半桥拓扑与应用规范标准

半桥拓扑与应用规范标准
半桥拓扑与应用规范标准

半桥拓扑基础及应用规

摘要

本技术文档主要针对半桥逆变器工作原理进行分析。通过半桥逆变器开关分析得出结论,半桥逆变器可以有条件的实现软开关,从而提高效率。

描述

对称半桥的主电路如图1所示。图1中包括两个互补控制的功率MOSFET,其中M1的占空比为D,M2的占空比为(1-D),DS1和DS2是开关的体二极管,隔直电容C2,作为开关M2开通时的电源。包括漏感Lk,励磁电感Lm的中心抽头的变压器,原边匝数为Np,副边匝数分别为Ns1和Ns2。

本文档针对下图的半桥逆变器展开分析,首先分析了逆变器架构以及半桥逆变器的优缺点,接着针对高效率的半桥逆变器工作原理进行分析,最后对变压器的设计,高压电容容值得选取进行了仿真,分析,并给出结论。

Figure-1 半桥逆变器架构示意图

1.半桥逆变器设计分析

因液晶屏本身没有发光功能,这就需要在液晶屏后加一个照明系统,该背光照明系统由发光部件、能使光线均匀照射在液晶表示面的导光板和驱动发光部件的电源构成。现在发光部件的主流为被称作冷阴极管的萤光管。其发光原理与室照明用的热阴管类似,但不需象热阴管那样先预热灯丝,它在较低温状态就能点亮,因此叫冷阴极管。但要驱动这种冷阴极管需要能输出1000~1500V交流电压的特殊电源。这种特殊电源称之为逆变器。

小尺寸CCFL(22寸以下)逆变器方案中,由于半桥架构设计简单,成本低,应用非常广泛,通常使用一个P+N的场效应管即可实现,其工作模式比较简单,下图为小尺寸方案中,半桥架构的波形和电路示意图。

从成本和效率的角度考量,大尺寸LCD-TV逆变器的输入逐渐改为由PFC(380V-400V)的输出直接输入,这就是我们所说的LIPS(LCD-TV Integrated Power Supply,液晶集成电源)方案。

Figure-4 LIPS电源和逆变器架构

大尺寸LIPS方案逆变器采用半桥或者全桥架构,半桥架构一般采用定频,MOSFET处在硬开关状态,这样会导致MOSFET上面很大的开关损耗,此外这种硬开关导致的EMI必须通过相应的手段去处理才能符

合EMC 的规要求。在成本上,因为逆变变压器漏感很大,储存的能量较大,而一般的MOSFET 体二极管反向截至的速度都比较慢,为了避免交叉导通。必须增加4颗超快恢复的二极管。

但是由于LIPS 方案中,逆变器的输入电压为PFC 的输出电压,通常设计其工作在最大占空比状态,即使用变压器的漏感,匝比来控制CCFL 工作电流。这样半桥架构同样可以实现MOSFET 的软开关状态,不仅可以获得不错效率,也可以顺利的通过EMC 规要求。这种方式正逐渐成为LIPS 方案中成本与性能兼顾的选择。

它的主要优点如下:

? 定频下也可以实现零电压导通

? 减少逆变器的EMI 问题,提高转换效率

? 减小散热器面积

? 提高电流正弦度

? 不需要在桥臂上增加超快二极管

值得注意的是这种架构由于最大能量传输由输入电压,漏感共同决定,需要当漏感Llk 储存能量续流完成前,打开开关管,这样两个MOSFET 工作才能在软开关状态,如下图分析。这样将导致半桥的软开关只能在一个很窄的围能实现,由于变压器漏感在量产时候会有20%以上的偏差,以及pfc 输入电压和液晶屏幕的微小差别,都可能导致在量产时候,逆变器的两颗MOSFET 没有工作在软开关状态,过大的开关损耗导致其损坏。

Figure-5 半桥逆变器工作时序

对于上述的波形进行傅立叶分析,详尽的推导过程可以在信号与分析中获得,可以得到正弦波基波分量为:

22

sin 2m

rms V D π==,2sin rms VI V M D Vin ππ

==

2.半桥逆变工作原理分析

半桥架构实现软开关应用于42寸AU屏和32寸AU屏的逆变器方案中,它是通过在二次侧对驱动的处理——在同一桥臂的两个MOSFET直接插入漏感续流时间,来实现在一个较窄的围软开关的。下面对这种工作原理的每一个状态逐一进行分析。

