Electrochemical supercapacitors for energy storage and delivery

Electrochemical supercapacitors for energy storage and delivery
Electrochemical supercapacitors for energy storage and delivery

Editorial

Electrochemical supercapacitors for energy storage and delivery:Advanced materials,technologies and applications

q

1.Introduction

In the effort to achieve a clean and sustainable world,energy storage and delivery have become one of today’s most important topics in globe research and development.In this regard,electro-chemical energy technologies such as batteries,fuel cells,and elec-trochemical supercapacitors have been recognized as the most important portion of the various energy storage and delivery tech-nologies.Among these technologies,supercapacitors,emerging as one of the most important energy storage and delivery devices for the 21st century,are particularly the most reliable and safe devices with extremely high power density and cycling stability in many applications including portable electronics,automobile vehicles,stationary power stations and energy storage devices,backup power supplies,etc.However,its challenges of low energy density as well as this low energy density induced high cost are the major drawbacks.To overcome these challenges,in recent years,there are tremendous efforts focusing on the development of new and cost-effective electrodes and electrolyte materials as well as electrode con?guration to improve the capacitance,the energy density of the next generation of supercapacitors.

In order to benchmark the state of research in this area at this time,Applied Energy organized a special issue dedicated to recent research development in Supercapacitors.The articles in this spe-cial issue cover the most recent progress of supercapacitor research and development in terms of both fundamentals and applications with focuses on cutting edge research on new materi-als for system designs and practical deployment investigations.2.Background of supercapacitors

Normally,the energy storage mechanism of supercapacitors is electrochemical in nature,but differs from that of batteries or fuel cells that rely on the coupling of Faradaic redox reactions.Instead,supercapacitors store and discharge energy dominantly through what is called electric double layer capacitance (EDLC).This occurs by employing two high surface area electrodes,that when charged,form a Helmholtz double layer at the interface between the con-ductive electrode materials and the electrolyte,as illustrated in

Fig.1.The electrodes have opposing charges,and in this fashion energy is stored by the electrostatic charge separation.As a result of this energy storage mechanism,supercapacitors can charge and discharge in a matter of seconds while delivering immense power densities (typically in the 10–1000KW/kg).Their operational life-times are also an attractive feature,boasting in excess of 100,000charge and discharge cycles before needing replacement (ref).Owing to these advanced properties,supercapacitors have gained commercial success in certain applications that include dynamic load levelling and uninterruptable power supplies.However,due to their low energy density,large untapped markets remain,including the use of supercapacitors in electric vehicles,large scale energy storage units (grid),and small scale portable electronics.For supercapacitors to effectively penetrate these markets,further technological advances,such as those reported in this special issue are required.

At the current state of research,a large body of research has been focused on increasing the energy density of supercapacitors by developing novel high surface area carbon materials,such as graphene,with unprecedented electric double layer capacitance.It is expected that the viability of supercapacitors could also be extended towards a wide range of applications if energy densities can be improved to more closely resemble those of batteries.To accomplish this,psuedocapacitors (or hybrid supercapacitors)are an emerging trend of research that includes compositing conven-tional EDLC electrodes with materials that contribute redox beha-viour during charge and discharge.These materials,with a high capacity to store energy must also be integrated into operational supercapacitor cell designs.These systems may then have their performance investigated and validated towards new,promising applications.

3.Research covered in this special issue

In this special issue,13papers have been included covering the areas of electric double layer capacitance materials,psuedocapac-itor material,system design and application deployment.3.1.New high surface area EDLC materials

Developing novel nano-structured electrode materials are one of the most active approaches in supercapacitors.For example,Article [1]reports the use of rice husks,a renewable resource,to prepare high surface area porous carbons that were used as EDLC

https://www.360docs.net/doc/0d3666400.html,/10.1016/j.apenergy.2015.05.0540306-2619/ó2015Published by Elsevier Ltd.

q

This paper is included in the Special Issue of Electrochemical Supercapacitors for Energy Storage and Conversion,Advanced Materials,Technologies and Applications edited by Dr.Jiujun Zhang,Dr.Lei Zhang,Dr.Radenka Maric,Dr.Zhongwei Chen,Dr.Aiping Yu and Prof.Yan.

materials for supercapacitor applications.Among different nano-materials,graphene,known for its high surface areas and charge mobility,are the most advanced ones being explored for superca-pacitor applications,such as in Article [2],with the impact of reducing agent used during graphene synthesis systematically investigated.In Article [3],carbon xerogels as EDLC materials are investigated,with the importance of tailoring their porous struc-tures clearly highlighted.

3.2.Psuedocapacitor material development

Article [4]discusses the development of alpha-phase MnO 2nanowire based psuedocapacitative electrodes for supercapacitor devices.Paper [5]reports the synthesis and application of new supercapacitor electrodes composed of nickel-manganese oxide deposited on a MWCNT/CFP composite substrate.Article [6]uses polypyrrole,a psuedocapacitative conductive polymer,doped with ?uorescent brightener CBS-X in what is deemed a smart electrode materials.Cobalt nicket silicate hollow spheres were prepared in Article [7]and were found to demonstrate very good stability for supercapacitor applications.New,three-component materials are developed and investigated in Article [8].This consisted of psuedo-capacitative RuO 2composited with carbon nanotubes and CMK-3,an ordered mesoporous carbon structure.3.3.Supercapacitor system designs

An all solid-state supercapacitor design is developed in Article [9],incorporating electrodes that are free-standing ?lms of the aforementioned polyaniline and high surface area carbon particles.A new asymmetric design,which refers to supercapacitors employ-ing two different electrodes is reported in Article [10].The elec-trodes used are consisted of polypyrrole coated carbon nanotubes.

3.4.Practical deployment

The feasibility from a techno-economic standpoint,along with the optimization of the energy storage unit chain is investigated in Article [11]towards the ?rst ever,quick charging plug-in ferry.Article [12]deals with the design and implementation of bi-direc-tional energy conversion systems on a DC motor drive.The integra-tion of supercapacitors to facilitate this is well characterized and reported.Article [13]hybridizes supercapacitors with batteries to prepare energy storage devices for remote area energy storage.This approach can be used to address the intermittency issues associated with renewable energy systems,such as wind and solar.References

[1]Gao Y,Li L,Jin Y,Wang Y,Yuan C,Wei Y,et al.Porous carbon made from rice

husk as electrode material for electrochemical double layer capacitor.Appl Energy 2015;153:41–7.

