“天棚”阻尼控制

“天棚”阻尼控制
“天棚”阻尼控制

“天棚”阻尼控制

“天棚”阻尼是D.Karnopp 利用最优控制理论在1974 年提出来的一种悬架系统主动控制策略,其控制性能优越,具有一定的鲁棒性,但由于它是基于悬架速度的负反馈主动控制,对于移动的车辆来说无法实现。但将“天棚”阻尼悬架系统作为控制的参考模型,即把“天棚”系统作为实际系统控制的动态目标得到广泛的应用。但由于可调参数只有“天棚”阻尼系数,系统性能无法进一步提高。

本文采用天棚阻尼悬架作为研究对象,将分数阶微积分引入到“天棚”阻尼控制系统中,取代原来的整数阶导数。以B级路面为输入信号,根据优化理论找到最优的阶数和阻尼系数。最终,通过分析比较分数阶“天棚”阻尼悬架、整数阶“天棚”阻尼悬架和被动悬架,得出分数阶“天棚”阻尼悬架能够全面提高整数阶“天棚”阻尼悬架的性能。

1 车辆半主动悬架模型

车辆悬架按振动控制的方法分为被动、半主动、主动3 个类型,其中主动悬架可很好地提高车辆的乘坐舒适性和操纵稳定性,但因其价格昂贵、能耗高、结构复杂、可靠性差,限制了它的推广;被动悬架系统减震器的阻尼特性不能根据路面状况和车辆运行状态进行实时的调节,因而控制效果有限;半主动悬架相比于主动悬架,结构相对简单,能量消耗少,价格低廉,而性能接近主动悬架,特别是磁流变材料的出现,其应用前景非常良好。

以具有两自由度的1/4 车辆悬架模型作为研究对象,具有磁流变阻尼器的半主动悬架模型如图1 所示,其动力学方程:

式中,m——簧载质量,m——簧下质量; s——悬架结构阻尼; k——悬架stcs 刚度,k ——轮胎刚度;x ——车身位移, x ——轮胎位移, x——路面位移; tstgF ——半主动控制力, Fb——磁流变阻尼器的可调阻尼系数。 d 半主动悬架是1974 年由美国加州大学戴维斯分校机械工程系D. E. Karnopp 教授等提出的,并利用天棚阻尼控制理论给出半主动悬架的控制策略,近十多年来,基于各种控制理论和磁流变阻尼器技术的半主动悬架控制策略相继发表,例LQR/LQG 控制、滑模变结构控制、自适应控制、人式神经网络控制、模糊控制、鲁棒控制等,相比较优这些较复杂的控制理论,天棚阻尼控制方法以其简单有效一直在半主动振动控制方面占有重要的一席之地。

2(分数阶天棚阻尼悬架模型

2(1 天棚阻尼悬架模型

天棚阻尼控制实际是形象化的最优输出反馈控制方法,见图(2),其动力学方程为

这儿的b为天棚阻尼系数。由于这种悬架只能是一种存在于实验室中的模型。实际的汽车上并没有“天棚”作为惯性参考,该模型不能在实际悬架上应用,必须通过其它控制策略来间接实现,因此它被广泛地作为悬架控制的理想动力学模型应用于其它控制方法中。

根据D.KARNOPP的天棚阻尼半主动悬架理论,半主动悬架阻尼力的控制律为:

其中,f为天棚阻尼力,f为电流(或电压)最大时阻尼器的最大阻尼

力;skyMRmax

f为电流(或电压)最小(0 A)时阻尼器的最小阻尼力,以美国LORD公司生MRmin

产的RD-1005型磁流变阻尼器为例,此减振器允许的最大输入电流为2A,电压12V,最大阻尼力为4448N。即通过阻尼器的电流(或电压)调节部分实现天棚阻尼控制。

2.2 分数阶天棚阻尼及半主动悬架控制策略

天棚阻尼半主动悬架,控制策略简单且效果理想,但它毕竟只是简单的一阶系统,控制效果无法进一步提高,而其它控制方法比较复杂,对控制器设计要求高,下面引入新的天棚阻尼控制方法,它不仅在性能上比经典的天棚阻尼算法的进一步的提高,而且其控制器的设计也不复杂,只是比原控制算法要求增加一些数据存贮和乘法和加法运算。