初始状态时Q1=>On;Q2=>OFF,原边向次边传输能量,电流方向:Q1àTràC1àGND

第一阶段:Q1=>Off; D(Q2)=>On;当Q1=Off时,由于变压器一次侧存在自感电压,使得变压器一次侧的电流不能立即中断,故当Q1=Off时,Q2自身的二极管D被打开,此时电流方向:GNDàQ2àTràC1àGND

Q2晶体管Gate和Drain的波形图

Q2-Gate

Q2-Drain

第二阶段: Q2=>On,当Q2自身二极管被打开时,在二极管的Source和Drain之间电压大约为V DS=-0.7V,这时Q2晶体管被打开,因此,Q2开关晶体管有零电压切换功能。此时电流方向:Q2àTràC1àGND。

Q2晶体管Gate和Drain的波形图

Q2-Gate

Q2-Drain

第三阶段: Q2=>On, 此时原边向次边传输能量,电流流向:GNDàC1àTràQ2àGND (因为C1存在,所以漏感续流后电流反向)

第四阶段:Q2=>Off;D Q1=>On,当Q2=Off【半桥只能做到零电压开启(其实还是有0.7V),不能做到零电流关断】时由于变压器一次侧存在自感电压,使得变压器一次侧的电流不能立即中断,故当Q2=Off时,Q1自身的二极管D被打开,电流流向:GNDàC1àTrà D Q1àPFC

Q1-Drain

Q1-Gate

Q1晶体管Gate和Drain的波形图

第五阶段:Q1=>On;, 开关晶体管Q1的Source和Drain之间的电压V DS=-0.7V,这时开关晶体管Q1被打开,因此,晶体管Q1具有零电压切换功能。

Q1-Drain

Q1-Gate

Q1晶体管Gate和Drain的波形图

通过对每一个阶段工作状态的分析,两个MOSFET均可以实现软开关,提高效率。但是如果漏感选择不恰当,或者占空比太小,在第一阶段续流和第四阶段漏感续流结束后才打开Q1和Q2,Q1和Q2将工作在硬开关状态,同样不能实现软开关,这是在设计中需要注意的问题。实际的工程设计中,通常会让半桥工作在最大占空比状态,即保证续流时间打开Q1和Q2。

3.变压器的设计与分析

3.1谐振电路的分析与仿真

LCD-TV逆变器是通过变压器的漏感、谐振电容与CCFL灯管的阻抗共同构成一个LCR二阶电路对方波进行滤波来产生一个近似的正弦波的。为了计算变压器的参数,对逆变器架构进行了简化,下图是这个电路的简化过程。

根据这个等效电路进行仿真可以得到下面左图的增益曲线,其中频率”L”表示的原边隔直电容Cs与主电感Lm之间谐振产生的谐振点,通常这个频率点都非常低,低于10kHz,逆变器没有工作在这个频率点附近,所以计算中,我们可以忽略两个元器件产生的效应。

频率点”H”表示的是漏感”Llk,高压电容Cp和CCFL阻抗R产生的谐振点,这三个元器件值的选取在半桥谐振电路中是最重要的,它们综合作用,决定了开路电压,灯管电流,和工作频率。

针对变压器的漏感”Llk,高压电容Cp和CCFL阻抗R产生的谐振点我们进行分析,变压器的输出电压为Vin*N*Q,Vin表示变压器原边的rms值,可以看出当增益减小时,变压器的输出电压也会减小

而从增益曲线可以看出,当CCFL没有被点燃,处于无穷大阻抗时产生,谐振点上有一个很大的增益将可以灯管点燃当负载,而当CCFL灯管的阻抗减小时,谐振电路的电压增益和谐振点都会减小,此时,可以保证CCFL灯管的正常工作。

3.2 逆变器的等效电路

在半逆变器架构中,包括了隔直电容Cs,原边漏感Ll1,原边主感Lm,匝比Np:Ns,次边漏感Ll2,屏的寄生电容Cpara和高压电容Cout,如下图所表示。在工程设计中,需要对这个架构进行简化和等效,使其便于工程计算。

定义Co等于Cout和寄生电容之和,Neff为考虑实际原次边之间所存在较大的漏感后的匝比

(0.8

eff

n n

=),在实际计算中,将原边的搁置电容、漏感和主感等效到二次侧后,可以得到等效电路:

