神府煤焦化特性的研究

神府煤焦化特性的研究
神府煤焦化特性的研究

粉煤灰特性及应用

粉煤灰的特性及应用 摘要:中国是以煤炭为主要能源的国家,电力产量的76%是由煤炭产生的,每年用煤超过4亿吨,占全国原煤产量的三分之一。1997年全国排放的粉煤灰已达到1.6亿t,成为世界最大的排灰国。但是,目前我国的粉煤灰利用率仅为30%左右,主要用于筑路基和回填,每年仍有1亿t未能利用的粉煤灰,储存于灰场中。每年需征地3 333 hm2用于储灰,建灰场费用和运行费用都很高;另外,粉煤灰用于筑路或回填会受地区、时间的限制,存在使用不均衡、不连续的问题。因此,应该大力拓展粉煤灰在其他领域的应用。 关键词:粉煤灰特性综合利用 1.粉煤灰特性 1.1化学特性 燃料煤由有机物及无机物组成,有机物燃烧后生成碳、氢、氧,无机物燃烧后即生成粉煤灰。粉煤灰的化学成分与煤种、产地、燃烧炉型等有关。我国低钙灰的成分比较接近,其化学组成见表1。 由表1可见,粉煤灰的主要成分为氧化硅、氧化铝及氧化铁,其总量约占粉煤灰的85%左右。低钙煤中氧化钙含量较低,基本无自硬性;但是,目前我国高钙灰的排放量有明显增长的趋势,而高钙灰含有一定的自硬性矿物,有利于增进粉煤灰的强度贡献。另外,近年来随着锅炉容量的不断提高,炉内煤粉燃烧趋于完全,代表影响材料长期稳定性的烧失量也逐渐降低,因此可以说,经过高温燃烧后的粉煤灰是相当纯净的建材原料。 粉煤灰的化学组成Ⅲ 成分SiO2 A12O3 Fe2O3 CaO MgO SO3 Na2O K2O 烧失量 含量50.6 27.2 7.0 2.8 1.2 0.3 0.5 1.3 8.2 1.2物理特性 煤粉在锅炉中燃烧时,其无机物经历了分解、烧结、熔融及冷却等过程,冷却后的粉煤灰颗粒主要由硅铝玻璃体和少量碳粒组成,玻璃体又以单珠、连珠体和海绵状不规则多孔体组成。粉煤灰的品质主要取决于这些粒径、形貌不一的各种颗粒成分的组合比例。其中,粉煤灰的活化能力主要靠硅铝玻璃体,而在常温下硅铝玻璃体以多聚物组成为主,活化能力较低。因此,常温下粉煤灰是一种性质稳定的材料。 1.3粉煤灰的放射性和浸出物毒性 在人类日常的生活环境中,到处都存在着微量天然的放射性物质,主要为238 U、232 Th、226 Ra和40 K等4种放射性元素,只要其含量不超过一定的标准,对人类健康就不会带来负面影响。GB 6763—86中规定,建筑材料用工业废渣中放射性物质的含量应满足下列要求:ARa/330+An/260+AK/3800≤1 (1) ARa/200≤1 (2) 根据杨钦元[4]等测得的粉煤灰天然放射性元素的比活度,按上述两个公式[2][33计算的结果分别为o.93和o.73,均未超出国家标准,说明粉煤灰产品的放射性对人体是安全的。 粉煤灰中除了主要元素外,尚有一定量的镐、砷、铬、铅、汞、铜、锌、镍等对人体健康可能不利的微量元素。这些微量元素对环境的影响主要通过浸出作用体现。吴贤中[53等人

