基于视觉计算的扫描电子显微镜下微纳尺度三维形面测量方法研究

基于视觉计算的扫描电子显微镜下微纳尺度三维形面测量方法研究
基于视觉计算的扫描电子显微镜下微纳尺度三维形面测量方法研究

基于视觉计算的扫描电子显微镜下微纳尺度三维形面测量方法

研究

随着微、纳领域科学技术的不断发展,微、纳米材料在芯片制造、电子封装、生物医药等高新技术领域得到越来越广泛应用。由于微、纳米材料与结构具有尺寸效应,在力-电-磁-热等多场耦合负载作用下,极易产生变形、裂纹进而导致结构与器件失效。因此,在微纳尺度下实施精确地三维形面测量对了解上述变形机理、失效机制分析、指导微纳系统设计与加工等具有重要意义。近年来,微纳尺度精密测试技术不断进步,涌现出多种微纳尺度三维形面测量方法。

其中,基于扫描电子显微镜(Scanning Electron Microscope,SEM)测量方法(3D SEM),具有高效、非接触式、测量范围大和对样品表面粗糙度的良好脱敏性等一系列优点而受到国内外众多学者的共同关注。然而,由于SEM是以可视化为目的进行设计与制造,要将其应用于三维形貌测量,在成像模型及标定、图像畸变校正、特征匹配与三维测量算法等方面仍存在着诸多问题。为此,本论文针对3D SEM在实施与应用中所面临的问题,主要开展SEM成像模型通用化建模、SEM图像畸变校正、基于视差-深度映射的局部高效三维测量方法和自适应SfM-SEM框架下整体精细三维测量方法等四个方面的研究,以形成一套完备的SEM下三维形面测量理论与技术体系。具体研究工作如下:针对SEM成像模型分歧大、无法根据SEM的放大倍率对成像模型进行准确划分等问题,在不依赖任何假设的条件下,

从SEM成像过程本质出发,建立连续通用成像模型以表征SEM系统成像特性。

根据SEM成像过程的连续性约束,利用径向基函数来表达像素点与空间直线的对应关系,进而参数化连续通用成像模型;澄清放大倍率与成像规律的关系,揭示SEM成像系统真实成像本质,实现SEM在不同倍率下的成像模型通用化与可视化表达。可视化建模结果验证部分学者对SEM成像特性和放大倍率的关系假设。通过精度实验证明相比于传统成像模型,连续通用成像模型可更精准地刻画SEM 成像过程,为探索SEM成像规律提供新思路,具有重要的理论和应用价值。针对SEM图像畸变原因复杂、无明显规律且无法利用光学参数化模型校正等问题,提出一种顾及倍率变化的SEM图像畸变校正方法。

对于SEM的时间漂移畸变与空间畸变,从产生根源入手,独立建模,分而治之,分别建立漂移畸变-采集时间畸变模型与空间畸变-像素位置畸变模型;结合不同

放大倍率的成像特点与观测尺度等因素,提出基于阵列标靶/散斑标靶的两种空间畸变模型解算方法;基于上述理论与创新方法,实现顾及倍率变化的SEM图像畸变建模与校正。实验结果表明本文方法对显微图像进行了有效地畸变校正,成功将图像畸变由校正前的±4像素降低到±0.5像素,将由畸变引起的虚应变由校正前的±6000微应变降低到±1000微应变,提高了显微系统测量精度。针对如何通过尽可能少量的SEM图像快速地恢复某一视角下三维形面信息这一问题与应用场景,提出一种基于视差-深度映射(Disparity to Depth,D2D)的微纳尺度三维测量方法,D2D-SEM;建立视差-深度映射模型来实现对样品表面三维形面的快速解算和恢复;利用极线校正原理将两幅SEM图像对齐以保证测量的可靠性,基于数字图像相关(DIC)来计算稠密准确的视差图;融合上述关键技术,D2D-SEM对样品的局部三维形面实现了高效高质的恢复与测量。通过与超景深三维显微镜和共聚焦显微镜对比,验证D2D-SEM微纳尺度三维形面测量方法的精度与有效性。