[2]Ramachandran R,Saranya M,Velmurugan V,Raghupathy BPC,Jeong SK,Grace

AN.Effect of reducing agent on graphene synthesis and its in?uence on charge storage towards supercapacitor applications.Appl Energy 2015;153:22–31.[3]Liu X,Li S,Mi R,Mei J,Liu L-M,Cao L,et al.Porous structure design of carbon

xerogels for advanced supercapacitor.Appl Energy 2015;153:32–40.

[4]Su X,Yu L,Cheng G,Zhang H,Sun M,Zhang X.High-performance a -MnO 2

nanowire electrode for supercapacitors.Appl Energy 2015;153:94–100.

[5]Li Y-H,Li Q-Y,Wang H-Q,Huang Y-G,Zhang X-H,Wu Q,et al.Synthesis and

electrochemical properties of nickel–manganese oxide on MWCNTs/CFP substrate as a supercapacitor electrode.Appl Energy 2015;153:78–86.

[6]Wang X,Deng J,Duan X,Liu D,Liu P.Fluorescent brightener CBS-X doped

polypyrrole as smart electrode material for supercapacitors.Appl Energy 2015;153:70–7.

[7]Rong Q,Long L-L,Zhang X,Huang Y-X,Yu https://www.360docs.net/doc/0d3666400.html,yered cobalt nickel silicate

hollow spheres as a highly-stable supercapacitor material.Appl Energy 2015;153:63–9.

[8]Lo A-Y,Jheng Y,Huang T-C,Tseng C-M.Study on RuO 2/CMK-3/CNTs

composites for high power and high energy density supercapacitor.Appl Energy 2015;153:15–21.

[9]Khosrozadeh A,Xing M,Wang Q.A high-capacitance solid-state supercapacitor

based on free-standing ?lm of polyaniline and carbon particles.Appl Energy 2015;153:87–93.

[10]Su Y,Zhitomirsky I.Asymmetric electrochemical supercapacitor,based on

polypyrrole coated carbon nanotube electrodes.Appl Energy 2015;153:48–55.[11]Trieste S,Hmam S,Olivier J-C,Bourguet S,Loron L.Techno-economic

optimization of a supercapacitor-based energy storage unit chain:application on the ?rst quick charge plug-in ferry.Appl Energy 2015;153:3–14.

[12]Sun L,Zhang N.Design,implementation and characterization of a novel bi-directional energy conversion system on DC motor drive using super-capacitors.Appl Energy 2015;153:101–11.

[13]Ma T,Yang H,Lu L.Development of hybrid battery-supercapacitor energy

storage for remote area renewable energy systems.Appl Energy 2015;153:56–62.

Guest Editors Aiping Yu a

Zhongwei Chen a Radenka Maric b

Lei Zhang c Jiujun Zhang c Jinyue Yan d

a

Chemical Engineering,University of Waterloo,Canada

b

Materials Science and Engineering,University of Connecticut,USA

c

National Research Council Canada,Canada

d

Royal Institute of Technology (KTH)and M?lardalen University,

Sweden

Fig.1.Schematic illustration of an EDLC.

153(2015)1–2

的、地、得的用法和区别

“的、地、得”的用法和区别 导入(进入美妙的世界啦~) “的、地、得”口诀儿歌 的地得,不一样,用法分别记心上, 左边白,右边勺,名词跟在后面跑。 美丽的花儿绽笑脸,青青的草儿弯下腰, 清清的河水向东流,蓝蓝的天上白云飘, 暖暖的风儿轻轻吹,绿绿的树叶把头摇, 小小的鱼儿水中游,红红的太阳当空照, 左边土,右边也,地字站在动词前, 认真地做操不马虎,专心地上课不大意, 大声地朗读不害羞,从容地走路不着急, 痛快地玩耍来放松,用心地思考解难题, 勤奋地学习要积极,辛勤地劳动花力气, 左边两人双人得,形容词前要用得, 兔子兔子跑得快,乌龟乌龟爬得慢, 青青竹子长得快,参天大树长得慢, 清晨锻炼起得早,加班加点睡得晚, 欢乐时光过得快,考试题目出得难。 知识典例(注意咯,下面可是黄金部分!) 的、地、得 “的”、“地”、“得”的用法区别本是中小学语文教学中最基本的常识,但在使用中也最容易发生混淆,再加上一段时间里,中学课本中曾将这三个词的用法统一为“的”,因此造成了很多人对它们的用法含混不清进而乱用一通的现象。

一、“的、地、得”的基本概念 1、“的、地、得”的相同之处。 “的、地、得”是现代汉语中高频度使用的三个结构助词,都起着连接作用;它们在普通话中都读轻声“de”,没有语音上的区别。 2、“的、地、得”的不同之处。 吕叔湘、朱德熙所著《语法修辞讲话》认为“的”兼职过多,负担过重,而力主“的、地、得”严格分工。50 年代以来的诸多现代汉语论著和教材,一般也持这一主张。从书面语中的使用情况看,“的”与“地”、“得”的分工日趋明确,特别是在逻辑性很强的论述性、说明性语言中,如法律条款、学术论著、外文译著、教科书等,更是将“的”与“地”、“得”分用。 “的、地、得”在普通话里都读轻声“de”,但在书面语中有必要写成三个不同的字:在定语后面写作“的”,在状语后面写作“地”,在补语前写作“得”。这样做的好处,就是可使书面语言精确化。 二、“的、地、得”的用法 1、的——定语的标记,一般用在主语和宾语的前面。“的”前面的词语一般用来修饰、限制“的”后面的事物,说明“的”后面的事物怎么样。结构形式一般为:形容词、名词(代词)+的+名词。如: ①颐和园(名词)的湖光山色(主语)美不胜收。 ②她是一位性格开朗的女子(名词,宾语)。 2、地——状语的标记,一般用在谓语(动词、形容词)前面。“地”前面的词语一般用来形容“地”后面的动作,说明“地”后面的动作怎么样。结构方式一般为:形容词(副词)+地+动词(形容词)。如: ③她愉快(形容词)地接受(动词,谓语)了这件礼物。 ④天渐渐(时间副词)地冷(形容词,谓语)起来。 3、得——补语的标记,一般用在谓语后面。“得”后面的词语一般用来补充说明“得”前面的动作怎么样,结构形式一般为:动词(形容词)+得+副词。如: ⑤他们玩(动词,谓语)得真痛快(补语)。