原天棚阻尼算法是对悬架速度的反馈,这种算法主要通过调整阻尼系数的大小改变控制力的值,无法改变控制力的相位,如果能实现任意调整控制力的大小和相位,则天棚阻尼控制的效果有望进一步提高。为了实现这一想法,本文引入分数微积分思想,用对悬架位移的非整数阶导数代替原一阶导数即速度,即天棚阻尼控制力F 变为: d

α这儿的D表示为分数阶微分算子,其数学定义式常用的有Riemann-Liouville

定义

式中[?]代表取整数,当h 为小量时,(6)式就是(5)式的离散表达,因此分数阶导数的计算可以通过对函数的离散值进行加权和计算,这在控制器设计中是易实现的。

从优化角度看,式(3)中 b 是唯一的可优化值,而式(5)中,b 和α值都是可优化参数。也就意味着,当我们优化参数b 取得最优值之后,可进一步优化参数α,使分数阶系统比整数阶系统有更好的性能。考虑到悬架位移无法测量,可以利用指数定律,将(5)式变为

类似一般文献中半主动悬架的控制方法,按照能耗原则和分数阶天棚阻尼力的计算值,半主动控制力F 的控制策略为 d

2.3 控制参数的选取

为了确定式(6)最优的控制参数b和α,选择标准的B级随机路面激励路面谱为路面输入,路面谱在标准ISO,TCl08,SC2N67中的定义为

-1-1式中 n为空间频率(m),n=0.1m为参考空间频率, Gq(n)为参考空间频率n0002-1所对应的路面谱值,即路面不平度系数(m,m);ω为频率指数,决定路面谱的频

-62率结构,分级路面的频率指数ω,2。对应于ISO的B级路面标准,

Gq(n)=64×10m0-1,m,构造出时域内的随机激励路面模型。

本文研究的某型号轿车的悬架参数如表1。

取控制泛函指标

其中q,i=1,2,3为加权因子。在B 级公路路面行驶条件下对悬架进行仿真计算,i

得到(10)式中各项和综合指标J 在不同b 和α时的曲线(图3),当

α=0.21,b=4500 时指标J 取得极小值。从图3a 可以看出,当α=0.31 时,加速度最小;当α=0.1 时,悬架动挠度最小;当α=0.17时,轮胎动载荷最小。同时从图3a 中还可以看出,当α ? (0,0.1)时,四条曲线都单调递减,说明如果α 在此范围内取值,那么上述悬架状态都将变得更优异。当选取α=0.21 时,加速度特性将更好,但悬架动挠度并非最优值。

3(分数阶系统的仿真

目前分数阶微积分的计算方法可分为三类,一类是解析法,其主要有基于双参数指数函数 Mittag—Leffler 函数的级数法、Adomian 分解法和平均法等;第二类为数值法,主要有差分法,样条函数法,预估校正法等;第三类为滤波器算法,例如Oustaloup 算法, FIR算法, IIR 算法和Pade 逼近等。其中滤波器算法主动应用于仿真系统中的分数阶微积分的处理,其原理是用高阶的传递函数近似替代分数阶传递函数。Oustaloup 算法是目前国际上最流行的近似法,首先按系统的要求选

择需近似处理的频率范围[ω, ω],考虑频域边界的影响,应选择更大的频率范围[ω, bhAω],要求ω<ω ,ω>ω ,然后在选择的范围内对分数阶微积分的拉氏变化进BAbBh

行近似处理,即

对于的计算采用零点和极点递归计算法

其中零点ω′和极点ω的递归计算公式

其中N为逼近函数的阶数,通常取5?10 足够,G满足下式: 0

5.结束语

汽车行驶的平顺性和操纵稳定性之间是相互矛盾的,悬架的天棚阻尼控制策略提高了汽车的平顺性,让乘客感到更舒适,但却牺牲了部分操纵稳定性。为寻找更优异的控制效果我们将分数阶微积分理论引入到天棚阻尼控制策略中。经过仿真比

较,我们发现分数阶天棚阻尼控制策略比整数阶控制策略有更好的行驶平顺性,而且并没有影响其操纵稳定性,相反地,若取得恰当的分数阶导数,其操纵稳定性还会略微提高。

二阶弹簧-阻尼系统PID控制器参数整定

《控制系统仿真与CAD》大作业 二阶弹簧—阻尼系统的PID控制器设计及参数整定 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 班级:电气173班 学号:************ 姓名:李** 老师:** 时间:2020年6月13日