D2D-SEM在不增加任何硬件设备的条件下,仅基于两张图像便可令SEM拥有精确地三维测量能力,具有成本低、对样品表面粗糙度、高反光有良好的脱敏性等独特优势。针对如何利用多张SEM图像对样品进行尽可能完整地三维测量与表征这一问题与应用场景,提出一种自适应(Adaptive)的运动恢复结构(Structure from Motion,SfM)框架下SEM三维测量方法,ASfM-SEM。在多视重建理论框架下,针对平行投影模型,修正了三维重建核心算法;在SEM通用成像模型基础上,根据SEM的不同放大倍率实现柔性切换以保证高精度三维重建;针对SEM图像噪音大,特征匹配难等问题,将特征点提取与图像相关技术相结合,提出鲁棒的特征提取及匹配计算方法,实现了精确的特征匹配结果;在上述基础上,实现对样品整体三维形面的精细测量与表征;通过与超景深三维显微镜的对比,验证ASfM-SEM微纳尺度三维形面测量方法的精度与有效性。利用ASfM-SEM对多种样品进行了三维测量,结果表明:仅基于SEM图像序列,ASfM-SEM可以实现对被测样品的完整三维测量,相比于超景深显微镜等其他方法,在成本、精细细节重建、遮挡情况处理等方面独具优势。

综上,本文面向微纳尺度三维形面重建、测量和表征的重大需求,对基于SEM 图像的三维测量理论与方法进行深入研究。探索SEM成像模型本质,澄清SEM图像畸变规律,发展针对SEM图像的鲁棒性特征提取与匹配算法,实现精确稠密的

视差计算;在上述基础上,针对不同测量需求与使用场景,构筑局部高效三维测量与完整精细三维测量两种SEM下三维测量理论和新方法。本文研究内容为芯片制造、电子封装和纳米操作等领域提供一种新颖有效的三维测量与表征工具,具有巨大的应用潜力。

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

电镜检测项目有哪些

扫描电镜是用于检验和分析固体微观结构特征的最有用的仪器之一,可以获得高的图像分辨率。场发射电子枪是具有很高的亮度和很小的电子源。扫描电镜的图像反映了样品三维的形貌特征,通过电子和样品的互作用可以研究样品的结晶学、磁学和电学特性。 要想了解扫描电镜的测试项目我们先来了解一下它的工作原理。 扫描电子显微镜是以能量为1—30kV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成像,获得试样表面微观组织结构和形貌信息。配置波谱仪和能谱仪,利用所产生的X射线对试样进行定性和定量化学成分分析。 当电子束轰击样品表面时,一部分的能量转变成热能,这可能造

成样品的辐照损伤,还有部分的能量由于电子与样品原子的相互作用而发射出各种有用的信息。所以扫描电镜的测试项目主要各类电子、射线和电流等,包括: (1)二次电子:入射电子使样品原子激发所产生的电子,它们的能量很低,一般小于50eV,只有10nm左右的深度范围的二次电子才能逸出样品表面而被检测。 (2)背散射电子:一部分入射电子因与样品原子碰撞而改变运动方向,经多次碰撞又由样品表面散射出来,称之为背散射电子,其能量接近入射电子的能量。 (3)特征X射线:样品原子的内层电子被激发后所产生的X射线。 (4)俄歇电子:样品原子的内层电子被激发后所产生的电子。

(5)吸收电子:一部分入射电子在与样品原子碰撞过程中将能量全部释放给样品,而成为样品中的自由电子,称之为吸收电子。 (6)荧光:样品原子的外层电子被激发后所产生的可见光或红外光。 (7)感生电动势:入射电子照射样品的pn结时产生的电动势(或电流)。 上海博焱检测技术服务有限公司专业经营各种材料的环保检测,卫生检测,老化检测,防火检测以及各种大型仪器分析检测。为客户提供方便、快捷、灵活的一站式服务,因为自身的专业与专注,截止目前,已经1万多家客户进行合作,并得到了广泛的赞誉和认可。经过长期快速的发展,公司在环保、卫生、老化、防火等检测领域形成明显优势。