煤吸附水特性的研究

3第37卷 第4期 2006年7月   太原理工大学学报 J OU RNAL OF TA IYUAN UN IV ERSIT Y OF TECHNOLO GY  Vol.37No.4  J uly2006 文章编号:100729432(2006)0420417203 煤吸附水特性的研究 李祥春,聂百胜 (中国矿业大学资源与安全工程学院,北京100083) 摘 要:主要分析了煤吸附水的机理及其对吸附瓦斯的影响。分析表明,煤对水分子的吸附从本质上是由于水分子与煤表面分子相互吸引的结果,它们之间的作用力主要包括van der Waals力和氢键。van der Waals力来源于原子和分子间的色散力、取向力(静电力)、诱导力和交换力4种作用。由于水分子与煤表面分子的作用力比较强,煤中水分的存在降低了煤的甲烷吸附量。 关键词:煤;水;吸附;分子间力 中图分类号:TD77 文献标识码:A 我国是煤炭资源大国,煤层气资源极为丰富。煤层气的开采具有重要意义:一是从根本上消除了煤炭开采中造成的瓦斯爆炸、瓦斯突出等灾害;二是降低了大量瓦斯排放造成的环境污染;三是可以缓解我国的能源紧张局面。由于煤层气藏的形成需要有一个稳定的水动力条件,因此,储层中含有大量的水和煤层气共存。在煤层气开采过程中存在单相水流阶段、非饱和流阶段和水气两相流阶段,因此,研究煤吸附水的机理及其对吸附瓦斯的影响对煤层气的开采将很有意义。 1 煤的物理结构 煤是一种多孔介质,其分子结构存在着晶体缺陷,具有较大的内表面积和容纳空间。其孔隙结构分为基质孔隙和裂隙孔隙,是一种双重孔隙系统。其特征为:煤基质被天然裂隙网分成许多方块(基质块体)。基质是主要的储存空间,裂隙是主要的渗流通道。裂隙孔隙主要包括独特的割理系统和其它天然裂隙,后者与割理系统相比,受局部构造等因素控制,重要性小得多。煤层割理主要是由煤化作用过程中的煤物质结构、构造等的变化而产生的裂隙。根据在层面上的形态和特征,分为面割理和端割理,通常正交或近似正交,垂直或近似垂直于煤层面。煤的孔隙性测定表明,煤的孔隙分布是很不均匀的,并且各种煤孔隙及孔隙连通类型也不同。煤的孔隙包括了互相连通和互不连通的两大部分,前者指流体(气体、液体)可以通过的孔隙,后者指流体不能通过的部分。通常认为相互连通的孔隙空间称为有效空间,不能相互连通的孔隙空间称为无效孔隙空间,而整个孔隙空间称为总孔隙空间。煤的天然孔隙率和裂隙率是煤的一个主要特征,它决定了煤的吸附容积和煤的储存性能。 2 煤吸附水的本质 煤体表面是在煤体破裂或晶体生长时形成的,无论哪一种情况,表面都有剩余的不饱和键和键能,因此具有“表面能”[1]。由能量最低原理可知,系统的能量越低越稳定,所以煤表面在平衡过程中总是力图吸收周围其它物质以降低其表面自由能。另外,由于煤体在地层深部受到上覆岩层压力的作用、地质活动的影响以及采矿等因素的影响,一直处于流变或变形过程,会生成许多新的表面,在这些新生表面上也会产生许多悬键,它们也具有极性,处于力的非平衡态,煤的新生表面实际上是众多断裂化学键的集合,这些断裂化学键是非常活泼的,也是极不稳定的,具有极高的能量,它们极易与周围其它物质的分子或原子发生作用而得以饱和,降低表面的能量,达到新的能量平衡态。正是这种表面能的存在,使得表面对外界的物质分子、原子、离子等均会产生吸附作用,对水分子当然也会产生吸附作用。表面能的高低对煤体表面的吸附能力起决定性的影响。处于煤体表面的分子、原子或离子的吸引力和表面 3收稿日期:2005209202 基金项目:国家自然科学基金资助项目(50404015) 作者简介:李祥春(1979-),男,内蒙古呼盟人,博士研究生,主要从事矿井瓦斯吸附渗流理论方面的研究,(Tel)133********, (E2mail)chinalixc123@https://www.360docs.net/doc/0e12047211.html, 通讯联系人:聂百胜,副教授,(Tel)010-823756620,(E2mail)Bshnie@https://www.360docs.net/doc/0e12047211.html,

9-GBT476煤的元素分析方法

煤的元素分析方法 GB/T 476-2001 代替GB/T 476-1991 1 范围 本标准规定了煤中碳氢分析的三节炉法、二节炉法以及煤中氮测定的半微量开氏法的方法原理、试剂和材料、装置、试验步骤、结果计算及精密度等,本标准还规定了煤中氧含量的计算方法。 本标准适用于褐煤、烟煤和无烟煤。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 212 煤的工业分析方法(ISO 11722,ISO 1171,ISO 562 eqv) GB/T 214 煤中全硫的测定方法(ISO 334 eqv) GB/T 218 煤中碳酸盐二氧化碳含量的测定方法(ISO 952 eqv) 3 碳、氢测定 3.1 方法原理 一定量的煤样在氧气流中燃烧,生成的水和二氧化碳分别用吸水剂和二氧化碳吸收剂吸收,由吸收剂的增量计算煤中碳和氢的含量。煤样中硫和氯对碳测定的干扰在三节炉中用铬酸铅和银丝卷消除,在二节炉中用高锰酸银热解产物消除。氮对碳测定的干扰用粒状二氧化锰消除。 3.2 试剂和材料 3.2.1 碱石棉:化学纯,粒度1~2mm;或碱石灰(HG 3-213):化学纯,粒度0.5~2mm。 3.2.2 无水氯化钙(HG 3—208):分析纯,粒度2~5mm;或无水高氯酸镁:分析纯,粒度1~3mm。 3.2.3 氧化铜(HG 3—1288):化学纯,线状(长约5mm)。 3.2.4 铬酸铅(HG 3—1071):分析纯,粒度1~4mm。 3.2.5 银丝卷:丝直径约0.25mm。 3.2.6 铜丝卷:丝直径约0.5mm。 3.2.7 氧气(GB/T 3863):99.9%,不含氢。氧气钢瓶须配有可调节流量的带减压阀的压力表(可使用医用氧气吸入器)。