1. 题目与要求 考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数()G s 如下,参数为M=1kg ,b=2N.s/m ,k=25N/m ,()1F s =。设计要求:用.m 文件和simulink 模型完成。 图 1 弹簧--阻尼系统 (1)控制器为P 控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。 (2)控制器为PI 控制器时,改变积分系数大小,分析其对系统性能的影响并绘制相应曲线。(例如当Kp=50时,改变积分系数大小) (3)设计PID 控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。 2. 分析: (1)根据受力分析可得系统合力与位移之间微分方程: F kx x b x M =++&&& (2)对上得微分方程进行拉普拉斯变换,转化后的系统开环传递函数: 25211)()()(22++= ++== s s k bs Ms s F s X s G (3)系统输入为力R(S)=F(S),系统输出C(S)为位移X(S),系统框图如下: 图 2 闭环控制系统结构图 3. 控制器为P 控制器时: 控制器的传递函数p p K s G =)(,分别取p K 为1,10,20,30,40,50,60,70,80, (1)simulink 构建仿真模型如图3,文件名为:P_ctrl ;

“天棚”阻尼控制

“天棚”阻尼控制 “天棚”阻尼是D.Karnopp 利用最优控制理论在1974 年提出来的一种悬架系统主动控制策略,其控制性能优越,具有一定的鲁棒性,但由于它是基于悬架速度的负反馈主动控制,对于移动的车辆来说无法实现。但将“天棚”阻尼悬架系统作为控制的参考模型,即把“天棚”系统作为实际系统控制的动态目标得到广泛的应用。但由于可调参数只有“天棚”阻尼系数,系统性能无法进一步提高。 本文采用天棚阻尼悬架作为研究对象,将分数阶微积分引入到“天棚”阻尼控制系统中,取代原来的整数阶导数。以B级路面为输入信号,根据优化理论找到最优的阶数和阻尼系数。最终,通过分析比较分数阶“天棚”阻尼悬架、整数阶“天棚”阻尼悬架和被动悬架,得出分数阶“天棚”阻尼悬架能够全面提高整数阶“天棚”阻尼悬架的性能。 1 车辆半主动悬架模型 车辆悬架按振动控制的方法分为被动、半主动、主动3 个类型,其中主动悬架可很好地提高车辆的乘坐舒适性和操纵稳定性,但因其价格昂贵、能耗高、结构复杂、可靠性差,限制了它的推广;被动悬架系统减震器的阻尼特性不能根据路面状况和车辆运行状态进行实时的调节,因而控制效果有限;半主动悬架相比于主动悬架,结构相对简单,能量消耗少,价格低廉,而性能接近主动悬架,特别是磁流变材料的出现,其应用前景非常良好。 以具有两自由度的1/4 车辆悬架模型作为研究对象,具有磁流变阻尼器的半主动悬架模型如图1 所示,其动力学方程:

式中,m——簧载质量,m——簧下质量; s——悬架结构阻尼; k——悬架stcs 刚度,k ——轮胎刚度;x ——车身位移, x ——轮胎位移, x——路面位移; tstgF ——半主动控制力, Fb——磁流变阻尼器的可调阻尼系数。 d 半主动悬架是1974 年由美国加州大学戴维斯分校机械工程系D. E. Karnopp 教授等提出的,并利用天棚阻尼控制理论给出半主动悬架的控制策略,近十多年来,基于各种控制理论和磁流变阻尼器技术的半主动悬架控制策略相继发表,例LQR/LQG 控制、滑模变结构控制、自适应控制、人式神经网络控制、模糊控制、鲁棒控制等,相比较优这些较复杂的控制理论,天棚阻尼控制方法以其简单有效一直在半主动振动控制方面占有重要的一席之地。 2(分数阶天棚阻尼悬架模型 2(1 天棚阻尼悬架模型 天棚阻尼控制实际是形象化的最优输出反馈控制方法,见图(2),其动力学方程为

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

二阶弹簧—阻尼系统,PID控制器设计,参数整定

二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制 的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:()P P G s K = 积分控制器的传递函数为:11()PI P I G s K T s =+ ? 微分控制器的传递函数为:11 ()PID P D I G s K T s T s =+ ?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。