场发射扫描电子显微镜S-4800操作规程

场发射扫描电子显微镜(S-4800)操作规程 开机 1. 检查真空、循环水状态。 2. 开启“Display”电源。 3. 根据提示输入用户名和密码,启动电镜程序。 样品放置、撤出、交换 1. 严格按照高度规定高样品台,制样,固定。 2. 按交换舱上“Air”键放气,蜂鸣器响后将样品台放入,旋转样品杆至“Lock”位,合上交换舱,按“Evac”键抽气,蜂鸣器响后按“Open”键打开样品舱门,推入样品台,旋转样品杆至“Unlock”位后抽出,按“Close”键。 观察与拍照 1. 根据样品特性与观察要求,在操作面板上选择合适的加速电压与束流,按“On”键加高压。 2. 用滚轮将样品台定位至观察点,拧Z轴旋钮(3轴马达台)。 3. 选择合适的放大倍数,点击“Align”键,调节旋钮盘,逐步调整电子束位置、物镜光阑对中、消像散基准。 4. 在“TV”或“Fast”扫描模式下定位观察区域,在“Red”扫描模式下聚焦、消像散,在“Slow”或“Cssc”扫描模式下拍照。 5. 选择合适的图像大小与拍摄方法,按“Capture”拍照。

6. 根据要求选择照片注释内容,保存照片。 关机 1. 将样品台高度调回80mm。 2. 按“Home”键使样品台回到初始状态。 3. “Home”指示灯停止闪烁后,撤出样品台,合上样品舱。 4. 退出程序,关闭“Display”电源。 注意 1. 每天第一次加高压后,进行灯丝Flashing去除污染。 2. 冷场发射电镜一般不断电,如遇特殊情况需要大关机时,依次关闭主机正面的“Stage”电源、“Evac”电源,半小时后关闭离子泵开关和显示单元背面的三个空气开关,关闭循环水。开机时顺序相反。 3. 每半个月旋开空压机底阀放水一次。 4. 待测样品需烘干处理,不能带有强磁性,不能采用铁磁性材料做衬底制样。 5.实验室温度限定在25±5℃,相对湿度小于70% 。 仪器维护 1. 每月进行电镜离子泵及灯丝镜筒烘烤。 2. 每半年进行一次机械泵油维护或更新。 3. 每年进行一次冷却水补充,平时每月检查一次水位。

扫描电镜检测标准方法

扫描电镜测试具备诸多优势,在高分子材料学,生物学,医学,冶金学等等学科领域中发挥着重要的作用。但是如果不是专业人事对这方面的了解还是比较欠缺的,对扫描电镜的标准测试方法更是知之甚少,下面就带大家一起来了解一下。 根据样品形态的不同,扫描的测试方法也是有所区别的,下面就分别来介绍一下。 1、块状导电材料:样品大小要适合仪器样品台尺寸,再用导电胶将其粘结在样品台上即可放在扫描电镜中进行观察。 2、块状非导电或导电性差的材料:需要对样品进行镀膜处理,在材料表面形成一层导电膜,再进行观察。 3、对于粉末样品(非导电或导电性差的材料需镀导电膜),其制备方法3种:

a、导电胶粘结法:先在样品台上均匀沾上一小条导电胶带,然后在粘好的胶带上撒上少许粉末,把样品台朝下使未与胶带接触的颗粒脱落,再用洗耳球吹去粘结不牢固的颗粒。 b、直接撒粉法:将粉末直接撒落在样品台上,适当滴几滴分散剂(乙醇或者其他分散介质),轻晃样品台使粉末分布平整均匀,分散剂挥发后用洗耳球吹掉吸附不牢固的粉末即可。 c、超声波法:将少量的粉末置于小烧杯中,加适量的乙醇或蒸馏水,超声处理几分钟即可。然后尽快用滴管将分散均匀的含粉末溶液到样品台或锡纸上,用电热风轻轻吹干即可。 扫描电镜测试的优点: 1、焦深大,图像富有立体感,特别适合于表面形貌的研究;

2、放大倍数范围广,从20倍到20万倍,几乎覆盖了光学显微镜和TEM的范围; 3、分辨率高,表面扫描二次电子成像的分辨率已经达到100埃; 4、制样简单,样品的电子损伤小。 5、可同时进行显微形貌观察和微区成分分析。 上海博焱检测技术服务有限公司专业经营各种材料的环保检测,卫生检测,老化检测,防火检测以及各种大型仪器分析检测。为客户提供方便、快捷、灵活的一站式服务,因为自身的专业与专注,截止目前,已经1万多家客户进行合作,并得到了广泛的赞誉和认可。经过长期快速的发展,公司在环保、卫生、老化、防火等检测领域形成明显优势。