2

1

eff l

n L在工程设计是一个非常小的值可以忽略不计,如前面所述的,2

/

o

C n和2

M

n L产生的

谐振点远低于逆变器的工作频率,也即是在工程设计中,2

M

n L是一个非常大的值,在增益计算中可以忽略。这样就得到了下图的等效电路。

将电路简化后,可以得到拐点频率为:

I P

L C

ω=,特性阻抗为:

00

1

I

I

P P

L

Z L

C C

ω

ω

===

相对于这个拐点频率的加载品质因数为:

00

lamp lamp

L P lamp

I

R R

Q C R

L Z

ω

ω

===

由等效电路可以得出输入阻抗为:

2

00

1

11

11

1

lamp

lamp

L

p

lamp

p L

R j

R Q

j C

Z j L

R

j C Q

ωω

ωω

ω

ω

ω

ωω

??

????

??

-+

? ?

??

????

??

=+=

??

++ ?

??

2

22

2

00

2

1

1

L

L

Q

Z

Z

Q

ωω

ωω

ω

ω

??

????

??

-+

? ?

??

????

??

=

??

+ ?

??

2

2

00

1

arctan1

L

L

Q

Q

ωω

?

ωω

??

??

????

??

??

=+-

??

? ?

??

????

??

??

??

,cos

S

R Z?

=,sin

S

X Z?

=

谐振频率

r

f定义为当相位角为零时的频率,则可以得到

2

2

00

1

10

L

L

Q

Q

ωω

ωω

??

????

??

+-=

? ?

??

????

??

,也即是

2

1

1

r

L

f

f Q

=-1

L

Q≥

根据等效电路,得到电压传递函数为:

半桥电路的工作原理及注意问题

半桥电路的工作原理及注意问题 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。首先我们先来了解一下半桥电路的基本拓扑: 半桥电路的基本拓扑电路图 电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。半桥电路概念的引入及其工作原理电路的工作过程大致如下:参照半桥电路的基本拓扑电路图,其中Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。Q1 关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。Q1关断,Q2开通。此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。副边两个二极管完成换流。半桥电路中应该注意的几点问题偏磁问题原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效

半桥拓扑与应用规范标准

半桥拓扑基础及应用规 摘要 本技术文档主要针对半桥逆变器工作原理进行分析。通过半桥逆变器开关分析得出结论,半桥逆变器可以有条件的实现软开关,从而提高效率。 描述 对称半桥的主电路如图1所示。图1中包括两个互补控制的功率MOSFET,其中M1的占空比为D,M2的占空比为(1-D),DS1和DS2是开关的体二极管,隔直电容C2,作为开关M2开通时的电源。包括漏感Lk,励磁电感Lm的中心抽头的变压器,原边匝数为Np,副边匝数分别为Ns1和Ns2。 本文档针对下图的半桥逆变器展开分析,首先分析了逆变器架构以及半桥逆变器的优缺点,接着针对高效率的半桥逆变器工作原理进行分析,最后对变压器的设计,高压电容容值得选取进行了仿真,分析,并给出结论。 Figure-1 半桥逆变器架构示意图 1.半桥逆变器设计分析 因液晶屏本身没有发光功能,这就需要在液晶屏后加一个照明系统,该背光照明系统由发光部件、能使光线均匀照射在液晶表示面的导光板和驱动发光部件的电源构成。现在发光部件的主流为被称作冷阴极管的萤光管。其发光原理与室照明用的热阴管类似,但不需象热阴管那样先预热灯丝,它在较低温状态就能点亮,因此叫冷阴极管。但要驱动这种冷阴极管需要能输出1000~1500V交流电压的特殊电源。这种特殊电源称之为逆变器。 小尺寸CCFL(22寸以下)逆变器方案中,由于半桥架构设计简单,成本低,应用非常广泛,通常使用一个P+N的场效应管即可实现,其工作模式比较简单,下图为小尺寸方案中,半桥架构的波形和电路示意图。