[批处理]计算时间差的函数etime

[批处理]计算时间差的函数etime 计算时间差的函数etime 收藏 https://www.360docs.net/doc/0d3666400.html,/thread-4701-1-1.html 这个是脚本代码[保存为etime.bat放在当前路径下即可:免费内容: :etime <begin_time> <end_time> <return> rem 所测试任务的执行时间不超过1天// 骨瘦如柴版setlocal&set be=%~1:%~2&set cc=(%%d-%%a)*360000+(1%%e-1%%b)*6000+1%%f-1% %c&set dy=-8640000 for /f "delims=: tokens=1-6" %%a in ("%be:.=%")do endlocal&set/a %3=%cc%,%3+=%dy%*("%3>> 31")&exit/b ---------------------------------------------------------------------------------------------------------------------------------------- 计算两个时间点差的函数批处理etime 今天兴趣大法思考了好多bat的问题,以至于通宵 在论坛逛看到有个求时间差的"函数"被打搅调用地方不少(大都是测试代码执行效率的) 免费内容: :time0

::计算时间差(封装) @echo off&setlocal&set /a n=0&rem code 随风@https://www.360docs.net/doc/0d3666400.html, for /f "tokens=1-8 delims=.: " %%a in ("%~1:%~2") do ( set /a n+=10%%a%%100*360000+10%%b%%100*6000+10%% c%%100*100+10%%d%%100 set /a n-=10%%e%%100*360000+10%%f%%100*6000+10%%g %%100*100+10%%h%%100) set /a s=n/360000,n=n%%360000,f=n/6000,n=n%%6000,m=n/1 00,n=n%%100 set "ok=%s% 小时%f% 分钟%m% 秒%n% 毫秒" endlocal&set %~3=%ok:-=%&goto :EOF 这个代码的算法是统一找时间点凌晨0:00:00.00然后计算任何一个时间点到凌晨的时间差(单位跑秒) 然后任意两个时间点求时间差就是他们相对凌晨时间点的时间数的差 对09这样的非法8进制数的处理用到了一些技巧,还有两个时间参数不分先后顺序,可全可点, 但是这个代码一行是可以省去的(既然是常被人掉用自然体

延时子程序计算方法

学习MCS-51单片机,如果用软件延时实现时钟,会接触到如下形式的延时子程序:delay:mov R5,#data1 d1:mov R6,#data2 d2:mov R7,#data3 d3:djnz R7,d3 djnz R6,d2 djnz R5,d1 Ret 其精确延时时间公式:t=(2*R5*R6*R7+3*R5*R6+3*R5+3)*T (“*”表示乘法,T表示一个机器周期的时间)近似延时时间公式:t=2*R5*R6*R7 *T 假如data1,data2,data3分别为50,40,248,并假定单片机晶振为12M,一个机器周期为10-6S,则10分钟后,时钟超前量超过1.11秒,24小时后时钟超前159.876秒(约2分40秒)。这都是data1,data2,data3三个数字造成的,精度比较差,建议C描述。

上表中e=-1的行(共11行)满足(2*R5*R6*R7+3*R5*R6+3*R5+3)=999,999 e=1的行(共2行)满足(2*R5*R6*R7+3*R5*R6+3*R5+3)=1,000,001 假如单片机晶振为12M,一个机器周期为10-6S,若要得到精确的延时一秒的子程序,则可以在之程序的Ret返回指令之前加一个机器周期为1的指令(比如nop指令), data1,data2,data3选择e=-1的行。比如选择第一个e=-1行,则精确的延时一秒的子程序可以写成: delay:mov R5,#167 d1:mov R6,#171 d2:mov R7,#16 d3:djnz R7,d3 djnz R6,d2

djnz R5,d1 nop ;注意不要遗漏这一句 Ret 附: #include"iostReam.h" #include"math.h" int x=1,y=1,z=1,a,b,c,d,e(999989),f(0),g(0),i,j,k; void main() { foR(i=1;i<255;i++) { foR(j=1;j<255;j++) { foR(k=1;k<255;k++) { d=x*y*z*2+3*x*y+3*x+3-1000000; if(d==-1) { e=d;a=x;b=y;c=z; f++; cout<<"e="<

螺纹通止规

螺纹通止规 定是:螺纹止规进入螺纹不能超过2.5圈,一般的要实际不得超过2圈,并且用得力度不能大,我们的经验是用拇指和食指轻轻夹持螺纹规以刚好能转动螺纹规的力度为准.力大了就相当于在使用丝锥或牙板了,那样规就用不了几次了. 螺纹通止规 螺纹通止规是适用于标准规定型号的灯头作为灯用附件电光源产品时候的设计和生产、检验的工具设备。 用途 一般用于检验螺纹灯头或灯座的尺寸是否符合标准要求,分别检验螺纹灯头的通规和止规尺寸或灯座的通规或止规尺寸。 工作原理 具体检验要求及介绍详见中国人民国国家标准:GB/T1483.1-2008或 IEC60061-3:2004标准规定容。 操作方法 具体检验要求及介绍详见中国人民国国家标准:GB/T1483.1-2008或 IEC60061-3:2004标准规定容。 通止规