讲义-高分辨电镜20130812

第六部分高分辨电镜的成像原理 及在材料科学中应用 6.1 高分辨电镜图像的类型 通过高分辨电镜得到的图像通常称为晶格像,这些图像中可以带给研究者的信息大不相同,主要是由于成像条件不同,以及样品厚度不同。了解这些影响因素才有利于研究者控制成像条件,获取研究所需要的有用信息。高分辨电镜图像可分为:晶格条纹;一维结构图像;二维晶格条纹;二维结构图像。 1)晶格条纹(lattice fringes) 晶格条纹像的成像条件没有严格限制,只要有两列电子波干涉成像即可,不要求对准晶带轴,在很宽的离焦条件和不同样品厚度下都可以观察到,所以很容易获得。在实际观测到的纳米颗粒(图6-1a)、微小第二相析出大都是晶格条纹像。这种图像只能用于观察对象的尺寸、形态,区分非晶态和结晶区,不能得出样品晶体结构相关的信息,不可模拟计算。尽管如此,当与材料制备加工的条件相结合,仍然可以有助研究分析。 2)一维结构图像(one-dimension structure images) 一维结构图像与晶格条纹像不同之处在于,成像时转动样品得到对应观察区域的一维衍射斑(图6-2),因此可以结合衍射斑和晶体结构模型来对观察区域的一维结构进行分析。在研究层错一位结构图像很有用。 图6-1a 纳米金颗粒的晶格条纹像

图6-2 一维结构图像 3)二维晶格像(two-dimensional lattice image) 大部分文献中出现的都是二维晶格像,此时晶体的某一晶带轴平行于入射电子束,因此相应的衍射花样对应晶胞的衍射谱。在不同的欠焦量下和样品厚度均可以获得二维晶格像,这是其大量出现的原因,也被广泛用于材料科学的研究中,用于获得位错、晶界、相界、析出、结晶等信息。要注意的是二维晶格像的花样是随着欠焦量、样品厚度以及光阑尺寸改变的,不能简单指定原子的位置。在不确定的成像条件下不能得到晶体的结构信息,可以计算模拟辅助分析。 4)二维结构图像(two-dimension structure images) 二维结构图像是严格控制条件下的二维晶格像,首先样品要很薄(小于10 nm),避免多次散射的不利影响;其次要使晶体的晶带轴严格平行于入射电子束;成像时欠焦量是控制(已知)的,通常最佳欠焦条件(Scherzer focus)下的图像衬度最大。尽管如此,晶体结构和原子位置并不能简单从图像上“看到”,欠焦量和样品厚度依然控制着晶格相的亮暗分布。 需要采用计算机辅助的图像模拟分析技术,才可能确定晶体结构以及原子位置。

扫描电镜原理及测试范围-详细

材料的显微结构包含:化学组成、元素分布和组成相的形貌(尺寸、分布和形状) 显微结构: 在各种显微镜下看到所有相区(phase region)及所包含的缺陷。通常包括晶粒和气孔的尺寸、大小和分布、相组成和分布、晶界特性、缺陷及裂纹,包括组成的均匀性。 显微结构表征的主要任务: 根据不同类型显微镜下观察的显微机构的特征,对他们的形成原因做出合理的分析和判断。 微束分析(Microbeam Analysis):利用一束细电子束、离子束、光束或粒子束作用于试样产生的各种信息,进行成分、形貌、结构及其他物理和化学特性的分析。 束斑大小:微米-纳米 主要功能:成分分析、结构分析、图像分析。 主要指标:束斑大小、分辨率、空间分辨率、灵敏度、准确度 定量分析:微束分析是物理方法,由于物理过程的复杂性,成分定量基本都用标样比较法并进行修正计算。 俄歇电子谱仪(AES:Auger Electron Spectroscope)称为扫描俄歇显微镜。表面分析仪器,进行元素定量分析(三维元素分析)、形貌观察、价态分析等。分析深度为1nm-2nm。分析H和He以外元素,对轻元素灵敏度高。 1.扫描电镜电子探针: (1)图像分辨率高、放大倍率大。分辨率为3nm-0.6nm,相对应最大有效放大倍率为100000-1600000倍;电子探针图像分辨率为3nm-6nm。 (2)景深大。扫描电镜的景深是透射电镜的10倍,是光学显微镜的100倍,特别适合观察一些粗糙不平的断口。 (3)无损分析。对大部分材料,只要尺寸能放入样品室,采用合适条件无需对试样进行任何处理即可再进行观察分析。 (4)试样制备简单。可以是自然表面、断口、块体、反光和透光光片。 EPMA和SEM的区别 EPMA:价格贵2-3倍 (1)成分分析,形貌观察,以成分分析为主。主要用WDS进行元素成分分析,出射角大、有OM,电流大,有较成熟的定量方法,所以定量结果的准确度较高。 (2)真空腔体大,成分分析束流大,所以电子光路、光阑等易污染,图像质量下降速度快,EPMA二次像分辨率3-6nm。 SEM:形貌观察,成分分析。图像分辨率高。FESEM:优于1nm,W灯丝:3nm。