从成本和效率的角度考量,大尺寸LCD-TV逆变器的输入逐渐改为由PFC(380V-400V)的输出直接输入,这就是我们所说的LIPS(LCD-TV Integrated Power Supply,液晶集成电源)方案。 Figure-4 LIPS电源和逆变器架构 大尺寸LIPS方案逆变器采用半桥或者全桥架构,半桥架构一般采用定频,MOSFET处在硬开关状态,这样会导致MOSFET上面很大的开关损耗,此外这种硬开关导致的EMI必须通过相应的手段去处理才能符

半桥式开关电源原理

一种基于SG3525的半桥高频开关电源 唐军,尹斌,马利军 河海大学电气工程学院,江苏南京(210098 ) E-mail:jeefrain@https://www.360docs.net/doc/0e13587927.html, 摘 要:文中简要介绍了SG3525芯片的功能及内部结构,介绍了一款基于SG3525芯片的半桥高频开关电源。给出了高频变压器、PWM 控制电路的设计方法,并给出了实验结果。 关键词: SG3525、开关电源、半桥、高频变压器 1. 引言 随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多, 常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中, 变压器初级在整个周期中都流过电流, 磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因, 半桥式变换器在高频开关电源设计中得到广泛的应用。2. SG3525芯片的工作原理 PWM控制芯片SG3525 具体的内部引脚结构如图1及图2所示。其中,脚16 为SG3525 的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。脚5、脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。振荡器还设有外同步输入端(脚3)。脚1 及脚2 分别为芯片内部误差放大器的反相输入端、同相输入端。该放大器是一个两级差分放大器,直流开环增益为70dB 左右。根据系统的动态、静态特性要求,在误差放大器的输出脚9 和脚1 之间一般要添加适当的反馈补偿网络。 图1 SG3525的引脚 1

半桥拓扑及应用规范

半桥拓扑基础及应用规范 摘要 本技术文档主要针对半桥逆变器工作原理进行分析。通过半桥逆变器开关分析得出结论,半桥逆变器可以有条件的实现软开关,从而提高效率。 描述 对称半桥的主电路如图1所示。图1中包括两个互补控制的功率MOSFET,其中M1的占空比为D,M2的占空比为(1-D),DS1和DS2是开关的体二极管,隔直电容C2,作为开关M2开通时的电源。包括漏感Lk,励磁电感Lm的中心抽头的变压器,原边匝数为Np,副边匝数分别为Ns1和Ns2。 本文档针对下图的半桥逆变器展开分析,首先分析了逆变器架构以及半桥逆变器的优缺点,接着针对高效率的半桥逆变器工作原理进行分析,最后对变压器的设计,高压电容容值得选取进行了仿真,分析,并给出结论。 Figure-1 半桥逆变器架构示意图 1. 半桥逆变器设计分析 因液晶屏本身没有发光功能,这就需要在液晶屏后加一个照明系统,该背光照明系统由发光部件、能使光线均匀照射在液晶表示面的导光板和驱动发光部件的电源构成。现在发光部件的主流为被称作冷阴极管的萤光管。其发光原理与室内照明用的热阴管类似,但不需象热阴管那样先预热灯丝,它在较低温状态就能点亮,因此叫冷阴极管。但要驱动这种冷阴极管需要能输出1000~1500V交流电压的特殊电源。这种特殊电源称之为逆变器。 小尺寸CCFL(22寸以下)逆变器方案中,由于半桥架构设计简单,成本低,应用非常广泛,通常使用一个P+N的场效应管即可实现,其工作模式比较简单,下图为小尺寸方案中,半桥架构的波形和电路示意图。

从成本和效率的角度考量,大尺寸LCD-TV逆变器的输入逐渐改为由PFC(380V-400V)的输出直接输入,这就是我们所说的LIPS(LCD-TV Integrated Power Supply,液晶集成电源)方案。 Figure-4 LIPS电源和逆变器架构 大尺寸LIPS方案逆变器采用半桥或者全桥架构,半桥架构一般采用定频,MOSFET处在硬开关状态,这样会导致MOSFET上面很大的开关损耗,此外这种硬开关导致的EMI必须通过相应的手段去处