通止规,是量规的一种。作为度量标准,用于大批量的检验产品。 通止规是量具的一种,在实际生产批量的产品若采取用计量量具(如游标卡尺,千分表等有刻度的量具)逐个测量很费事.我们知道合格的产品是有一个度量围的.在这个围的都合格,所以人们便采取通规和止规来测量. 通止规种类 (一)对统一英制螺纹,外螺纹有三种螺纹等级:1A、2A和3A级,螺纹有三种等级:1B、2B和3B级,全部都是间隙配合。等级数字越高,配合越紧。在英制螺纹中,偏差仅规定1A和2A级,3A级的偏差为零,而且1A和2A级的等级偏差是相等的等级数目越大公差越小,如图所示:1B 2B 3B 螺纹基本中径3A 外螺纹2A 1A 1、1A和1B级,非常松的公差等级,其适用于外螺纹的允差配合。 2、2A和2B级,是英制系列机械紧固件规定最通用的螺纹公差等级。 3、3A和3B级,旋合形成最紧的配合,适用于公差紧的紧固件,用于安全性的关键设计。 4、对外螺纹来说,1A和2A级有一个配合公差,3A级没有。1A级公差比2A级公差大50,比3A级大75,对螺纹来说,2B级公差比2A公差大30。1B级比2B级大50,比3B级大75。 (二)公制螺纹,外螺纹有三种螺纹等级:4h、6h和6g,螺纹有三种螺纹等级:5H、6 H、7H。(日标螺纹精度等级分为I、II、III三级,通常状况下为II级)在公制螺纹中,H 和h的基本偏差为零。G的基本偏差为正值,e、f和g的基本偏差为负值。如图所示:公差G H 螺纹偏差基本中径外螺纹f g h e 1、H是螺纹常用的公差带位置,一般不用作表面镀层,或用极薄的磷化层。G位置基本偏差用于特殊场合,如较厚的镀层,一般很少用。 2、g常用来镀6-9um的薄镀层,如产品图纸要6h的螺栓,其镀前螺纹采用6g的公差带。 3、螺纹配合最好组合成H/g、H/h或G/h,对于螺栓、螺母等精制紧固件螺纹,标准推荐采用6H/6g的配合。 (三)螺纹标记M10×1–5g 6g M10×1–6H 顶径公差代号中径和顶径公差代号(相同)中径公差代号。 通止规是两个量具分为通规和止规.举个例子:M6-7h的螺纹通止规一头为通规(T)如果能顺利旋进被测螺纹孔则为合格,反之不合格需返工(也就是孔小了).然后用止规(Z)如果能顺利旋进被测螺纹孔2.5圈或以上则为不合格反之合格.且此时不合格的螺纹孔应报废,不能进行返工了.其中2.5圈为国家标准,若是出口件最多只能进1.5圈(国际标准).总之通规过止规不过为合格,通规止规都不过或通规止规都过则为不合格。

“的、地、得”的用法和区别

的、地、得的用法和区别 的、地、得的用法和区别老班教育 一、的、地、得的基本概念 1、的、地、得的相同之处。 的、地、得是现代汉语中高频度使用的三个结构助词,都起着连接作用;它们在普通话中都读轻声de,没有语音上的区别。 2、的、地、得的不同之处。 吕叔湘、朱德熙所著《语法修辞讲话》认为的兼职过多,负担过重,而力主的、地、得严格分工。50 年代以来的诸多现代汉语论著和教材,一般也持这一主张。从书面语中的使用情况看,的与地、得的分工日趋明确,特别是在逻辑性很强的论述性、说明性语言中,如法律条款、学术论著、外文译著、教科书等,更是将的与地、得分用。 的、地、得在普通话里都读轻声de,但在书面语中有必要写成三个不同的字:在定语后面写作的,在状语后面写作地,在补语前写作得。这样做的好处,就是可使书面语言精确化。 二、的、地、得的用法 (一)、用法 1、的——定语的标记,一般用在主语和宾语的前面。的前面的词语一般用来修饰、限制的后面的事物,说明的后面的事物怎么样。 结构形式一般为:形容词、名词(代词)+的+名词。如: 颐和园(名词)的湖光山色(主语)美不胜收。 她是一位性格开朗的女子(名词,宾语)。 2、地——状语的标记,一般用在谓语(动词、形容词)前面。地前面的词语一般用来形容地后面的动作,说明地后面的动作怎么样。 结构方式一般为:形容词(副词)+地+动词(形容词)。如: 她愉快(形容词)地接受(动词,谓语)了这件礼物。 天渐渐(时间副词)地冷(形容词,谓语)起来。 3、得——补语的标记,一般用在谓语后面。得后面的词语一般用来补充说明得前面的动作怎么样。 结构形式一般为:动词(形容词)+得+副词。如: 他们玩(动词,谓语)得真痛快(补语)。 她红(形容词,谓语)得发紫(补语)。 (二)、例说 的,一般用在名词和形容词的后面,用在描述或限制人物、事物时,形容的词语与被形容的词语之间,表示一种描述的结果。如:漂亮的衣服、辽阔的土地、高大的山脉。结构一般为名词(代词或形容词)+的+名词。如,我的书、你的衣服、他的孩子,美丽的景色、动听的歌曲、灿烂的笑容。 地,用法简单些,用在描述或限制一种运动性质、状态时,形容的词语与被形容的词语之间。结构通常是形容词+地+动词。前面的词语一般用来形容后面的动作。一般地的后面只跟动词。比如高兴地跳、兴奋地叫喊、温和地说、飞快地跑;匆匆地离开;慢慢地移动......... 得,用在说明动作的情况或结果的程度时,说明的词语与被说明的词语之间,后面的词语一般用来补充和说明前面的情况。比如。跑得飞快、跳得很高、显得高雅、显得很壮、馋得直流口水、跑得快、飞得高、走得慢、红得很……得通常用在动词和形容词(动词之间)。

用c++编写计算日期的函数

14.1 分解与抽象 人类解决复杂问题采用的主要策略是“分而治之”,也就是对问题进行分解,然后分别解决各个子问题。著名的计算机科学家Parnas认为,巧妙的分解系统可以有效地系统的状态空间,降低软件系统的复杂性所带来的影响。对于复杂的软件系统,可以逐个将它分解为越来越小的组成部分,直至不能分解为止。这样在小的分解层次上,人就很容易理解并实现了。当所有小的问题解决完毕,整个大的系统也就解决完毕了。 在分解过程中会分解出很多类似的小问题,他们的解决方式是一样的,因而可以把这些小问题,抽象出来,只需要给出一个实现即可,凡是需要用到该问题时直接使用即可。 案例日期运算 给定日期由年、月、日(三个整数,年的取值在1970-2050之间)组成,完成以下功能: (1)判断给定日期的合法性; (2)计算两个日期相差的天数; (3)计算一个日期加上一个整数后对应的日期; (4)计算一个日期减去一个整数后对应的日期; (5)计算一个日期是星期几。 针对这个问题,很自然想到本例分解为5个模块,如图14.1所示。 图14.1日期计算功能分解图 仔细分析每一个模块的功能的具体流程: 1. 判断给定日期的合法性: 首先判断给定年份是否位于1970到2050之间。然后判断给定月份是否在1到12之间。最后判定日的合法性。判定日的合法性与月份有关,还涉及到闰年问题。当月份为1、3、5、7、8、10、12时,日的有效范围为1到31;当月份为4、6、9、11时,日的有效范围为1到30;当月份为2时,若年为闰年,日的有效范围为1到29;当月份为2时,若年不为闰年,日的有效范围为1到28。