干馏热解工艺流程

干馏热解工艺流程 由干燥装置的带式输送机送入原煤贮槽储存。 首先进入褐煤干燥提升系统,用来自热解系统的热烟气进行气流干燥提升,将颗粒褐煤提升至干煤贮槽,干燥预热后的褐煤通过给料机加入到静态混合器,在此与热的半焦热载体混合。由静态混合器出来的褐煤与半焦热载体混合物一并落入到反应器,反应器为混合物料提供充分的停留时间,使干馏进行完全。 干馏产生的荒煤气经二级旋风分离器除尘后入荒煤气洗涤器后送至冷鼓捕工段。同时,褐煤在反应器内完成干馏后生成的半焦(洁净煤),与半焦(洁净煤)热载体成为混合物以密相状态进入加热提升管的下部,同热烟气(含氧)燃烧并提升,进入到热半焦贮槽。在此提升过程中,半焦(洁净煤)中固定碳燃烧放热,半焦(洁净煤)被加热。在热半焦贮槽中气固分离后,半焦(洁净煤)作为热载体又以密相状态流入静态混合器,进行下一个循环。 本装置主要包括以下几部分: a)煤干燥系统 加入干燥提升管<10mm 的煤与来自高温气体换热器与520℃的烟气进行换热,煤被干燥到80℃左右并被提升至干煤一级旋风分离器和干煤二级旋风分离器, 分离下来的煤进入干煤贮槽。初步净化后约150℃的烟气经袋式除尘器进一步除尘后送至引风机。 b)煤热解系统 由干煤贮槽来的干煤经螺旋给料机送入静态混合器与来自热半焦贮槽的循环热半焦快速混合使煤料迅速升温进入反应器,在反应器中,煤发生热解反应产生荒煤气和半焦,产生的荒煤气由反应器上部引出进入油气一、二级旋风分离器,除尘后的荒煤气进入荒煤气洗涤器,用循环氨水将荒煤气洗涤冷却至82℃左右送至冷鼓电捕工段。 在反应器中产生的半焦在其下部排出,一部分进入热半焦缓冲槽并经冷焦机冷却(从520℃冷却至80℃)得到半焦产品;另一部分作为循环半焦进入加热提升管,并用来自烟气发生炉来的热烟气燃烧提升进入热半焦贮槽,作为煤热解的固体热载体。 c)动力系统 动力系统包括烟气发生炉、引风机空气鼓风机、烟气循环风机Ⅰ、烟气循环风机Ⅱ。

生物质与煤共热解特性研究

生物质与煤共热解特性研究 摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。 关键词:热重分析生物质煤热解共热解 随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。 1 生物质能的转化 生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。 固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。在生物质热化学转化过程中,热解是一个重要的环节。生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。生物质的组成、结构等对热解也都有影响。研究生物质与煤共同作为燃料所具有的特性可为更广泛的利用生物质能提供参考依据。 2 试验 2.1 试验仪器及性能指标 采用美国Perkin-Elmer公司生产的热重-差热联用仪(TG/DTA),其性能指标如下:

1-1、我国近年水煤浆气化制合成氨、甲醇情况汇总

我国近年水煤浆气化制合成氨、甲醇情况汇总 原料结构调整取得积极进展。随着一批先进煤气化技术开发成功和投入运行,氮肥行业的原料结构调整迈出新的步伐。到2014年底,我国采用水煤浆加压气化、干煤粉加压气化、碎煤加压气化技术已建成合成氨装置生产能力达到1700万吨,占全国合成氨总产能的23%。随着这些新技术的应用,采用非无烟煤为原料的产品比重明显提高,2014年以非无烟煤为原料的合成氨、尿素产能占比均达24%,相比2010年提高10个百分点以上。以常压无烟煤为原料的合成氨、尿素产能相比2010年分别下降了16个百分点和9个百分点。 水煤浆气化合成氨生产装置情况 2014年底,我国共有27家企业的合成氨生产装置采用水煤浆气化技术制取原料气,合成氨生产能力957.5万吨/年。 (1)GE水煤浆气化合成氨生产装置 2014年底,共建成采用GE水煤浆气化技术的合成氨生产企业9家,应用了23台气化炉,合成氨生产能力236.5万吨/年。 (2)多喷嘴对置式水煤浆气化合成氨生产装置 2014年底,共建成采用多喷嘴对置式水煤浆气化技术的合成氨生产企业6家,应用了11台气化炉,合成氨生产能力204万吨/年。 (3)多元料浆气化合成氨生产装置 2014年底,共建成采用多元料浆气化技术的合成氨生产企业13家,应用了34台气化炉,合成氨生产能力469万吨/年。 (4)清华炉水煤浆气化合成氨生产装置 2014年底,共建成采用清华炉水煤浆气化技术的合成氨生产企业2家,应用了7台气化炉,合成氨生产能力48万吨/年。 水煤浆气化合成氨生产产品产量及产能利用情况 2014年,全国采用水煤浆气化技术制取原料气的合成氨产量751.3万吨。