(完整版)透射电子显微镜的现状与展望

透射电子显微镜的现状与展望 透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面 临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖。电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。 为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200— 500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有 了长足的发展。下面见介绍部分透射电镜和扫描电镜的主要性能 1.高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。 因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年

扫描电子显微镜 (SEM)介绍

扫描电子显微镜(SEM)介绍 (SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 目录 扫描电镜的特点 扫描电镜的结构 工作原理 扫描电镜的特点 和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点: (一) 能够直接观察样品表面的结构,样品的尺寸可大至 120mm×80mm×50mm。 (二) 样品制备过程简单,不用切成薄片。 (三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。 (四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。 (五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。 (六) 电子束对样品的损伤与污染程度较小。 (七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。 扫描电镜的结构 1.镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 2.电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至

扫描电子显微镜原理

扫描电子显微镜原理 扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 一.扫描电镜的特点 和光学显微镜及透射电镜相比,扫描电镜具有以下特点: (一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。 (二) 样品制备过程简单,不用切成薄片。 (三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。 (四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。 (五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。 (六) 电子束对样品的损伤与污染程度较小。 (七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。 二.扫描电镜的结构和工作原理 (一) 结构 1.镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 2.电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至几十nm的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜

扫描电镜入门基础知识解答

扫描电镜入门 1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较 可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?, 所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹 性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一 般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微 镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子 束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture ) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二 次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用 的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不 同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子 具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电 流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子 ,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