半桥同步整流设计报告

\ 半桥倍流同步整流电源的设计 摘要:现如今,微处理器要求更低的供电电压,以降低功耗,这就要求供电系 统能提供更大的输出电流,低压大电流技术越发引起人们的广泛关注。本电源系统以对称半桥为主要拓扑,结合倍流整流和同步整流的结构,并且使用MSP430单片机控制和采样显示,实现了5V,15A大电流的供电系统。效率较高,输出纹波小。 关键词:对称半桥,倍流整流,同步整流,SG3525 一、方案论证与比较 1 电源变换拓扑方案论证 方案一:(如下图)此电路为传统的半桥拓扑。由于MOS管只承受一倍电源电压,而不像单端类的承受两倍电源电压,且较之全桥拓扑少了两个昂贵的MOS 管,因此得到很大的应用。但在低压大电流的设计中,输出整流管的损耗无疑会大大降低效率,而且电感的设计也会变得困难,因此不适合大电流的设计。 方案二:传统半桥+同步整流。将上图半桥的输出整流管改为低导通内阻的MOSFET。如此可大大减小输出整流的损耗,提高效率。比较适合大电流的整流方案,但变压器的绕制和电感的设计较麻烦。 方案三:(如下图)半桥倍流同步整流。倍流整流很早就被人提出,它的特点是变压器输出没有中心抽头,这就大大简化了变压器的设计,并且提高了变压器的利用率。而流过变压器和输出电感的电流仅有输出电流的一半,这使得变压

器和电感的制作变得简单。并且由波形分析可以知道,输出电流的纹波是互相抵消的。该电路的不足是电路时序有要求,控制稍显复杂。由上分析我们选择方案三。 2 控制方案选择 方案一:由于控制芯片SG3525输出两路互补对称的PWM信号,则可将控制信号做如下设置(如下图)。 将驱动Q1的信号与Q4同步起来,Q2和Q3的信号同步,则可以实现倍流同步整流的时序同步,方案简单易行,但由于SG3525在输出较小占空比时有较大的死区,则输出MOSFET的续流二极管会产生较大的损耗。 方案二:将SG3525的驱动信号反向后送入输出整流MOS管,如此可以极大的减少低占空比时的损耗,且仅需一对反向驱动,故选用方案二。

六种基本DCDC变换器拓扑结构总结

六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。 正激变换器 绕组复位正激变换器 LCD复位正激变换器 RCD复位正激变换器 有源钳位正激变换器 双管正激 吸收双正激 有源钳位双正激

原边钳位双正激 软开关双正激 推挽变换器 无损吸收推挽变换器 推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管.但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免. 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同. 推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM中有应用. 半桥变换器也是双端变换器,以上是两种拓扑. 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决. 半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制. 全桥变换器 全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 接下去,会收集一些三电平变换器贴出来,在以后就给出boost族的隔离变换器....反激变换器.....正反激变换器......APFC.....PPFC.... 单级PFC.....谐振变换器等.....

MOSFET半桥驱动电路要点

半桥驱动电路要点 作者:万代半导体元件(上海)有限公司高级应用工程师葛小荣张龙来源:电子设计应用2009年第10期引言 MOSFET凭开关速度快、导通电阻低等优点在开关电源及电机驱动等应用中得到了广泛应用。要想使MOSFET在应用中充分发挥其性能,就必须设计一个适合应用的最优驱动电路和参数。在应用中MOSFET一般工作在桥式拓扑结构模式下,如图1所示。由于下桥MOSFET驱动电压的参考点为地,较容易设计驱动电路,而上桥的驱动电压是跟随相线电压浮动的,因此如何很好地驱动上桥MOSFET成了设计能否成功的关键。半桥驱动芯片由于其易于设计驱动电路、外围元器件少、驱动能力强、可靠性高等优点在MOSFET驱动电路中得到广泛应用。 桥式结构拓扑分析 图1所示为驱动三相直流无刷电机的桥式电路,其中L PCB、L S、L D为直流母线和相线的引线电感,电机为三相Y型直流无刷电机,其工作原理如下。 图1 桥式拓扑电路 直流无刷电机通过桥式电路实现电子换相,电机工作模式为三相六状态,MOSFET导通顺序为 Q1Q5→Q1Q6→Q2Q6→Q2Q4→Q3Q4→Q3Q5。 系统通过调节上桥MOSFET的PWM占空比来实现速度调节。 Q1、Q5导通时,电流(I on)由VDD经Q1、电机线圈、Q5流至地线,电机AB相通电。 Q1关闭、Q5导通时,电流经过Q5,Q4续流(I F),电机线圈中的电流基本维持不变。 Q1再次开通时,由于Q3体二极管的电荷恢复过程,体二极管不能很快关断,因此体二极管中会有反向恢复电流(I rr)流过。由于I rr的变化很快,因此在I rr回路中产生很高的di/dt。