图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: F kx x b x M =++ 25 21 1)()()(22++= ++== s s k bs Ms s F s X s G 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数)

电控空气悬架的阻尼控制方法-定稿

说明书摘要 本发明提供一种电控空气悬架的阻尼控制方法,将电控空气悬架的阻尼控 制过程分解为直线行驶工况下的车身高位模式、车身中位模式、车身低位模式以及转向工况下的转向模式,并按照切换控制策略来实现前述阻尼控制过程, 前述工作模式之间的切换过程由一模糊监督控制器施加模糊监督控制,通过对5 阻尼力局部控制器的输出进行逐步加权和得到系统最终的控制输入,其中直线行驶工况与转向工况之间的切换依据为方向盘转角,车身高度切换依据为车速、路面状况以及持续时间。本发明的方法可实现阻尼控制过程对行驶工况的实时跟踪,对切换过程进行监督控制,解决系统在模式切换过程中的失稳和振荡问题,提高电控悬架在全局工况下的整体性能。 10

摘要附图

权利要求书 1. 一种电控空气悬架的阻尼控制方法,其特征在于,将电控空气悬架的阻 尼控制过程分解为直线行驶工况下的车身高位模式、车身中位模式、车身低位模式以及转向工况下的转向模式,并通过阻尼力局部控制器按照切换控制策略5 来实现前述阻尼控制过程,前述工作模式之间的切换过程由一模糊监督控制器施加模糊监督控制,通过对阻尼力局部控制器的输出进行逐步加权和得到系统最终的控制输入,其中直线行驶工况与转向工况之间的切换依据为方向盘转角,车身高度切换依据为车速、路面状况以及持续时间。 2. 根据权利要求1所述的电控空气悬架的阻尼控制方法,其特征在于,在10 直线行驶工况下,当车辆进入新的行驶工况且持续时间大于一参考时间时,工作模式才进行切换;转向模式的进入和退出依据为方向盘转角。 3. 根据权利要求1所述的电控空气悬架的阻尼控制方法,其特征在于,前 述各工作模式之间的切换控制策略如下: 1)当方向盘转角大于参考转角,系统进入转向模式; 15 2)当方向盘转角小于参考转角,车辆的行驶速度达到进入车身低位模式下的临界速度,且持续时间大于参考时间,进入车身低位模式; 3)当方向盘转角小于参考转角,车辆的行驶速度小于进入车身低位模式下的临界速度,悬架动行程的均方根值小于表征路面较差的均方根值,且持续时间大于参考时间,进入车身中位模式; 20 4)当方向盘转角小于参考转角,悬架动行程的均方根值大于表征路面较差的均方根值,且持续时间大于参考时间,进入车身高位模式。 4. 根据权利要求3所述的电控空气悬架的阻尼控制方法,其特征在于,前 述临界速度为车辆在高速行驶时空气阻力和滚动阻力大致相当时的行驶速度,前述均方根值为车辆在E级路面上行驶时的悬架动行程均方根值。 25 5. 根据权利要求1所述的电控空气悬架的阻尼控制方法,其特征在于,前 述方法中,直线行驶工况下各工作模式的阻尼力局部控制器为模糊PID控制器,

二阶弹簧阻尼系统ID控制器设计参数整定

二阶弹簧阻尼系统I D控制器设计参数整定 This model paper was revised by the Standardization Office on December 10, 2020

二阶弹簧—阻尼系统的PID 控制器设计及参数整定 一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: ()P P G s K = 积分控制器的传递函数为: 11()PI P I G s K T s =+? 微分控制器的传递函数为: 11()PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和得图所示)

