钮缓慢打开,这可以保证进入气流不会太大; 2.4 放气完毕将气阀关紧。 三、装卸试样与靶材 3.1 打开B柜总电源(在B9面板上),电源三相指示灯全亮为正常。 3.2 提升或降落(B4“升”或“降“)样品台要注意点动操作,不要连续操作。 3.3 装卸试样与靶材要戴一次性薄膜手套,避免油污、灰尘等污染。 3.4 磁控靶屏蔽罩与阴极间距为2-3毫米,屏蔽罩与阴极应该为断路状态。 3.5 装载试样要注意试验所用样品座位置与档板上溅射孔的对应,并记录样品座的编号及目前所对应的靶位。 3.6 降落样品台时要注意样品台与溅射室的吻合,并用工业酒精擦洗干净样品台与溅射室的配合面。 四、抽真空 4.1 确认D面板“热电偶测量选择”指示“Ⅰ”时; 4.2 确认闸板阀G2、G4已经关闭; 4.3 打开B4上“机械泵Ⅰ”,再打开气阀V1,开始抽低真空。 4.4 打开B3面板的电源开关,同时关闭“复合”键。可以从B3-1处观察低真空度。(低真空测量下限为0.1Pa)。当真空度小于5Pa可以开始抽高真空。 4.5 关闭气阀V1,打开B4上“电磁阀Ⅰ”(确认听到响声表示电磁阀已开) 4.6 打开B8面板的磁控室分子泵电源,按下“START”键,按下FUNC/DA TA键,数字开始逐步上升,等大于H100.0后打开闸板阀G1,随后分子泵速上升并稳定到H400.0。 4.7 磁控室的高真空度在B2面板显示,不要一直开着高真空的测量,也不要频繁开关, 通常每隔1-2小时可打开观察一次,等示数稳定后再关闭(一般不超过3分钟)。 五、充气 5.1确认高真空度达到了-4、-5的数量级,在充气之前必须关闭高真空计; 5.2 打开A1面板上MFC电源,预热3分钟; 5.3 稍关闭闸板阀G1到一定程度,但不要完全关紧 5.4 打开V4、V6(若是二路进气,V5应和V6同时打开)阀门 5.5 将控制阀扳到“阀控“位置 5.6 打开气瓶阀门,稍旋紧减压阀至压力示数为0.1MPa即可; 5.7 调节MFC阀控的设定(一般在30左右),再进一步关紧闸板阀使得低真空(B3-1)读数接近所需的溅射压强,然后通过微调MFC阀控得到所需的溅射压强。

高功率脉冲磁控溅射电源的研制_王洪国

高功率脉冲磁控溅射电源的研制 王洪国 陈庆川* 韩大凯 尹 星 许泽金 沈丽茹 金凡亚 (核工业西南物理研究院 成都 610041) Novel Type of Power Supply for High -Power Pulsed Magnetron Spu ttering Wang Hangguo,Chen Qingchuan *,Han Dakai,Yin Xing,Xu Zejin,Shen Liru,Jin Fanya (Southweste rn Institute o f Ph ysics ,Chen gdu 610054,China) Abstract A novel type of power supply was developed for the high -po wer pulsed magnetron sputtering reactor (HPP MS).The newly -developed power supply is capable of generating high pulsed voltage and large current,making it possible to realize high ionization rate of the reactor.The dedicated power supply c onsists of two major parts:one is the charging po wer supply,and the other is a chopping circuit.The influence of the large current on the overshoot voltage of the insulated gate bipolar transistor was evaluated.We found that the overshoot voltage can be effectively reduced with the RCD absorbing and free wheeling circuit.The Ti films were deposited with the lab -built power supply.The results sho w that the fairly reliable po wer supply works well in depositing the high quality,smooth,compact and uniform Ti films. Keywords HPPMS,Po wer supply,Plamsa discharge,Ti films 摘要 高功率脉冲磁控溅射(HPPMS)因其高离化率而得到广泛关注。高压大电流脉冲电源是实现该技术的重要环节之 一。本论文介绍了一种HPPMS 电源,该电源由充电电源、斩波输出两部分组成,给出了主电路框图。分析了大电流对斩波开关过电压的影响,采用RC 吸收和续流有效地抑制了电压过冲,用所研制的电源进行HPPMS 镀膜试验,结果表明电源运行稳定可靠,制备的薄膜表面清洁、致密,其平均表面粗糙度很低。可以预见HPPMS 技术将会促进镀膜技术的发展。 关键词 高功率脉冲磁控溅射 电源 等离子体放电 Ti 膜 中图分类号:TN86 文献标识码:A doi:10.3969/j.issn.1672-7126.2013.02.14 磁控溅射技术广泛用于薄膜制备领域,可以制备工业上所需的超硬薄膜、耐腐蚀、耐磨擦薄膜、超导薄膜、磁性薄膜、光学薄膜以及各种具有特殊性能的膜。但传统的磁控溅射技术溅射金属大多以原子态存在,金属离化率低,可控性差,沉积薄膜的质量和性能较难优化。近年来发展的高功率磁控溅射技术,它的峰值功率可以比普通磁控溅射高两个数量级,金属离子离化率可达70%以上,某种程度上,高功率脉冲磁控溅射(HPP MS)集中了传统溅射和电弧的优点,与现存的提高离化率的手段相比,不需要新装置,只需在原有的系统上增加一台脉冲电源[1-2] 。 目前,HPPMS 电源的研制尚处于起步阶段,为 此作者研制了峰值功率达300kW 的HPP MS 电源,采用绝缘栅双极型晶体管(IGB T)逆变技术、IGB T 斩波技术、具有高峰值功率、高效率、小型化等特点。 并用所研制的电源进行HPPMS 镀膜试验,显示了良好的特性。 1 电源研制 HPPMS 电源由充电电源、斩波输出单元等组成,具备连续可调的稳压、过流、过热、打火保护功能。设计电源为恒压模式,脉冲峰值电压为-500~-1500V,电流为10~200A,脉宽30~150L s,频率为10~400Hz 。电源结构如图图1所示。直流电源在脉冲间歇期给电容充电,在脉冲工作时,由电容C s 向等离子体负载放电。111 充电电源 充电电源为负高压电源,采用全桥逆变技术,大大减小了电源体积、重量,提高了效率。其典型结构如图2所示。图中的整流电路经电容C 1滤波后得 收稿日期:2012-02-14 *联系人:Tel:(028)82820927;E -mail:1064213358@https://www.360docs.net/doc/0d17416188.html, 168 真 空 科 学 与 技 术 学 报C HINESE JOURNAL OF VACUUM SCIE NCE AND TECHNOLOGY 第33卷 第2期 2013年2月