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

煤的低温干馏知识讲座

煤的低温干馏知识讲座 资源、环境和人口是当前困扰人类社会发展的三大问题,这三大问题与能源都有密切的关系。迄今为止,我国能源一直是以煤为主的多元化结构。 一次能源主要包括石油、天然气、煤、核电和水电,我国则以煤为主,煤占66.1%,石油24.6%,天然气2.5%,水电6.8%。所以中国形成了富煤少油缺气的能源格局。 1.1煤的形成 煤是由一定地质年代生长的繁茂植物在适宜的地质环境下,经过岁月漫长的煤化过程而形成的可燃矿物,属于化石燃料。占我国一次能源消费的66.1%;根据成煤植物的不同,煤可分为两大类,既腐植煤和腐泥煤。前者起源于高等植物,在自然界中储量大,分布广。我们通常讲的煤都是腐植煤;后者起源于低等植物和浮游生物,储量很少。由于腐植煤在自然界中分布最广,储藏量最大,而且在煤炭利用和化学加工方面占有主要地位,我们炼焦用的煤都是腐植煤。 植物在整个成煤过程主要经过泥炭化作用和变质作用两个过程,不同的煤是不同的泥炭发展到不同变质阶段的产物。因此,煤的性质和煤的生产过程密切相关。 根据变质程度的高低,腐植煤依次分为褐煤、烟煤和无烟煤。烟煤是炼焦生产的主要用煤,随着变质程度的加深,烟煤又分为长焰煤、

气煤、肥煤、焦煤、廋煤和贫煤。总体上根据变质程度的不同,植物演变成煤大致经过植物、泥炭、褐煤、烟煤、无烟煤五个阶段。 煤的低温干馏工业和干馏原理 一、煤的低温干馏概念 煤的低温干馏是除了煤的直接液化和间接液化意外,由煤制取清洁燃料的又一最为可行的技术路线。通过煤的低温干馏不仅可以获得洁净的液体和气体燃料,而且可以得到清洁的固体燃料及固体或液体化学品,同时从根本上实现了煤的分级和梯级深加工和利用,是发展循环经济和低碳经济的最佳技术途径之一。 二、焦化工业历史与革新 随着焦化工业的快速发展,中国也成为世界焦炭生产、消费及贸易大国。中国第一座机械化焦炉建于20世纪20年代,自50年代开始,自主设计,建设的焦炉成为产业发展的主流。陕北兰炭产业的起源可追述到上世纪八十年代中期,神府东胜煤矿开始建设,由于运输困难,煤炭加工利用的水平较低,为了提高煤的附加值,当地老百姓发明了堆烧生产兰炭的方法。由于生产工艺简单,投资小,产品应用领域广、价值高,因此,土法兰炭厂在本地得到了迅猛发展。但是,与此同时造成了严重的资源浪费和环境污染问题。上世纪九十年代中后期,通过技术改造和新工艺新方法的应用,陕北的土法兰炭生产逐渐被干馏炉炼焦工艺所取代,但由于兰炭生产企业分散、规模小、技