半主动减振器工作原理及控制方式

半主动减振器工作原理及控制方式 丁问司 1.控制规则 1.1悬挂系统分类 悬挂系统从振动控制的角度来说可分为主动悬挂与被动悬挂,其中主动悬挂按其是否需要外界能量的供应可分为有源主动悬挂和无源主动悬挂。 有源主动悬挂也称全主动悬挂,通常由产生主动力或主动力矩的装置(油缸、气缸、伺服电机、电磁铁)、测量元件(加速度传感器、速度传感器、力传感器等)和反馈控制系统等几部分及一个能连续供应能量的动力源组成。 无源主动悬挂也称作半主动悬挂。由无能源输入但可进行控制的阻尼元件和弹性元件组成,其减振方式和工作原理与被动悬挂相似,不同的是悬挂参数可在一定的范围内任意调节,以获得最佳的减振效果。 半主动悬挂与全主动悬挂的区别是前者只能调节阻尼力的大小,而后者则可同时控制阻尼力的大小方向。 半主动悬挂的核心实际上是一种可调阻尼减振器,其阻尼力大小一般通过调振节流孔开度来获得,而对阻尼力的约束条件是:系统振动时联系于阻尼器的能量全部耗散掉。 1.2列车半主动控制原理 悬架系统的半主动控制原理在七十年代由美国人Karnopp提出,旨在以接近被动悬挂的造价和复杂程度来提供接近主动悬挂的性能。其基本思想是根据激励和系统的状态调节悬挂系统中的刚度和阻尼,以使某个性能指标达到最优。由于在半主动状态下改变系统的刚度非常困难,目前的研究实际上仅限于对悬挂系统阻尼的控制。 多年研究使得半主动悬架控制系统衍生了多种控制方式,其中包括:慢速控制、天棚控制、相对控制、最优控制、预测控制、自适应控制、神经网络控制等。从工程实践的情况来看目前只有天棚控制方式取得了较好的效果,并已运用到成熟的产品中。日本KYB公司与铁道总研联合研制的列车横向半主动减振器及是运用了天棚(Sky Hook)控制原理。 列车天棚原理的基本控制逻辑是被称为“天棚悬架”的数学模型,如图1所示。假设列车是沿一道虚拟的刚性墙移动,在虚拟墙与车体之间通过一虚拟减振器的作用来减小车体振动,此虚拟减振器称天棚减振器。 按照天棚原理,列车运行时理想的状况是天棚减振器始终处于工作状态以提供减振力。由于天棚减振器是虚拟的,则其应提供的减振力实际上由安装于车体与转向架间的横向减振器模拟提供。 假设车体的绝对速度X1为正(设向右为正),相对速度也为正时(车体相对转向架向右运动),虚拟的“天棚减振器”应产生一向左的力,实际中的横向减振器也产生一向左的力,此两力的方向相同,则F r = F s。 仍假设车体的绝对速度X1为正,而相对速度为负时(车体相对转向架向左

二阶弹簧—阻尼系统,PID控制器设计,参数整定

*** 二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20 世纪30 年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整, 在长期应用中已积累了丰富的经验。特别是在工业过程控制中, 由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:G (s) K P P G (s) K PI P 1 1 T s I 积分控制器的传递函数为: 1 1 G (s) K T s PID P D T s I 微分控制器的传递函数为: 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1 );系统示意图如图 1 所示。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:M x bx kx F G( s) X F ( ( s) s) Ms 1 1 2 bs k s2 s 2 25 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P、PI、PID 控制器)设计及其参数整定,定量 分析比例系数、积分时间与微分时间对系统性能的影响。同 时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅 助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小, 分析对系统性能的影响并绘制相应曲线。(当kp=50 时,改变积分时间常数)

弹簧-质量-阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时 目录 目录 (1) 1 研究背景及意义 (3) 2 弹簧-质量-阻尼模型 (3) 2.1 系统的建立 (3) 2.1.1 系统传递函数的计算 (4) 2.2 系统的能控能观性分析 (6) 2.2.1 系统能控性分析 (6) 2.2.2 系统能观性分析 (7) 2.3 系统的稳定性分析 (7) 2.3.1 反馈控制理论中的稳定性分析方法 (7) 2.3.2 利用Matlab分析系统稳定性 (8) 2.3.3 Simulink仿真结果 (9) 2.4 系统的极点配置 (10) 2.4.1 状态反馈法 (10) 2.4.2 输出反馈法 (11) 2.4.2 系统极点配置 (11)

2.5系统的状态观测器 (13) 2.6 利用离散的方法研究系统的特性 (15) 2.6.1 离散化定义和方法 (15) 2.6.2 零阶保持器 (16) 2.6.3 一阶保持器 (17) 2.6.4 双线性变换法 (18) 3.总结 (18) 4.参考文献 (19)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中,,, ,,。 2.1 系统的建立