(精品)扫描电镜试题整理---赵玲玉

第一部分 1.如果实验室因电路打火,正确的处理方式是? 先切断电源,再用干粉或气体灭火器灭火,不可直接泼水灭火,以防触电或电器爆炸伤人。如果火势太大,应迅速离开现场,并向有关部门报告以采取有效措施控制和扑救火灾。 2.在装载样品以及实验中移动样品台时,有些什么注意事项? ①装载大样品时,应使用倾斜样品台倾斜样品;②用Z样品台提升样品时要十分的小心;③看断面的样品必须事先降低样品台; ④关闭样品室门时,缓慢轻关,待抽真空时再松手;⑤移动样品时,将载物台向X轴和Y轴方向移动,并保证位移量小于最大允许值,以防止样品撞坏探头或撞伤物镜极靴。 3.普通扫描电镜测试对样品的基本要求是? ①能提供导电和导热通道,不会被电子束分解;②在电子束扫描下具有良好的热稳定性,不能挥发或含有水分;③样品大小与厚度要适于样品台的尺寸;④样品表面应该清洁,无污染物;⑤磁性样品要预先去磁,以免观察时电子束受到磁场的影响。 4.按电子枪源分,扫描电镜分为哪几类,各有什么优缺点? 钨灯丝枪,六硼化镧枪和场发射电子枪。 ①钨灯丝枪其优点是钨灯丝造价和维护成本相对较低,缺点是分辨率较差;②六硼化镧枪寿命介于中间,但比钨枪容易产生过度饱和和热激发问题;③场发射电子枪价格最贵,需要高真空,但其寿命最长,不需要电磁透镜系统。 5.为什么不能在FEINova400场发射电镜对导磁性样品进行能谱分析或高分辨图像分析? 导磁性样品会磁化电镜的极靴,一旦吸到物镜极靴上,降低电镜的分辨率,影响电镜的性能。 6.在实验过程中,如果需要短暂离开,需要进行哪些必要的处理? 答案一1 看周边是否有有操作资格的人(老师或者是操作员)在场,如果有的话,让他们帮忙看着电镜;2如果没有有操作资格的人在场,那么此时要把高压卸掉,打开CCD,把样品台降低最低位置,退探头,使电镜处于静止状态才可短暂离开。离开时需要放置“暂停实验”警示牌,告知他人,实验暂停。 第二部分 1. X射线能谱仪由哪些部分组成?电子陷阱的功能是什么? 由半导体探测器,前置放大器和主放大器,多道脉冲高度分析器组成。电子陷阱的功能是储存载流子,只让X射线进入,防止电子进入探测器。 2. X射线能谱仪(EDS)、X射线波谱仪(WDS)和俄歇电子能谱仪各有什么优缺点? X射线能谱仪:优点:分析速度快,灵敏度高,谱线重复性好;缺点:能量分辨率低,峰背比低,工作条件要求严格。 X射线波谱仪:优点:波长分辨率很高;缺点:X射线信号的利用率极低,难以在低束流和低激发强度下使用。 俄歇电子能谱仪:优点:能做固体表面分析,对于轻元素(不包含H和He)具有较高的分析灵敏度;缺点:不能进行有机、生物以及陶瓷样品分析。

扫描电子显微镜操作规程

扫描电子显微镜操作规程 1. 打开墙上配电箱里的空气开关(见标签上开下关) 2. 打开变压器电源(正常电压应为100v) 3. 打开主机电源:钥匙拧到START位置,停两秒松手,钥匙回到I位置。 4. 打开电脑电源 5. 点击桌面图标,等待 6. 当HT图标显示蓝色后,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室 7. 正确选择Z轴高度(需要估计样品高度,Z轴大于样品高度 放入样品,关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 8. 打开HT图标(此图标在非真空下是灰色,真空位蓝色,打开灯丝拍照为绿色) 9. 选择扫描模式、加速电压(0.5-30KV之间选择,一般微生物类样品选10左右)、WD工作距离(10-15之间选择)、SS电子束斑(一般选30-40) 10. 在SCAN2下调焦、调整对比度及亮度、调消象散(放大时照片晃动、或者样品变形、或者整体移动可点WOBBLE(一般10000倍左右调节有效果)调节光缆使照片不晃动) 11. 高倍下调清晰度,低倍下拍照,拍照选择photo(曝光40秒)或者SCAN4(曝光80秒),拍完选择FREEZE并保存照片 12. 拍完照后关闭灯丝,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室,取出样品台;关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 13. 依次关闭软件、电脑、主机电源、变压器、空开 注意事项 1.注意Z轴的距离要足够高不要让样品碰到探头 2.慢慢调节光缆,防止调节过快看不到被观察物 3.取、放前一定要卸真空,再抽真空 4.关机的时候,要在真空状态下关机