煤粉热解特性实验研究

第28卷第26期中国电机工程学报V ol.28 No.26 Sep.15, 2008 2008年9月15日 Proceedings of the CSEE ?2008 Chin.Soc.for Elec.Eng. 53 文章编号:0258-8013 (2008) 26-0053-06 中图分类号:TQ 530文献标识码:A 学科分类号:470?10 煤粉热解特性实验研究 魏砾宏1,李润东1,李爱民1,李延吉1,姜秀民2 (1.沈阳航空工业学院清洁能源与环境工程研究所,辽宁省沈阳市 110034; 2.上海交通大学机械与动力工程学院,上海市闵行区 200240) Thermogravimetric Analysis on the Pyrolysis Characteristics of Pulverized Coal WEI Li-hong1, LI Run-dong1, LI Ai-min1, LI Yan-ji1, JIANG Xiu-min2 (1. Institute of Clean energy and Environmental Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, Liaoning Province China; 2. School of Mechanical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240, China) ABSTRACT: The pyrolysis characteristics of different particle size Hegang(HG) and Zhungaer(ZGE) coal were investigated by non-isothermal thermogravimetry in high purity argon. The results show that there are four stages (dehydration, holding, rapid weight-loss and slow weight-loss) during the non-isothermal weight loss process of different granularity coal powders, the differential thermo- gravimetry(DTG) curve has two weight loss peaks when temperatures lower than 1400℃. There was no differences in the weight-loss characteristics of various samples at the temperature below 400℃. For the pyrolysis characteristics of HG coal with rising heating-up rate , the initial release temperature decreases, the maximum weight loss rate and pyrolysis index D increase. Therefore the heating-up rate increase is favorable to improving pyrolysis characteristics of pulverized coal. In addition, comparison between similar particle size HG and ZGF coal at 10℃/min heating rate shows that the pyrolytic characteristics of HG coal with high ash and similar volatile is better than ZGE coal. KEY WORDS: pulverized coal; pyrolysis characteristics; particle size; thermogravimetric analysis 摘要:利用热天平,以高纯氩气为气氛气体,研究了细化鹤岗煤和准噶尔煤的热解特性。实验结果表明,不同粒度的细化和超细煤粉的热失重过程可以分为4个阶段,在1400℃之前热失重微分曲线有2个失重峰。室温~400℃,各样品的失重特性无明显区别。400~980℃,粒度对煤粉失重速率间存在较好规律性。升温速率对鹤岗细煤粉热解特性的影响表现在,随着升温速率的提高,挥发分的初析温度降低;热 基金项目:国家高技术研究发展计划基金项目(2002AA527051);辽宁省教育厅A类计划项目(2004D079)。 The National High Technology Research and Development of China (863 Programme)(2002AA527051).解最大失重速率增大,达到最大失重速率的温度升高,煤粉的热解特性指数D值增大,即升温速率的增加有利于细煤粉的热解。此外,在10℃/min加热条件下,对比了平均粒径基本相同的鹤岗煤和准噶尔煤的热解特性,发现挥发分含量接近,而灰分含量较高的鹤岗煤的热解特性明显优于准噶尔煤。 关键词:煤粉;热解特性;颗粒粒度;热分析 0 引言 煤的热解作为煤燃烧过程中的一个重要的初始过程,对煤粉着火有极大的影响,也影响到燃烧的稳定性及后期的燃尽问题。由于煤本身具有复杂性、多样性和不均一性,因此影响煤热解的因素繁多,如煤阶[1]、矿物成分和含量[2]、粒径[3-4]、升温速率[5]、温度[6-7]、停留时间[5]、压力[8-9]、煤的显微组分[10]、气氛[11]等。超细煤粉燃烧技术是目前一种重要的有效控制NO x排放的燃烧技术(在电站煤粉锅炉燃烧方面,将超细化煤粉定义为20μm以下的煤粉[12]),美国2000年清洁煤技术项目中将超细煤粉再燃作为降低燃煤NO x排放的主要技术之一。本文采用非等温热重分析方法,研究了粒度、升温速率和煤种对细化和超细化煤粉的热解特性的影响,由微分热重曲线计算热解反应动力学参数。 1 实验部分 1.1 样品的选取和制备 实验采用鹤岗(HG),准噶尔(ZGE)煤,经过碾磨,不进行筛分制成细化和超细化煤粉,原煤的煤质分析数据见表1。

神华煤特点

神华煤特点 6月7日,神华股份在港完成招股,以7.5港元的价格发行30.635亿H股,筹资229.76亿港元。6月15日,神华股份(01088 HK)首日上市交易,收于7.3元。 我们认为,神华上市对A股煤炭上市公司的影响主要体现在两个方面:一方面,神华通过上市在资金、市场拓展及企业形象等方面得到进一步加强,从而对现有的上市公司造成竞争压力;另一方面,神华作为煤炭行业的龙头,其上市定位将成为现有的十多家煤炭公司估值重要的参照系,从而引发重新定位和估值分化。 同质产品面临压力 神华股份历年煤炭业务收入占主营业务收入比重始终在70%左右,我们认为,上市后神华必然会在其原煤的生产、运输、销售及综合利用等方面加大投入,因此,在这些环节与神华存在竞争的产品或企业将首先感受到压力,由于资源开采企业的扩张能力还受到资源禀赋及国家政策的制约,因此细分行业之间尚存在一定的进入壁垒,目前与神华不存在明显同质性的产品或企业中短期内受到的影响不大。 资源性竞争加剧 神华股份的4大矿区横跨晋、陕、蒙三省区,目前的主产区为神东公司及准能公司。 神华的主要开采区域在陕晋蒙三省交界处的乌兰木伦河沿岸,随着资源条件及配套能力的变化,其新增投资的重心正日益向内蒙准格尔、伊金霍洛及山西保德地区倾斜。其2007年前的主要新增产能包括补连塔一带扩建至3000万吨、黑岱沟技改扩建至2000万吨等。在相应区域拥有矿井的煤炭上市公司仅伊泰股份一家,但在相近区域有开采项目的则包括兖州煤业、西山煤电及拟上市的大同煤业的母公司同煤集团。 对动力煤企业冲击较大 神华煤特点为低灰(8.0%左右)、特低硫(小于0.50%)、特低磷、特低氯和中高发热量(低位热值5600~6000Kcal/kg),其用户包括电力、冶金、建材等多个行业,主要作为动力煤出售,而基本没有冶金和化工的原料煤生产。 从神华动力煤与部分上市煤炭企业的商品煤性能比较可以看出,神华煤的低硫低灰优于几乎所有上市公司,这对电厂无疑具有较强的吸引力,但其缺点在于挥发分较高,不适合长时间储存,另外,发热量为中等。因此,仅从性能指标看,神华煤与其他优质动力煤各有长短。目前,神华煤最大的竞争优势在于其生产成本,由于生产工效在国内位居首位,加上产运销一体化的模式,使神华煤炭的生产成本远低于国有重点煤炭生产企业的平均水平。2003年原中央财政企业原选煤成本为128.04元/吨,而神东矿公司的煤炭完全成本仅为71.93元/吨。成本优势为神华煤在电煤价格谈判上留出了很大的余地,使其可以较为轻松地面对"煤电博弈"。 由于目前电煤仍供不足需,加之电煤价格的市场化改革仍在进行中,神华在电煤方面的成本优势还体现得并不明显。一旦电煤市场出现走平甚至下滑的趋势,神华的成本优势将直接转化为对其他电煤企业的压力。一般认为,由于优质动力煤资源的缺乏,动力煤市场疲软在