半桥驱动电路工作原理 图2所示为典型的半桥驱动电路。 图2 半桥驱动电路原理 半桥驱动电路的关键是如何实现上桥的驱动。图2中C1为自举电容,D1为快恢复二极管。PWM在上桥调制。当 Q1关断时,A点电位由于Q2的续流而回零,此时C1通过VCC及D1进行充电。当输入信号Hin开通时,上桥的驱动由C1供电。由于C1的电压不变,VB随VS的升高而浮动,所以C1称为自举电容。每个PWM周期,电路都给C1充电,维持其电压基本保持不变。D1的作用是当Q1关断时为C1充电提供正向电流通道,当Q1开通时,阻止电流反向流入控制电压VCC。D2的作用是为使上桥能够快速关断,减少开关损耗,缩短MOSFET关断时的不稳定过程。D3的作用是避免上桥快速开通时下桥的栅极电压耦合上升(Cdv/dt)而导致上下桥穿通的现象。 自举电容的计算及注意事项 影响自举电容取值的因素 影响自举电容取值的因素包括:上桥MOSFET的栅极电荷Q G、上桥驱动电路的静态电流I QBS、驱动IC中电平转换电路的电荷要求Q LS、自举电容的漏电流I CBS(leak)。 计算自举电容值 自举电容必须在每个开关周期内能够提供以上这些电荷,才能保持其电压基本不变,否则V BS将会有很大的电压纹波,并且可能会低于欠压值V BSUV,使上桥无输出并停止工作。 电容的最小容量可根据以下公式算出: 其中,V F为自举二极管正向压降,V LS为下桥器件压降或上桥负载压降,f为工作频率。 应用实例

半桥电路的运行原理及注意问题

半桥电路的运行原理及注意问题 [导读] 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。 关键词:偏磁现象半桥电路 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。 首先我们先来了解一下半桥电路的基本拓扑。 电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。 半桥电路的基本拓扑电路图 半桥电路概念的引入及其工作原理 电路的工作过程大致如下:

参照半桥电路的基本拓扑电路图,其中Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。 Q1关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。 Q1关断,Q2开通。此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。副边两个二极管完成换流。 半桥电路中应该注意的几点问题 偏磁问题 原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。 如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效率,使晶体管失控,甚至烧毁。 在变压器原边串联一个电容的工作波形图

半桥拓扑结构高端MOSFET驱动方案选择

半桥拓扑结构高端MOSFET驱动方案选择 在节能环保意识的鞭策及世界各地最新能效规范的推动下,提高能效已经成为业界共识。与反激、正激、双开关反激、双开关正激和全桥等硬开关技术相比,双电感加单电容(LLC)、有源钳位反激、有源钳位正激、非对称半桥(AHB)及移相全桥等软开关技术能提供更高的能效。因此,在注重高能效的应用中,软开关技术越来越受设计人员青睐。 ?另一方面,半桥配置最适合提供高能效/高功率密度的中低功率应用。半桥配置涉及两种基本类型的MOSFET驱动器,即高端(High-Side)驱动器和低端(Low-Side)驱动器。高端表示MOSFET的源极能够在地与高压输入端之间浮动,而低端表示MOSFET的源极始终接地,参见图1。当高端开关从关闭转向导通时,MOSFET源极电压从地电平上升至高压输入端电平,这表示施加在MOSFET门极的电压也必须随之浮动上升。这要求某种形式的隔离或浮动门驱动电路。与之不同,低端MOSFET的源极始终接地,故门驱动电压也能够接地参考,这使驱动低端MOSFET的门极更加简单。 ? ?图1:LLC半桥拓扑结构电路图。 ?所有软开关拓扑结构都应用带浮接参考引脚(如MOSFET源极引脚)的功率开关。在如图1所示的LLC半桥拓扑结构中,高端MOSFET开关连接至高压输入端,不能够采用主电源控制器来驱动,而需要另行选定驱动电路。这驱动电路是控制电路与功率开关之间的接口,将控制信号放大至驱动功率开关管所要求的电平,并在功率开关管与逻辑电平控制电路之间有要求时提供电气隔离。高端MOSFET驱动方案常见的有两种,一是基于变压器的方案,二是基于硅集成电路(IC)驱动器的方案。本文将分别讨论这两种半桥拓扑结