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

扫描电镜测试手册

RD-PS-WI01S1A兴森快捷-技术中心□绝密□机密□秘密■内部公开

1.0 目的 本标准规定了与电子探针和扫描电镜联用的X射线能谱仪的定量分析方法的技术要求和规范,适用于电子探针和扫描电镜X射线能谱仪对块状试样的定量分析。 2.0 应用文献 GB/T 17359-1998 电子探针和扫描电镜X射线能谱定量分析方法通则 3.0 试样及标准样品 3.1试样 3.1.1将试样制成适于装入所用仪器样品座内的尺寸,并将试样分析表面磨平、抛光; 3.1.2试样表面要作净化处理,如用无水乙醇或丙酮溶液清洗,或用超声波清洗装置进行清洗,去掉一切外来的污染物; 3.1.3对不允许磨光的样品,应在显微镜下观察和挑选出较为平坦的表面,以备分析用; 3.1.4不导电的样品要喷镀碳膜或其他导电膜,并保证与试样座有良好的导电通路。 3.2标准样品 3.2.1首先选用国家标准化行政主管部门批准颁发的国家标准样品,尚无合适的国标时,可选用相应机构认可的研究标样; 3.2.2应尽量选择成分和结构与被分析试样相近的标准样品; 3.2.3应检查标准样品的有效期、表面质量(清洁度、无损伤划痕)和导电性。 4.0设备 4.1电子探针仪或扫描电镜的电子枪灯丝充分预热,使发射电流稳定; 4.2对电子光学系统进行合轴调整 4.2.1在扫描电镜中,用扫描图像法精确测定电子束聚焦点的最佳X、Y、Z的坐标位置; 4.2.2坐标位置一旦确定,电子光学合轴系统,包括物镜电流等参数,在定量分析情况下不得再调整。 4.3 X射线能谱仪 4.3.1 X射线能谱仪应预热30min,使其工作稳定; 4.3.2在使用有可变窗口光阑的探测器时,应选择合适的窗口直径,对计数率低的样品选用大直径的窗口光阑,对计数率高且谱峰容易重叠的样品选用小直径的窗口光阑; 4.3.3在定量分析时选择最佳的X射线探测器的几何条件(探头里样品的距离),在分析同一样品时,应保持该几何条件不变。 4.4 经常检查X射线探测器的窗口污染程度 4.4.1检查时可应用某一纯元素样品的高、低能量的X射线峰值强度比值来估算(如Cu的Kα与Lα谱峰之比值);4.4.2要经常保持探测器窗口清洁,当污染严重影响X射线的强度时应及时清洁窗口; 4.4.3当污染影响X射线的强度不太严重时,可通过增加X射线探测器的窗口厚度值参数进行修正。 4.5 X射线能谱仪的系统检查 4.5.1校验多道分析器的峰位漂移,利用能谱仪中的零位调节系统,使峰位漂移小于1道; 4.5.2校验分析器的能量刻度; 4.5.3检查多道分析器的检出效率; 4.5.4加盐脉冲处理器的状态,调节增益,并使噪音信号尽可能减小;

透射电子显微镜基本结构及功能

透射电子显微镜部分结构及功能 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructur es)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射式显微镜的结构与原理 透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。 在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(in temediate lens)。 透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、

HITACHI S4800扫描电子显微镜操作规程

HITACHI H-7650 透射电镜操作规程编号: QW148 HITACHI S4800扫描电子显微镜操作规程 样品准备及要求: 1.含水样品测试前必须干燥,样品要尽量的小,多孔样品做之前一般要烘两到三天; 2.粉末样品测试时尽量用最少量的样品,否则容易使电镜污染; 3.严禁观察磁性样品; 4.样品须处于样品台中央位置,样品表面平坦,样品厚度不可太大。 操作步骤: 一、开机顺序 1. 开墙上主机电源的开关,开启冷却循环水; 2. 将仪器后面板处的主电源开关(Main Power) 打开,之后按下Reset键; 3.启动Evac Power,等待TMP指示正常后顺序打开IP1、IP2 和IP3的电源开关: 4.达到真空度要求后,开启操作台电源,PC机自动启动进入Windows操作系统,并自动运行S-4800操作程序,此时点击OK (没有密码)后自动进入S 4800操作软件。 二、样品安装 1.在实验台上事先粘好样品,并用高度规检测其高度; 2.装样品前确认工轴、WD,x,y以及Rotation是否复位(Z轴=8,WD=8,x=25,y=25,Rotation=0),如未复位,将其复位; 3.点击样品交换室的Air键,当听到笛的一声后轻轻的拉开样品交换室; 4.将样品杆手柄处于Unlock位置,把样品机座装于样杆的香蕉头处并转动手柄到Lock位置; 5.轻轻推住样品交换室,点击Evac键,抽好真空后点市Open键,样品交换室与样品室间的闸门自动打开; 5. 轻轻的推动样品杆的手柄将样品送至于样品台上,旋转手柄至Unlock, 拉出样品杆,最后点击Close关闭阀门,安装样品结束。 三、图像观察 1.加高压后即可进行调试观察; 2.首先在TV1模式下找到所要观察的区域; 3.在高倍下用coarse键粗聚焦,然后用fine键细调聚焦,直到图像清楚; 4.放回到观察倍数,用ABC或手动调到适合的对比度: 5. 在SLOW模式下观察调试后的图像,不合适重新执行步骤2,3,若合适即可拍照。 4、数据的存储刻录 1.数据只能用新光盘(非可擦写光盘)刻录,刻录数据应由仪器管理人员操作,严禁用移动硬盘、u盘等从电脑上拷贝数据(出于系统安全考虑): 2.电脑上的数据会定期清理,请及时拷贝备份: 3.使用后的样品(金属镀膜)保存1周,特殊情况(投稿论文)适当延长保存时间。 五、关机顺序 1. 观察完毕后,关闭高压; 2. 手动将之轴调到8m,WD 调到8mm,点击软件右上角的HOME键,使x,y