磁控溅射操作规程

磁控溅射设备操作规程 开机过程 1.开电柜A水阀(注意有两水路,阀门上标签为电柜左(A),电柜右(B)). 2.开电柜A总控制电源. 3.开机械泵,打开旁抽阀V 1 ,开低真空计电源,用机械泵抽至机械泵抽压极限(或5Pa 以下). 4.关闭旁抽阀V 1.开闸板阀G,开前级阀(电磁阀DF 1 ) 5.观察低压真空计示数是否稳定(稳定时即为系统不漏气),待稳定后开分子泵(KYKY) 总电源. 6.观察分子泵显示窗口为闪动的450Hz时,按下分子泵启动按钮,分子泵加速. 7.当分子泵转速稳定,窗口显示为450Hz后,按下高真空计DL-7电源按钮,观察真 空室真空度,等待达到溅射所需的本底真空度(一般为10-4Pa). 溅射过程 1.关闭高真空计DL-7(!进气之前一定要关闭,否则高真空计会被损坏),然后打开充 气阀V2,再打开截止阀V5. 2.开氩气瓶总阀,开减压阀,观察其指示小于1.5格(三个大气压)即可. 3.开质量流量计电源,将MFC1打到阀控位 4.关小闸板阀G,此调节过程配合旋动旋钮调节气体流量,使低压真空计示数(直 流溅射一般为2~5Pa之间,射频一般在5-8Pa之间). 5.开电柜B水阀,开电柜B总控制电源. (1).直流溅射:开电柜B中相对应靶位直流溅射电源,调节功率使使靶上方氩气电离启辉.旋转功率调节旋钮,使溅射功率达到所需要的数值.待板压和板流稳定后,转动挡板和转盘,转动挡板和转盘到相应的靶上,开始溅射并计时.溅射完毕后,将功率调节旋钮逆时针调到最小,按下停止按钮.然后关闭电柜B的总控制电源. (2).射频溅射:按下电柜B中射频功率源的Uf按钮,电子管预热5-10分钟.按下Ua的开始按钮,通过Ua粗调和细调增大板压,使靶上方氩气电离启辉.调节SP-II 型射频匹配器的C1,C2(调节一个时,另一个不动),使反射功率最小,驻波比小于1.5.增大Ua,调节匹配器的电容使反射功率始终最小,如此反复调节使溅射功率达到所需要的数值.预溅射几分钟后,转动挡板和转盘到相应的靶上,即可开始溅射. (3).溅射完毕后,将Ua调到最小,按下Ua的停止按钮.等待几分钟后按下Uf按钮.然后关闭电柜B的总控制电源. (如果需要给衬底加热,方法同退火过程的5,6步骤). 靶挡板和转盘的转动:可通过电脑上的控制软件或手动转动.注意转盘和样品挡板同时转动前一定要检查定位插销,不能使转盘被卡住;只对样品进行转动操作前,需要将样品挡板卡住;为了不使加热电缆缠绕,不能大角度转动转盘. 6.溅射完毕后,关闭氩气的过程:先关气瓶总阀,后关减压阀,再将MFC1打到关闭, 待流量计显示为0后关闭流量计电源.先关V5后关V2,开大闸板阀G,让分子泵将真空室抽至高真空.

相关文档
最新文档