弹簧质量阻尼系统的建模与控制系统设计

弹簧质量阻尼系统的建模与控制系统设计 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时 目录 目录 (2) 1 研究背景及意义 (3) 2 弹簧-质量-阻尼模型 (3) 2.1 系统的建立 (4) 2.1.1 系统传递函数的计算 (5) 2.2 系统的能控能观性分析 (7) 2.2.1 系统能控性分析 (8) 2.2.2 系统能观性分析 (9) 2.3 系统的稳定性分析 (10) 2.3.1 反馈控制理论中的稳定性分析方法 (10) 2.3.2 利用Matlab分析系统稳定性 (10) 2.3.3 Simulink仿真结果 (12) 2.4 系统的极点配置 (15) 2.4.1 状态反馈法 (15) 2.4.2 输出反馈法 (16)

2.4.2 系统极点配置 (16) 2.5系统的状态观测器 (18) 2.6 利用离散的方法研究系统的特性 (20) 2.6.1 离散化定义和方法 (20) 2.6.2 零阶保持器 (22) 2.6.3 一阶保持器 (24) 2.6.4 双线性变换法 (26) 3.总结 (28) 4.参考文献 (28)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即 ,表示小车的位移,是系统的输出,即,

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

二阶弹簧—阻尼系统PID控制器设计参数整定

二阶弹簧—阻尼系统P I D控制器设计参数整 定 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

二阶弹簧—阻尼系统的PID控制器设计及参数整定 一、PID控制的应用研究现状综述 PID控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID很容易通过编制计算机语言实现。由于软件系统的灵活性,PID算法可以得到修正和完善,从而使数字PID具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: () P P G s K = 积分控制器的传递函数为: 11 () PI P I G s K T s =+? 微分控制器的传递函数为: 11 () PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数() G S,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于 1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和0.1得图所示) Scope 输出波形:

粘滞阻尼器工作原理及组成

粘滞阻尼器的工作组成及原理 传统抗震方法是依靠构件的弹塑性变形并吸收地震能量来实现的。这种传统设计方法在很多时候是有效的,但也存在着一些问题。随着建筑技术的发展,房屋高度越来越高结构跨度越来越大,而构件端面却越来越小,已经无法按照传统的加大构件截面或加强结构刚度的抗震方法来满足结构抗震和抗风的要求。 粘滞阻尼器是一种速度相关型的耗能装置,它是利用液体的粘性提供阻尼来耗散振动能量,以粘滞材料为阻尼介质的,被动速度型耗能减震(振)装置。主要用于结构振动(包括风、地震、移动荷载和动力设备等引起的结构振动)的能量吸收与耗散、适用于各种地震烈度区的建筑结构、设备基础工程等,安装、维护及更换都简单方便。 粘滞阻尼器由缸筒、活塞、粘滞流体和导杆等组成缸筒内充满粘滞流体,活塞可在缸筒内进行往复运动,活塞上开有适量的小孔或活塞

与缸筒留有空隙。当结构因变形使缸筒和活塞产生相对运动时,迫使粘滞流体从小孔或间隙流过,从而产生阻尼力,将振动能量通过粘滞耗能消掉,达到减震的目的。 粘滞阻尼器的特点是对结构只提供附加阻尼,而不提供附加刚度,因而不会改变结构的自振周期。其优点是1.经济性好,可减少剪力墙、梁柱配筋的使用数量和构件的截面尺寸。2.适用性好,不仅能用于新建土木工程结构的抗震抗风,而且能广泛应用于已有土木工程结构的抗震加固或震后修复工程。3.安装了粘滞性耗能器的支撑不会在柱端弯矩最大时给柱附加轴力。4维护费用低。缺点是暂无。粘滞性阻尼器的最新进展是与磁流变体智能材料的联合使用,通过联合拓宽了粘滞性耗能器的发展空间。 粘滞阻尼器通常和支撑串连后布置于结构中,不同的安装形式直接影响到阻尼器的工作效率。到目前为止,实际工程的应用中多采用斜向型和人字型安装方式,这是由于其构造简单、易于装配。剪刀型和肘节型安装方式能把阻尼器两端的位移放大,即起到把阻尼器的效果放大的作用,具有更好的消能能力,但因受到安装机构造型和施工工艺复杂的限制,运用较少。