图14.2日期合法性判定盒图 判断日期合法性要要用到判断年份是否为闰年,在图14.2中并未给出实现方法,在图14.3中给出。 图14.3闰年判定盒图 2. 计算两个日期相差的天数 计算日期A (yearA 、monthA 、dayA )和日期B (yearB 、monthB 、dayB )相差天数,假定A 小于B 并且A 和B 不在同一年份,很自然想到把天数分成3段: 2.1 A 日期到A 所在年份12月31日的天数; 2.2 A 之后到B 之前的整年的天数(A 、B 相邻年份这部分没有); 2.3 B 日期所在年份1月1日到B 日期的天数。 A 日期 A 日期12月31日 B 日期 B 日期1月1日 整年部分 整年部分 图14.4日期差分段计算图 若A 小于B 并且A 和B 在同一年份,直接在年内计算。 2.1和2.3都是计算年内的一段时间,并且涉及到闰年问题。2.2计算整年比较容易,但

螺纹通止规要求螺纹通规通

螺纹通止规要求螺纹通规通,止规止。 但是如果螺纹通规止,说明什么? 螺纹止规通,又说明什么? 我也来说两句查看全部回复 最新回复 ?wpc (2008-11-07 20:11:20) 在牙型正确的前提下螺纹通止规检测螺纹中径 ?lobont (2008-11-08 11:16:32) 对外螺纹而言,螺纹通规是做到中径上偏差,所以能通过就表示产品合格,通不过就表示螺纹做大了,要再修一刀; 螺纹止规做到中径下偏差,所以只能通过2~3牙,如果也通过,就表示外螺纹做小了,产品成为废品 ?qubin8512 (2008-11-18 15:36:05) 螺纹赛规与螺纹环规主要测量螺纹的中径。 ?datafield (2008-11-29 19:12:51) 检具不是万能的,只是方便而已。具体没什么的我有在哪本书上看过,是一本螺纹手册上的。 ?ZYC007 (2009-2-09 20:31:13) 在牙型正确的前提下螺纹通止规检测螺纹中径。 对外螺纹而言,但是如果螺纹通规止,说明螺纹中径大;螺纹止规通,又说明螺纹中径小。 ?WWCCJJ (2009-3-19 09:27:19) 检测的是螺纹的中径,螺纹检测规在检定时,也是检测其中径. ?tanjiren (2009-3-20 22:23:06) 螺纹通止规只能检测螺纹的作用中径,大径和底径等均无法准确测量出来. ?月夜(2009-4-01 21:47:13) 用来测量中径 ?丽萍(2009-4-02 10:11:41)

只能检测工件螺纹的中径 yg196733456 (2009-4-03 09:15:56)原来是测中径的知道了

的地得的用法和区分

《“的、地、得”的用法》语文微课教案 一、教学背景 在语言文字规范化大背景下,帮助学生解决应用“的地得”的疑惑与困难。 二、设计思路 针对学生对于“的地得”的误用与忽视展开教学,规范结构助词“的地得”的使用。按照“问题的提出、问题的分析、问题的解决”的思路展开教学,总结归纳优化的方式方法。 三、教学目标 1、知道“怎么样的什么、怎么样地干什么、干得怎么样”三种固定搭配。 2、掌握“的、地、得”的区别与联系。 3、运用小儿歌“动前土、名前白、行动后面双人来”的口诀帮助正确使用“的、地、得”。 四、教学重难点 1、知道“的、地、得”的区别。 2、在实际情境中正确运用“的、地、得”。 五、教学时间 8分钟微课堂 六、教学适用对象 义务教育九年制内的学生 七、教学准备

多媒体课件、录屏软件 八、教学设计与过程 开场白: 同学们好!今天我们一起来学习“的、地、得”的正确用法。首先我们来了解一下它们的区别。 1、相同之处:原来它们都是念轻声“de”,都是结构助词,起连接作用。 2、不同之处:在书面语中要写成三个不同的字,而且它们的搭配及用法也各不相同。 (1)怎么样的什么 (2)怎样样地干什么 (3)干得怎么样 下面我们就来学习一下它们的正确用法。 白勺“的”的结构是用“形容词或名词或代词+的+名词”来表示,而我们最常见,用得最多的还是“形容词+的+名词”的结构。 而土也“地”的用法可以用“形容词+地+动词”的结构来表示。 双人“得”是用“动词+得+形容词”的结构来表示 3、练习巩固 (1)形近区分 静静(的)河面静静(地)写字欢乐(的)山谷

欢乐(地)歌唱满意(地)点头满意(的)作品 (2)类别区分 1)跑(得)飞快飞快(地)跑 2)愉快(的)旅行旅行(得)愉快 3)强烈(的)渴望强烈(地)渴望 (3)综合杂糅 小雏鹰飞到大树的上方,高兴地喊起来:“我真的会飞啦!而且飞(得)很高呢!” 小结:能填对这个句子的你肯定就已经学会它们的用法了! 4、特殊情况 质疑:假如遇到特殊情况怎么办呢? 我从书包里拿出书交给她们,她们高兴得.围着我跳起舞来。(出自二年级上册《日记两则》) (1)质疑:为什么这里要使用“得”呢? (2)释疑:原来这里强调的是心情,动词在后,形容词在前,相当于后置,“得”修饰“跳舞”而非“围”。现在你明白了吧? 5、小结归纳: 怎么样,你们学会了吗?为了让同学们能够更快的记住它们的用法,老师送给大家一首口诀来帮助你们熟记三个“的”的正确使用方法:动前土、名前白、行动后面双人来。