MOSFET半桥驱动电路设计要领

MOSFET半桥驱动电路设计要领 作者:万代半导体元件(上海)有限公司高级应用工程师葛小荣张龙来源:电子设计应用2009年第10期引言 MOSFET凭开关速度快、导通电阻低等优点在开关电源及电机驱动等应用中得到了广泛应用。要想使MOSFET 在应用中充分发挥其性能,就必须设计一个适合应用的最优驱动电路和参数。在应用中MOSFET一般工作在桥式拓扑结构模式下,如图1所示。由于下桥MOSFET驱动电压的参考点为地,较容易设计驱动电路,而上桥的驱动电压是跟随相线电压浮动的,因此如何很好地驱动上桥MOSFET成了设计能否成功的关键。半桥驱动芯片由于其易于设计驱动电路、外围元器件少、驱动能力强、可靠性高等优点在MOSFET驱动电路中得到广泛应用。 桥式结构拓扑分析 图1所示为驱动三相直流无刷电机的桥式电路,其中L PCB、L S、L D为直流母线和相线的引线电感,电机为三相Y型直流无刷电机,其工作原理如下。 图1 桥式拓扑电路 直流无刷电机通过桥式电路实现电子换相,电机工作模式为三相六状态,MOSFET导通顺序为 Q1Q5→Q1Q6→Q2Q6→Q2Q4→Q3Q4→Q3Q5。 系统通过调节上桥MOSFET的PWM占空比来实现速度调节。 Q1、Q5导通时,电流(I on)由VDD经Q1、电机线圈、Q5流至地线,电机AB相通电。

Q1关闭、Q5导通时,电流经过Q5,Q4续流(I F),电机线圈中的电流基本维持不变。 Q1再次开通时,由于Q3体二极管的电荷恢复过程,体二极管不能很快关断,因此体二极管中会有反向恢复电流(I rr)流过。由于I rr的变化很快,因此在I rr回路中产生很高的di/dt。 半桥驱动电路工作原理 图2所示为典型的半桥驱动电路。 图2 半桥驱动电路原理 半桥驱动电路的关键是如何实现上桥的驱动。图2中C1为自举电容,D1为快恢复二极管。PWM在上桥调制。当Q1关断时,A点电位由于Q2的续流而回零,此时C1通过VCC及D1进行充电。当输入信号Hin开通时,上桥的驱动由C1供电。由于C1的电压不变,VB随VS的升高而浮动,所以C1称为自举电容。每个PWM周期,电路都给C1充电,维持其电压基本保持不变。D1的作用是当Q1关断时为C1充电提供正向电流通道,当Q1开通时,阻止电流反向流入控制电压VCC。D2的作用是为使上桥能够快速关断,减少开关损耗,缩短MOSFET关断时的不稳定过程。D3的作用是避免上桥快速开通时下桥的栅极电压耦合上升(Cdv/dt)而导致上下桥穿通的现象。 自举电容的计算及注意事项 影响自举电容取值的因素 影响自举电容取值的因素包括:上桥MOSFET的栅极电荷Q G、上桥驱动电路的静态电流I QBS、驱动IC中电平转换电路的电荷要求Q LS、自举电容的漏电流I CBS(leak)。 计算自举电容值 自举电容必须在每个开关周期内能够提供以上这些电荷,才能保持其电压基本不变,否则V BS将会有很大的电压纹波,并且可能会低于欠压值V BSUV,使上桥无输出并停止工作。 电容的最小容量可根据以下公式算出:

半桥电路的运行原理

半桥电路的运行原理 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。 在PWM和电子镇流器当中,半桥电路发挥着重要的作用。半桥电路由两个功率开关器件组成,它们以图腾柱的形式连接在一起,并进行输出,提供方波信号。本篇文章将为大家介绍半桥电路的工作原理,以及半桥电路当中应该注意的一些问题,希望能够帮助电源新手们更快的理解半桥电路。 首先我们先来了解一下半桥电路的基本拓扑。 电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。 半桥电路的基本拓扑电路图 半桥电路概念的引入及其工作原理 电路的工作过程大致如下: 参照半桥电路的基本拓扑电路图,其中Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。