扫描电子显微镜的操作步骤和注意事项心得

扫描电子显微镜的操作步骤和注意事项心得扫描电子显微镜的操作步骤与注意事项一、样品制备 将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶 带上(对于大颗粒样品可直接将样品粘在导电胶带上)。 对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室 中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达 到真空度定好时间后加电压并开始计时,保持电流值,时间到后关闭电压,关闭仪器。取出样品。(注意:打开蒸金室前必须先关闭通气阀门,以防液体倒流。) 二、扫描电镜的操作 1.安装样品 “Vent”直至灯闪,对样品交换室放氮气,直至灯亮; 1) 按 2) 松开样品交换室锁扣,打开样品交换室,取下原有的样品台,将已固定好 样品的样品台,放到送样杆末端的卡抓内(注意:样品高度不能超过样品台高度,并 且样品台下面的螺丝不能超过样品台下部凹槽的平面); 3) 关闭样品交换室门,扣好锁扣; 4) 按“EVAC”按钮,开始抽真空,“EVAC”闪烁,待真空达到一定程度,“EVAC”点亮; 5) 将送样杆放下至水平,向前轻推至送样杆完全进入样品室,无法再推动为 止,确认“Hold”灯点亮,将送样杆向后轻轻拉回直至末端台阶露出导板外将送 样杆竖起卡好。(注意:推拉送样杆时用力必须沿送样杆轴线方向,以防损坏送样杆) 2.试样的观察(注意:软件控制面板上的背散射按钮千万不能点,以防损坏仪器) -51) 观察样品室的真空“PVG”值,当真空达到9.0×10Pa时,打开“

Maintenance”,加高压5kv,软件上扫描的发射电流为10μA,工作距离“WD”为8mm,扫描模式为“Lei”(注意:为减少干扰,有磁性样品时,工作距离一般为15mm左右); 2) 操作键盘上按“Low Mag”、“Quick View”,将放大倍率调至最低,点击“Stage Map”,对样品进行标记,按顺序对样品进行观察; 3) 取消“Low Mag”,看图像是否清楚,不清楚则调节聚焦旋钮,直至图像清楚,再旋转放大倍率旋钮,聚焦图像,直至图像清楚,再放大……,直到放大到所需要的图; 4) 聚焦到图像的边界一致,如果边界清晰,说明图像已选好,如果边界模糊,调节操作键盘上的“X、Y”两个消像散旋钮,直至图像边界清晰,如果图像太亮或太暗,可以调节对比度和亮度,旋钮分别为“Contrast”和“Brightness”,也可以按“ACB”按钮,自动调整图像的亮度和对比度; 5) 按“Fine View”键,进行慢扫描,同时按“Freeze”键,锁定扫描图像; 6) 扫描完图像后,打开软件上的“Save”窗口,按“Save”键,填好图像名称,选择图像保存格式,然后确定,保存图像; 7) 按“Freeze”解除锁定后,继续进行样品下一个部位或者下一个样品的观察。 3.取出样品 1) 检查高压是否处于关闭状态(如HT键为绿色,点击HT键,关闭高压,HT键为蓝色或灰色); mm,点击样品台按钮,按Exchang(2)检查样品台是否归位,工作距离为8 键, Exchang灯亮; (3) 将送样杆放至水平,轻推送样杆到样品室,停顿1秒后,抽出送样杆并将送样杆竖起卡好,注意观察Hold关闭,为样品台离开样品室。

相关文档
最新文档