Excel中如何计算日期差

Excel中如何计算日期差: ----Excel中最便利的工作表函数之一——Datedif名不见经传,但却十分好用。Datedif能返回任意两个日期之间相差的时间,并能以年、月或天数的形式表示。您可以用它来计算发货单到期的时间,还可以用它来进行2000年的倒计时。 ----Excel中的Datedif函数带有3个参数,其格式如下: ----=Datedif(start_date,end_date,units) ----start_date和end_date参数可以是日期或者是代表日期的变量,而units则是1到2个字符长度的字符串,用以说明返回日期差的形式(见表1)。图1是使用Datedif函数的一个例子,第2行的值就表明这两个日期之间相差1年又14天。units的参数类型对应的Datedif返回值 “y”日期之差的年数(非四舍五入) “m”日期之差的月数(非四舍五入) “d”日期之差的天数(非四舍五入) “md”两个日期相减后,其差不足一个月的部分的天数 “ym”两个日期相减后,其差不足一年的部分的月数 “yd”两个日期相减后,其差不足一年的部分的天数

表1units参数的类型及其含义 图1可以通过键入3个带有不同参数的Datedif公式来计算日期的差。units的参数类型 ----图中:单元格Ex为公式“=Datedif(Cx,Dx,“y”)”得到的结果(x=2,3,4......下同) ----Fx为公式“=Datedif(Cx,Dx,“ym”)”得到的结果 ----Gx为公式“=Datedif(Cx,Dx,“md”)”得到的结果 现在要求两个日期之间相差多少分钟,units参数是什么呢? 晕,分钟你不能用天数乘小时再乘分钟吗? units的参数类型对应的Datedif返回值 “y”日期之差的年数(非四舍五入) “m”日期之差的月数(非四舍五入) “d”日期之差的天数(非四舍五入) “md”两个日期相减后,其差不足一个月的部分的天数 “ym”两个日期相减后,其差不足一年的部分的月数 “yd”两个日期相减后,其差不足一年的部分的天数 假设你的数据从A2和B2开始,在C2里输入下面公式,然后拖拉复制。 =IF(TEXT(A2,"h:mm:ss")

单片机C延时时间怎样计算

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时 应该使用unsigned char作为延时变量。以某晶振为12MHz的单片 机为例,晶振为12M H z即一个机器周期为1u s。一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序 程序: void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--);

NPT螺纹以及检测方法详解

N P T螺纹以及检测方法详 解 Prepared on 22 November 2020

一、目的:规范公司技术员,检验员,操作员对NPT螺纹的了解。 二、适用范围:适用于公司任何NPT螺纹类产品,参考资料为通用管螺 纹和国家标准GB/T12716-2011。 三、目录 1、NPT和NPTF介绍 2、螺纹技术参数参数讲解 3、NPT与NPTF加工工艺 4、NPT和NPTF的检测方法 四、内容: NPT和NPTF螺纹介绍 NPT 是 National (American) Pipe Thread 的缩写,属於美国标准的 60 度锥管 密封螺纹,用於北美地区,美国标准为13)通用管螺纹.国家标准可查阅 GB/T12716-2011。NPTF:美制干密封圆锥管螺。NPTF = National Pipe Thread Fine 称之为一般用途的锥管螺纹,这也是我们以前称之为的布氏锥螺纹。NPTF 螺纹称之为干密封式锥管螺纹,它连接密封的原理是在没有润滑剂或密封填 料情况下完全依靠螺纹自身形成密封,设计意图是使内、外螺纹牙的侧面、 牙顶和牙底同时接触,来达到密封的目的。它们两者的牙型角、斜度等指标 都是相同的,关键是牙顶和牙底的削平高度不一样,所以,量规的设计也是 不一样的。NPTF干密封管螺纹的牙形精度比NPT螺纹高,旋合时不用任何 填料,完全依靠螺纹自身形成密封,螺纹间无任何密封介质。干密封管螺纹 规定有较为严格的公差,属精密型螺纹,仅用在特殊场合。这种螺纹有较高 的强度和良好的密封性,在具有薄截面的脆硬材料上采用此螺纹可以减少断 裂现象。NPTF内、外螺纹牙顶与牙底间没有间隙,是过盈配合,而NPT螺 纹是过渡配合。NPTF螺纹主要用于高温高压对密封要求严格的场所。NPT

51单片机延时时间计算和延时程序设计

一、关于单片机周期的几个概念 ●时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12MHz的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。 ●机器周期 完成一个基本操作所需要的时间称为机器周期。 以51为例,晶振12M,时钟周期(晶振周期)就是(1/12)μs,一个机器周期包 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 1.指令含义 DJNZ:减1条件转移指令 这是一组把减1与条件转移两种功能结合在一起的指令,共2条。 DJNZ Rn,rel ;Rn←(Rn)-1 ;若(Rn)=0,则PC←(PC)+2 ;顺序执行 ;若(Rn)≠0,则PC←(PC)+2+rel,转移到rel所在位置DJNZ direct,rel ;direct←(direct)-1 ;若(direct)= 0,则PC←(PC)+3;顺序执行 ;若(direct)≠0,则PC←(PC)+3+rel,转移到rel 所在位置 2.DJNZ Rn,rel指令详解 例:

MOV R7,#5 DEL:DJNZ R7,DEL; rel在本例中指标号DEL 1.单层循环 由上例可知,当Rn赋值为几,循环就执行几次,上例执行5次,因此本例执行的机器周期个数=1(MOV R7,#5)+2(DJNZ R7,DEL)×5=11,以12MHz的晶振为例,执行时间(延时时间)=机器周期个数×1μs=11μs,当设定立即数为0时,循环程序最多执行256次,即延时时间最多256μs。 2.双层循环 1)格式: DELL:MOV R7,#bb DELL1:MOV R6,#aa DELL2:DJNZ R6,DELL2; rel在本句中指标号DELL2 DJNZ R7,DELL1; rel在本句中指标号DELL1 注意:循环的格式,写错很容易变成死循环,格式中的Rn和标号可随意指定。 2)执行过程