主动悬架控制策略介绍

主动悬架控制策略介绍【摘要】悬架是现代汽车最重要的组成之一,悬架结构的选用,不但在很大程度上决定了汽车平顺性的优劣,而且随着汽车速度的提高,对于与行驶速度密切相关的操纵稳定性的影响也越来越大。因此,设计优良的悬架系统,对提高汽车产品质量有着极其重要的意义。悬架系统的研究由来已久,悬架系统按照控制原理和控制功能可以分为被动、半主动、主动悬架,这些悬架在性能上有很大的差别。由于主动悬架不但能很好地隔离路面振动,而且能控制车身运动,比如启动和制动时的俯仰、转弯时的侧倾等,另外还可以调节车身的高度,提高轿车在恶劣路面的通过性。因此对主动悬架的研究吸引了一大批工程师对其投入研究,各种控制方法和作动器也被相继研究出来,本文主要对这些方法进行一些简介,以供同行参考研究并对其中的最优控制算法的LQG控制器进行探讨。 【关键词】主动悬架LQG控制器单轮模型 Introduction of active suspension control strategy Abstract Suspension is one of the most important parts in the modern automobile, the suspension structure, not only largely determines the quality and ride comfort of the vehicle, with the vehicle speed, closely related to the speed of handling and stability and have greater influence. Therefore, it is very important to design a good suspension system to improve the quality of automotive products. Suspension system has been studied for a long time. The suspension system can be divided into passive, semi-active and active suspension according to the control principle and control function. The active suspension can not only well isolated vibration, but also can control the body motion, such as pitching and turning starting and braking when the roll, also can adjust body height, increase the car in bad road through sex. So the research of active suspension has attracted a large number of engineers for its investment in research, various control methods and actuators have been studied in this paper, some of these methods, for reference and Research on LQG controller on the optimal control algorithm is discussed. Key words Active suspension The LQG controller The single wheel model

液压阻尼减震器的工作原理

液压阻尼减震器的工作原理 Tag:减震器,隔震器,减震,隔震,钢 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。 1、液压阻尼式后减震器 液压式减震器的结构同吸入式泵基本相似,不同之处只是液压减震器的钢体上端是封闭的,而阀门上留有小孔。当后轮遇到凸起的路面受到冲击时,缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。 2、伸缩管式前*液力减震器 伸缩式前*同前轮和车架是连在一起的,它既起到一部分骨架支撑作用,又起到减震器的作用。随着柄管和套管之间的相互伸缩,前*内的油经设置在隔壁的小孔流动。当柄管压缩时,随着柄管的移动,B室里的油受压后经柄管上的小孔流向C室。同时经自由阀流向A室。油液流动时,受到的阻力衰减了压缩力。当压缩行程快到极限时,柄管末端的锥形油封片就会插上,从而封闭了B室内油的通路。此时,B室油压激剧上升,使其处于被封闭的状态,这样就限制了柄管的行程,有效地防止前*上的可动零件之间的瞬间机械碰撞。 在柄管伸张(即反弹)时,A室内的油经设在前*活塞上部(*近活塞环附近)的小孔流向C室。此时,油液流动所受到的阻力衰减了伸张力。当伸张行程快到极限时,反弹弹簧的伸长吸收了振动能量,而且在这一过程中,油经前*活塞下部的小孔补充到B室,为下一次的工作做好了准备。 三、减震力调节器及防点头装置 1、减震力调节器 根据道路状况和摩托车上负荷的大小,需要对摩托车乘坐的缓冲程度进行调节。减震力调节器主要有凸轮式、螺旋式及气压式和油压式,最常见的是凸轮式。 凸轮式调节器在减震器本体上焊接制动器处装一个波纹阶梯的圆筒凸轮,转动凸轮进行调节。这种结构最简单,且价格低,因而被广泛采用。不过,也有通过拨动手柄来改变凸轮位置进行调节的。 2、防点头装置 防点头(即防俯冲)装置的作用是根据制动力的大小自动减轻制动时俯冲的影响,以及获得舒适的制动感。该机构装在前*下部。前轮受到冲击及轻微制动时,前*管内的油沿着中细箭头的方向流动。紧急制动时,利用制动钳的动作制动钳的销(即活塞)介入,从而堵住减震器油的通路,油从活塞上的油路通过孔阀回到内油管,孔阀的通道比减震器受冲击动作时的油路小,油的流动受到限制,防俯冲装置使减震器受到压缩时的阻尼增大,俯冲得到有效控制。这时,由于制动力的作用,前面的负荷增加,由于制动钳的作用,俯冲力就和阀的挤压力相平衡,即使在动作中受到路面的冲击,由于正常的油路还通着,也可起到一定的缓冲作用。