煤的种类及特性

一、煤的种类(按炭化程度分) 1. 泥煤(草煤、泥炭)8380~10500kJ/kg 2. 褐煤10500~16700kJ/kg 3. 烟煤21000~29400kJ/kg 4. 无烟煤(白煤)21000~25200kJ/kg 一、矿物原料特点 (一) 煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。 6.脆度 是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。 7.断口 是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。煤的原始物质组成和煤化程度不同,断口形状各异。

煤的低温干馏生产工艺及污染治理

低温干馏生产工艺及污染治理 1. 低温干馏的概念 煤在隔绝空气下加热至高温600℃左右所发生的一系列复杂的物理、化学变化过程,称为煤的低温干馏。 2.干馏炉生产工艺特点及流程 干馏炉是煤低温干馏生产工艺中的主要设备。 鲁奇低温干馏炉是工业上已采用的典型炉型,其采用气体热载体内热式垂直连续进料,在中国俗称三段炉,即从上而下包括干燥段、干馏段和冷却段3部分。 2.1主要工艺特点 炉内采用大空腔设计,干燥段、干馏段没有严格的界限,干馏、干燥气体热载体不分;炽热的半焦进入炉底水封槽,用水冷却,采用拉盘和刮板机导出于馏产品;部分荒煤气和空气混合进入炉内花墙,经花墙孔喷出燃烧,生成千馏用的气体热载体将煤块加热干馏;煤气由炉顶集气伞引出进入冷却系统。 但其不足之处在于:①干燥和干馏气体热载体部分不足,导致出炉煤气热值低,难以符合工业和民用要求,对后续进一步加工利用造成巨大影响;②采用水封冷却出焦方式,表面看起来避免了由于煤气泄漏造成的环境污染,实际在生产中,黑褐色的熄焦高温废水,向空气中会发出大量有毒有害的气体;③由于半焦是从水里捞出,还需要浪费大量的煤气燃烧去烘干半焦;④煤干馏炉规模小,难以大型化。目前规模均为3~5万t/a的小型炉,属国家限制和淘汰的对象之一;⑤由于气体热载体必须由下向上穿过料层,要求料层有足够的透气性,并使气流分布

均匀,所以入料粒度应为20~80mm,需要由原煤破碎和筛分,其产率不高,价格还高于原煤;⑥于馏炉加料过程粉尘问题未得到有效解决。 2.2生产工艺流程图 原料煤由斗式提升机提升到炉顶储煤仓,并连续加入干馏炉,经预热段进入干馏段,干馏所用热量主要由回炉煤气与空气在火道内混合均匀后,经火口进入干馏段燃烧,干馏段下部成品干馏煤落入水封槽冷却,然后排出。荒煤气在干馏室内沿料层上升,通过煤气收集罩、上升管、桥管先后经文氏管塔、旋流板塔洗涤,煤气在风机的作用下回炉加热,剩余部分放散。焦油进入沉淀池脱水,然后集中在焦油池进行静置恒温

煤种分类及煤质特征

煤种分类及煤质特征 分为十四大类,24小类,大类为: 1)无烟煤:煤化程度最高,含碳量高达90%—98%,含氢量较少,一般小于4%。外观呈黑至钢灰色,因其光泽强,又称白煤。硬度高,不易磨碎。纯煤的真密度为1.4—1.9g/cm3,燃点高,火焰短,化学反应弱.主要生产氮肥和民用,少数电厂也用。. 2)贫煤:是煤化程度最高的烟煤,受热时几乎不产生胶质体,所以叫贫煤。含碳量高达90%—92%,燃点高,火焰短,发热量高持续时间长,主要用于动力和民用。 3)瘦煤:是煤化程度最高的炼焦用煤。特性和贫煤一样,区别是加热时产生少量的胶质体,能单独结焦。因胶质体少,所以称瘦煤。灰融性差,多用于炼焦。 4)1/3焦煤:介于焦煤、肥煤与气煤之间的含中等或较高挥发分的强粘结性煤。单独炼焦时,能生成强度较高的焦炭。