通止规的用法及管理

通止规的用法及管理 1、止规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识公差等级、偏差代号相同(如M24*1.5-6h与M24*1.5-5g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,旋入螺纹长度在2个螺距之内为合格,否则判为不合格品。 2、通规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识的公差等级、偏差代号相同(如M24*1.5-6h与M24*1.5-5g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹塞规油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,使其在自由状态下旋合通过螺纹全部长度判定合格,否则以不通判定。 3、注意事项 在用量具应在每个工作日用校对塞规计量一次。经校对塞规计量超差或者达到计量器具周检期限的环规,由计量管理人员收回、标识隔离并作相应的处理措施。 可调节螺纹环规经调整后,测量部位会产生失圆,此现象由计量修复人员经螺纹磨削加工后再次计量鉴定,各尺寸合格后方可投入使用。 报废环规应标识隔离并及时处理,不得流入生产现场。 4、维护与保养 量具(环规)使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。生产现场在用量具应摆放在工艺定置位置,轻拿轻放,以防止磕碰而损坏测量表面。 严禁将量具作为切削工具强制旋入螺纹,避免造成早期磨损。可调节螺纹环规严禁非计量工作人员随意调整,确保量具的准确性。环规长时间不用,应交计量管理部门妥善保管。

的地得的用法教案

“的、地、得”的用法教案 教学目标: 1.能通过看视频知道“的、地、得”的用法区别。 2.能在小组合作中正确掌握“的、地、得”的用法。 3.能正确熟练地运用“的、地、得”。 教学重点:通过看视频知道“的、地、得”的用法区别。 教学难点:正确熟练地运用“的、地、得”。 教学过程: 一、导入(板书课题:“的、地、得”的用法“的、地、得”) 这三个字认识吧!虽然它们都有一个相同的读音de,但用法却不一样,可不能把他们用错了。究竟他们的用法有什么不同,我们来听听他们的故事吧! 二、看微视频,学习“的、地、得”的用法区别。 三、小结: 1.孩子们,刚才看了视频知道他们是谁吗?(白勺的,土也地,双人得。) (1)白勺的是个杂货铺老板,她的店里都有什么?(彩色的毛巾美味的汉堡结实的帐篷舒适的儿童车捕捉风的网会唱歌的小树开个没完的花朵优美动听的歌曲飘来飘去的云……)还可能有什么? 你们一定会发现,白勺的的用法有什么特点?(后面是名词。)板书:名词 (2)土也地是个运动男孩,他喜欢?(悠闲地散步欢快地跳舞兴奋地跳跃开心地捕蝴蝶看图书踢球骑自行洗澡吃冰淇淋……)他还可能喜欢干什么呢?你发现了吗?土也地的用法特点?(后面是动词。)板书:动词 (3)双人得呢?她是个总喜欢评价别人的小妹妹。(球踢得真棒舞跳得精彩长得好高呀……) 她可能还怎么评价别人?(歌唱得动听饭吃得很饱人长得漂亮)你们会发现,双人得的前面通常都是——动词。板书:动词 2.小结:所以,他们的用法也很简单,区别就在这里。 (白勺的用在名词前面;土也地用在动词前面;双人得用在动词后面。)你明白了吗? 四、我来考考你们,看哪一组完成得又对又快! 1.菜鸟级练习 2.老鸟级练习 3.大虾级练习 五、总结

excel中计算日期差工龄生日等方法

excel中计算日期差工龄生日等方法 方法1:在A1单元格输入前面的日期,比如“2004-10-10”,在A2单元格输入后面的日期,如“2005-6-7”。接着单击A3单元格,输入公式“=DATEDIF(A1,A2,"d")”。然后按下回车键,那么立刻就会得到两者的天数差“240”。 提示:公式中的A1和A2分别代表前后两个日期,顺序是不可以颠倒的。此外,DATEDIF 函数是Excel中一个隐藏函数,在函数向导中看不到它,但这并不影响我们的使用。 方法2:任意选择一个单元格,输入公式“="2004-10-10"-"2005-6-7"”,然后按下回车键,我们可以立即计算出结果。 计算工作时间——工龄—— 假如日期数据在D2单元格。 =DA TEDIF(D2,TODAY(),"y")+1 注意:工龄两头算,所以加“1”。 如果精确到“天”—— =DA TEDIF(D2,TODAY(),"y")&"年"&DATEDIF(D2,TODAY(),"ym")&"月"&DATEDIF(D2,TODAY(),"md")&"日" 二、计算2003-7-617:05到2006-7-713:50分之间相差了多少天、多少个小时多少分钟 假定原数据分别在A1和B1单元格,将计算结果分别放在C1、D1和E1单元格。 C1单元格公式如下: =ROUND(B1-A1,0) D1单元格公式如下: =(B1-A1)*24 E1单元格公式如下: =(B1-A1)*24*60 注意:A1和B1单元格格式要设为日期,C1、D1和E1单元格格式要设为常规. 三、计算生日,假设b2为生日

=datedif(B2,today(),"y") DA TEDIF函数,除Excel2000中在帮助文档有描述外,其他版本的Excel在帮助文档中都没有说明,并且在所有版本的函数向导中也都找不到此函数。但该函数在电子表格中确实存在,并且用来计算两个日期之间的天数、月数或年数很方便。微软称,提供此函数是为了与Lotus1-2-3兼容。 该函数的用法为“DA TEDIF(Start_date,End_date,Unit)”,其中Start_date为一个日期,它代表时间段内的第一个日期或起始日期。End_date为一个日期,它代表时间段内的最后一个日期或结束日期。Unit为所需信息的返回类型。 “Y”为时间段中的整年数,“M”为时间段中的整月数,“D”时间段中的天数。“MD”为Start_date与End_date日期中天数的差,可忽略日期中的月和年。“YM”为Start_date与End_date日期中月数的差,可忽略日期中的日和年。“YD”为Start_date与End_date日期中天数的差,可忽略日期中的年。比如,B2单元格中存放的是出生日期(输入年月日时,用斜线或短横线隔开),在C2单元格中输入“=datedif(B2,today(),"y")”(C2单元格的格式为常规),按回车键后,C2单元格中的数值就是计算后的年龄。此函数在计算时,只有在两日期相差满12个月,才算为一年,假如生日是2004年2月27日,今天是2005年2月28日,用此函数计算的年龄则为0岁,这样算出的年龄其实是最公平的。 本篇文章来源于:实例教程网(https://www.360docs.net/doc/0d3666400.html,) 原文链接:https://www.360docs.net/doc/0d3666400.html,/bgruanjian/excel/631.html