Q1关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。 Q1关断,Q2开通。此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。副边两个二极管完成换流。 半桥电路中应该注意的几点问题 偏磁问题 原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。 如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效率,使晶体管失控,甚至烧毁。 在变压器原边串联一个电容的工作波形图

半桥式DC-DC变换器设计说明

半桥式DC-DC变换器设计 【摘要】近年来,随着电力电子器件、控制理论的发展和人们对电源性能要求的提 高,电力电子技术引起了学者们的广泛关注。目前一些发达国家正逐渐把电力变换技术广泛应用于民用工业领域,我国在这一领域的研究起步较晚,但随着国民经济的发展,适合于不同要求的各种变换器越来越引起科研人员的关注。 本文通过对Buck变换器的电路结构和工作原理进行分析,设计出一种半桥式DC-DC变换器,并采用闭环控制方法,将恒定的400V直流输入变为稳定5V的直流输出,保证了系统的供电性能。最后利用Matlab工具对所设计的电路进行仿真,仿真结果验证了所设计系统的有效性。半桥式DC-DC变换器由于电路结构简单,功率器件少且功率管上受到的电压应力小,在中小功率场合得到了较为广泛的应用。本文为进一步研究和开发相关产品提供借鉴。 【关键词】Buck 半桥 DC-DC MATLAB 【ABSTRACT】In recent years, with the development of power electronic devices,control theory and the increasing demand of high-quality power supply, power electronics technology has aroused widely attention from scholars. Power electronics technology is used gradually in civilian industrial areas in some developed countries. With the national economic development, the various converters for different requirements are developed and the related technology is studied by scientist and scholar. In this paper, the Buck circuit structure and working principle are analyzed and a half-bridge DC-DC converter is designed. The designed converter uses closed loop control scheme and realized the function that the power form is converted from 400 V DC voltage to 5 V DC voltage. The output voltage is stable and the performance of the designed converter is ensured. Simulation study was carried out and effectiveness of the designed converter is verified by simulation results. 【Key words】Buck half-bridge DC-DC MATLAB

LLC谐振半桥工作原理

LLC谐振半桥工作原理 引言 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。 一、LLC谐振变换器原理 图1LLC谐振原理图

图2LLC谐振波形图 图1和图2分别给出了LLC谐振变换器的电路图和工作波形。图1中包括两个功率MOSFET (S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。LLC变换器的稳态工作原理如下: 1)(t1,t2)当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体内二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。 2)(t2,t3)当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。 3)(t3,t4)当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中Lm>>Ls,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 4)(t4,t5)当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体内二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。 5)(t5,t6)当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。 6)(t6,t7)当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中Lm>>Ls,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 L6599的软启动电路 Pin12加上Vcc电压后,给Pin1(CSS)外接电容C13充电,此时C13可视为短路,R36与R32并联,电阻减少,L6599的振荡频率升高,电源功率下降,当C13充满电时,此时C13可视为开路,振荡频率由R32决定,振荡频率降低,电源输出正常,由此实现变频软启动功能。同时,VDC通过R20、R21、R22串联电阻及R30分压输入Pin7(Line),R30上并联的电容用来旁路噪声干扰。 Pin7(Line)电压低于1.25V关闭IC,高于1.25V低于6V时,IC正常工作,通过对VDC的电压检测,实现欠压保护功能。 IC完成软启动后,内部振荡器开始振荡,在Pin15(HVG)与Pin11(LVG)输出如图所示的两个占空比接近50%的脉冲,驱动MOS管开始工作。 FSFR1700XS稳压原理 次级电压通过取样电阻加在光耦(PC2)内发光管上,并与U402(TL431)的基准电压进行比较,U402的稳压值由上偏电阻R428和并联的下偏电阻R429、R430决定,稳压值由此公式算得: Vo=[R428/R29//R430+1]*1.5V 当负载由满载转向空载时,引起输出电压上升,ICS1(TL431)1脚的电压将上升,而1 脚的电压是稳定在2.5V的,这将引起3-2脚间流过的电流增大,光耦(PC2)内发光二极管的电流增大,光耦内光敏三级管流过的电流也增大,光敏三级管相当于一个可变电阻,此时内光敏管电阻变小,引起IC振荡频率升高,使输出电压下降,反之,当负载由空载转向满载时,输出电压降低,必然引起IC振荡频率降低,调节输出电压升高,实现了稳压的目的。

相关主题
相关文档
最新文档