5)气肥煤:挥发分高、粘结性强的烟煤。单独炼焦时,能产生大量的煤气和胶质体,但不能生成强度高的焦炭。 6)1/2中粘煤:粘结性介于气煤和弱粘煤之间的、挥发分范围较宽的烟煤。 7)贫瘦煤:变质程度高,粘结性较差、挥发分低的烟煤。结焦性低于瘦煤。 8)焦煤:是结焦性最好的炼焦煤,也称主焦煤。中等挥发分,一般大于18%—30%,大多能单独炼焦。Y 值一般大于12%—25%,主要是炼焦用。 9)气煤:是煤化程度最底的炼焦煤,干燥无灰基挥发分均大于30%,胶质层最大厚度大于5—25mm,隔绝空气加热能产生大量煤气和焦油。主供炼焦,也作为动力煤和气化用煤。煤质低灰低硫,可选性好,是我国炼焦煤中储量最多的一种。 10)肥煤:中等煤化程度的烟煤,高于气煤。挥发分一般为24%—40%,胶质层最大厚度大于25mm,软化温度低,有很强的粘结能力,是配煤炼焦的重要成分。主要用于炼焦,也作动力用煤。

煤的元素分析剖析

煤的元素分析 煤的元素分析包括煤中碳、氢、氧、氮和硫的测定。由于我国煤质分析标准 将硫单独列为一项,所以,这里讲的元素分析,是指煤中碳、氢、氮的测定和氧 的计算。 第一节煤中碳、氢、氮和氧的存在形态和测定意义 煤由有机物和无机物两部分组成。无机物主要是矿物质和水;有机物主要由碳、氢、氧、氮、硫等元素组成。其中碳、氢、氧的总和占有机质的95%以上,其中碳元素占60%~98%,氢元素占0.8~6.6%,氧占1%~30%。氮含量变化范围不大,一般在0.3~3%之间,而硫元素大约占0.5~3%。一般来说随着煤化程度的加深,碳元素含量增加,氢、氧元素含量减少,表2-44是我国各种类别煤的元素组成。 表2-44 各种类别煤的元素组成 类别C daf/% H daf/% N daf/% O daf/% 褐煤60~76.5 4.5~6.6 1~2.5 >15~20 长焰煤77~81 4.5~6.0 0.7~2.2 10~15 气煤79~85 5.4~6.8 1~2.2 8~12 肥煤82~89 4.8~6.0 1~2.0 4~9 焦煤86.5~91 4.5~5.5 1~2.0 3.5~6.3 瘦煤88~92.5 4.3~5.0 0.9~2.0 3~5 贫煤88~92.7 4.0~4.7 0.7~1.8 2~5 无烟煤89~98 0.8~4.0 0.3~1.5 1~4 石煤93~97 0.5~3.0 0.5~1.0 1~4 泥煤55~62 5.3~6.5 1~3.5 27~34 煤中各种元素的赋存形式不尽一致。煤中碳、氢、氧主要以芳香族结构,脂 肪族结构以及脂环族结构存在,目前,一般认为煤是由带脂肪的侧链大芳环和杂 环的核所构成,碳是构成这些环的骨架,氢和其它元素结合分布在侧链和桥链上。少量碳以碳酸盐二氧化碳形式存在,少量氢、氧以结晶水方式存在。煤中氮,主

煤干馏设计

第一章煤干馏概述 第一节煤干馏的目的及方法 煤干馏,是煤化工的重要过程之一。指煤在隔绝空气条件下加热、分解,生成焦炭(或半焦)、煤焦油、粗苯、煤气等产物的过程。按加热终温的不同,可分为三种:900~1100℃为高温干馏,即焦化;700~900℃为中温干馏;500~600℃为低温干馏(见煤低温干馏)。 煤干馏过程主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。 煤干馏的产物是煤炭、煤焦油和煤气。 低温干馏,煤干馏方法之一,指采用较低的加热终温(500~600℃),使煤在隔绝空气条件下,受热分解生成半焦、低温煤焦油(见煤焦油)、煤气和干馏水过程。低温干馏的设备称为低温干馏炉。与高温干馏(即焦化)相比,低温干馏的焦油产率较高而煤气产率较低。一般半焦为50%~70%,低温煤焦油8%~25%,煤气80~100m3/t(原料煤)。 低温干馏的方法,按加热方式可分为外热式、内热式及内热外热混合式。在热载法中按加热介质的不同而有固体热载体法和气体热载体法两种。分别介绍如下: 内热式气体热载体法鲁奇-斯皮尔盖斯低温干馏法是工业上已采用的典型方法。此法采用气体热载体内热式垂直连续炉,在中国俗称三段炉,即从上而 下包括干燥段、干馏段和冷却段三部 分(图1)。褐煤或由褐煤压制成的 型块(约25~60mm)由上而下移动, 与燃烧气逆流直接接触受热。炉顶原 料的含水量约15%时,在干燥段脱除 水分至 1.0%以下,逆流而上的约 250℃热气体冷至80~100℃。干燥后 原料在干馏段被600~700℃不含氧 的燃烧气加热至约500℃,发生热分 解;热气体冷至约250℃,生成的半焦 进入冷却段被冷气体冷却。半焦排出 后进一步用水和空气冷却。从干馏段 逸出的挥发物经过冷凝、冷却等步 骤,得到焦油和干馏水。德国、美国、 苏联、捷克斯洛伐克、新西兰和日本