二阶弹簧—阻尼系统PID控制器设计参数整定

二阶弹簧—阻尼系统的PID 控制器设计及参数整定 一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: ()P P G s K = 积分控制器的传递函数为: 11()PI P I G s K T s =+? 微分控制器的传递函数为: 11()PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等 于1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和0.1得图所示)

光伏发电LCL滤波并网逆变器的谐振阻尼控制策略分析

光伏发电LCL滤波并网逆变器的谐振阻尼控制策略分析 摘要:本文重点介绍了光伏发电并网的两种方案,及各个方案的优缺点,并提出了 两种方案的协同控制方案。 关键词:光伏发电;并网;方案;协同 随着全世界对能源、环保问题的重视,人们对绿色能源的期望越来越高,在 光伏并网系统中,逆变器是核心的部分,其效率的高低、可靠性的好坏会直接影 响整个并网系统的性能。根据IEEE Standard 1547 并网标准可知,并网逆变器入网电流控制的两个关键指标为: a、尽量减少入网电流对电网的谐波污染,使入网电流谐波含量满足技术指标; b、入网电流与电网电压同频同相,保证高并网发电功率因数PF(Power Factor)。 LCL 滤波器虽然对高次谐波衰减效果显著,但是,LCL 滤波器在谐振频率处存 在幅值尖峰,容易发生谐振,使用不当会恶化入网电流的谐波含量。 LCL 滤波并网逆变器的谐振阻尼控制策略主要可分为无源阻尼方案和有源阻尼方案及混合阻尼方案。 1、无源阻尼方案 无源阻尼方案是通过在系统中添加实际的阻尼电阻来抑制谐振,以实现对入 网电流的直接闭环控制,通常采用的是滤波电容串联电阻的方式[1],如图1 所示,图中Rf 代表阻尼电阻。 由以上分析可知,无源阻尼方案具有原理简单,易于实现的优点,但是,它 增加了功率损耗,降低了滤波器的高频分量衰减程度,而且,系统的稳定性较差。 2、有源阻尼方案 针对无源阻尼存在的问题,很多文献都提出了有源阻尼的方案[2]。有源阻尼 方案是采用适当的闭环控制策略来抑制谐振使系统稳定。 本文中电流采用逆变器输出电流反馈的PI 控制。对有源阻尼中最常见的电容电流反馈的 多环控制方法,将电网电感Lg计入网侧滤波电感L2中,其电流环的控制框图如图4 所示, 其中k 为电流反馈系数,Td为控制延迟时间,KPWM为PWM 调制系数。 有源阻尼控制方法具有稳定性好,谐振抑制能力强和入网电流相位直接可控的优点,是 综合性能较优的并网电流控制技术。 3、有源与无源阻尼协同控制方案 基于有源阻尼受控制延迟等因素的不利影响大而不受电网电感影响,无源阻尼不受控制 延迟影响但其阻尼效果会因弱电网引入的电网电感而降低这一特点,提出一种采用有源阻尼 与无源阻尼协同控制的混合阻尼策略,以充分发挥二者的优势达到互补的目标,其电流内环 的控制原理如图5 所示。它不仅将电容电流反馈至控制器形成双电流环控制,还在滤波电容 上串联阻值相对较小的阻尼电阻。 当电网电感增大时,LCL 滤波造成谐振频率降低,尽管无源阻尼的作用效 果减小,但其对有源阻尼起着增强作用,因而通过合理的设计可以实现自适应调节来稳 定总阻尼系数不变,以保证阻尼效果。 本文最后采用有源阻尼与无源阻尼相结合的混合阻尼方法,有以下结论: a.并网引入的电网感抗将降低谐振频率,起到削弱无源阻尼、增强有源阻尼的作用; b. 所提混合阻尼方法兼顾了两者的优势,互补了彼此的不足,具有电网适应力强、受延

相关文档
最新文档