通止规的用法及管理

通止规的用法及管理 令狐采学 1、止规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识公差等级、偏差代号相同(如M24*1.56h与M24*1.55g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,旋入螺纹长度在2个螺距之内为合格,否则判为不合格品。 2、通规 使用前:应经相关检验计量机构检验计量合格后,方可投入生

产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识的公差等级、偏差代号相同(如M24*1.56h与M24*1.55g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹塞规油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,使其在自由状态下旋合通过螺纹全部长度判定合格,否则以不通判定。 3、注意事项 在用量具应在每个工作日用校对塞规计量一次。经校对塞规计量超差或者达到计量器具周检期限的环规,由计量管理人员收回、标识隔离并作相应的处理措施。 可调节螺纹环规经调整后,测量部位会产生失圆,此现象由计量修复人员经螺纹磨削加工后再次计量鉴定,各尺寸合格后方

可投入使用。 报废环规应标识隔离并及时处理,不得流入生产现场。 4、维护与保养 量具(环规)使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。生产现场在用量具应摆放在工艺定置位置,轻拿轻放,以防止磕碰而损坏测量表面。 严禁将量具作为切削工具强制旋入螺纹,避免造成早期磨损。可调节螺纹环规严禁非计量工作人员随意调整,确保量具的准确性。环规长时间不用,应交计量管理部门妥善保管。

的 地 得 用法辨析

的、得、地的用法:动词前提土旁、动词后双人旁、一动不动白字旁 (一) 的地得,不一样,用法分别记心上, 左边白,右边勺,名词跟在后面跑。 美丽的花儿绽笑脸,青青的草儿弯下腰, 清清的河水向东流,蓝蓝的天上白云飘, 暖暖的风儿轻轻吹,绿绿的树叶把头摇, 小小的鱼儿水中游,红红的太阳当空照, 左边土,右边也,地字站在动词前, 认真地做操不马虎,专心地上课不大意, 大声地朗读不害羞,从容地走路不着急, 痛快地玩耍来放松,用心地思考解难题, 勤奋地学习要积极,辛勤地劳动花力气, 左边两人就使得,形容词前要用得, 兔子兔子跑得快,乌龟乌龟爬得慢, 青青竹子长得快,参天大树长得慢, 清晨锻炼起得早,加班加点睡得晚, 欢乐时光过得快,考试题目出得难。 (二)“的、地、得”快板 的地得、的地得,用作助词都读de. 作文写话用不准,朗读往往会念错。 有趣的活动、绿的树,活动是事,树是物。 事物前面用的字,小朋友们都记着。 认真地想、快快地跑,想跑看摸是动作。 动作前面用地字,位置千万不要挪。 看得清,记得准,唱得好,飞得高。 动作后面用得字,补充说明要记牢。 (三)“的、地、得”用法简要口诀 名词前面“白勺”“的”, 动词前面“土也”“地”, 形容动后“双人”“得”, 当作助词都读“de”。 二、“的、地、得”用法小析 “的”后面跟的都是表示事物名称的词或词语,如:敬爱的总理、慈祥的老人、戴帽子的男孩、珍贵的教科书、鸟的天堂、伟大的祖国、有趣的情节、优雅的环境、可疑的情况、团结友爱的集体、他的妈妈、可爱的花儿、谁的橡皮、清清的河水...... “地”后面跟的都是表示动作的词或词语,如:高声地喊、愉快地唱、拼命地逃、疯狂地咒骂、严密地注视、一次又一次地握手、迅速地包围、沙沙地直响、斩钉截铁地说、从容不迫地申述、用力地踢、仔细地看、开心地笑笑......” “得”前面跟的多数是表示动作的词或词语,后面跟的都是形容事物状态的词或词语,表示怎么怎么样的,如:走得很快、踩得稀烂、疼得直叫唤、瘦得皮包骨头、红得发紫、气得双脚直跳、理解得十分深刻、乐得合不拢嘴、惊讶得目瞪口呆、大得很、扫得真干净、笑得多甜啊...... 三、“的、地、得”的用法补充说明:

延时计算

t=n*(分频/f) t:是你所需的延时时间 f:是你的系统时钟(SYSCLK) n:是你所求,用于设计延时函数的 程序如下: void myDelay30s() reentrant { unsigned inti,k; for(i=0;i<4000;i++) /*系统时钟我用的是24.576MHZ,分频是12分频,达到大约10s延时*/ for(k=0;k<8000;k++); } //n=i*k |评论 2012-2-18 20:03 47okey|十四级 debu(g调试),左侧有运行时间。在你要测试的延时子函数外设一断点,全速运行到此断点。记下时间,再单步运行一步,跳到下一步。再看左侧的运行时间,将这时间减去上一个时间,就是延时子函数的延时时间了。不知能不能上图。 追问 在delayms处设置断点,那么对应的汇编语言LCALL是否被执行呢?还有,问问您,在C8051F020单片机中,MOV指令都是多少指令周期呢?我在KEIL下仿真得出的结果,与我通过相应的汇编语言分析的时间,总是差了很多。 回答 C编译时,编译器都要先变成汇编。只想知道延时时间,汇编的你可以不去理会。只要看运行时间就好了。 at8051单片机12m晶振下,机器周期为1us,而c8051 2m晶振下为1us。keil 调试里频率默认为24m,你要设好晶振频率。

|评论 2012-2-23 11:17 kingranran|一级 参考C8051单片机内部计时器的工作模式,选用合适的计时器进行中断,可获得较高精度的延时 |评论 2012-2-29 20:56 衣鱼ccd1000|一级 要是精确延时的话就要用定时器,但定的时间不能太长,长了就要设一个变量累加来实现了; 要是不要求精确的话就用嵌套for函数延时,比较简单,但是程序复杂了就会增添不稳定因素,所以不推荐。 |评论

相关文档
最新文档