煤粉特性

1煤粉特性及自燃爆炸的条件 煤粉发生自燃和爆炸是由于煤的特性在加工成煤粉后所具有的特性 以及煤粉所处的环境条件所决定的。 1.1煤粉的流动性 它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此,制粉系统的严密性要好。 1.2煤粉的自燃与爆炸 积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中,煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤粉的爆炸。 影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。 一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。 煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。 煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在1.2~2kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气粉混合物温度越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在0.01~0.15s的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向外传 播而产生的很大的冲击力和声音。 潮湿煤粉的爆炸性较小,对于褐煤和烟煤,当煤粉水分稍大于固有水分时一般没有爆炸危险。 2制粉系统爆炸原因分析

GB476-91煤的元素分析方法代替GB476-1979

GB476-91 煤的元素分析方法 代替GB476-1979 本标准参照采用了国际标准ISO625:1975(E)《煤和焦炭碳和氢测定方法利比西法》和ISO333:1983(E)氮测定方法半微量开氏法》。 1.主题内容与适用范围 本标准规定了煤中碳、氢、氮含量的测定方法和氧含量的计算方法。 本标准适用于褐煤、烟煤和无烟煤。 2.引用标准 GB211 煤中全水分的测定方法 GB212 煤的工业分析方法 GB214 煤中全硫的测定方法 GB218 煤中碳酸盐二氧化碳含量的测定方法 3.碳和氢的测定 I.方法提要 称取一定量的空气干燥煤样在氧气流中燃烧,生成的水和二氧化碳分别用吸水 剂和二氧化碳吸收剂吸收,由吸收剂的增重计算煤中碳和氢的含量。煤样中硫 和氯对测定的干扰在三节炉中用铬酸铅和银丝卷消除,在二节炉中用高锰酸银 热解产物消除。氮对碳测定的干扰用粒状二氧化锰消除。 II.试剂和材料 i.碱石棉:化学纯,粒度1~2mm;或碱石灰(HGB3213):化学纯,粒度0.5~2mm。 ii.无水氯化钙(HGB3208):分析纯,粒度2~5mm;或无水过氯酸镁:分析纯,粒度1~3mm。 iii.氧化铜(HGB3438):分析纯,粒度1~4mm,或线状(长约5mm)。 iv.铬酸铅(HG3-1071):分析纯,粒度1~4mm。 v.银丝卷:丝直径为0.25mm vi.铜丝卷:丝直径约0.5mm。 vii.氧气:不含氢。 viii.三氧化二铬(HG3-933):化学纯,粉状,或由重铬酸铵、铬酸铵加热分解制成。 制法:取少量铬酸铵放在较大的蒸发皿中,微微加热,铵盐立即分解成墨绿色、 疏松状的三氧化二铬。收集后放在马弗炉中,在600±10℃下灼烧40min,放在 空气中使呈空气干燥状态,保存在密闭容器中备用。 ix.粒状二氧化锰:用化学纯硫酸锰(HG3-1081)和化学纯高锰酸钾(GB643)制备。 制法:称取25g硫酸锰(MnSO4·5H2O),深于500mL蒸馏水中,另称取16.4g高 锰酸钾,溶于300mL蒸馏水中,分别加热到50~60℃。然后将高锰酸钾溶液慢 慢注入硫酸锰溶液中,并加以剧烈搅拌。之后加入100mL(1+1)硫酸(GB625, 化学纯),将溶液加热到70~80℃并继续搅拌5min,停止加热,静置2~3h。 用热蒸馏水以倾泻法洗至中性,将沉淀移至漏斗过滤,然后放入干燥箱中,在 150℃左右干燥,得到褐色、疏松状的二氧化锰,小心破碎和过筛,取粒度0.5~ 2mm的备用。 x.氧化氮指示胶: 制法:在瓷蒸发皿中将粒度小于2mm的无色硅胶40g和浓盐酸30mL搅拌均匀。在 沙浴上把多余的盐酸蒸干至看不到明显的蒸气逸出为止。然后把硅胶粒浸入

相关文档
最新文档