镁合金的热处理_王慧敏

镁合金的热处理_王慧敏
镁合金的热处理_王慧敏

镁合金热处理过程中组织与相的变化

镁合金热处理过程中组织 与相的变化 Prepared on 24 November 2020

镁合金热处理过程中组织与相的变化摘要:本文研究了AZ91D等温热处理过程中的溶质扩散、晶界熔化、晶粒合并以及相变等对枝晶球化过程的影响。结果表明:随着热处理时间的延长,晶粒逐渐球化,而且发生合并现象;同时在界面能降低的驱使下,通过溶质原子的扩散,晶粒内部包裹小液滴;半固态部分重熔过程中经历以下相变:β→α,α +β→L,α→L。 关键词:AZ91D镁合金;等温处理;相变 The Research of Organization and Phase Change of Magnesium Alloy during Isothermal Heat Treatment Abstract: The effect of solute diffusion and the grain boundary melting and grain merger and phase transitions on dendrite spheroidzing process is researched during the isothermal heat treatment. The results show that the grains gradually spheroidize and appear the merger phenomenon with extending the heat treatment the same time, owing to decreasing interfacial energy; the packed small liquid drop form intra - grain by the diffusion of solute atoms, There is the following phase transition: β→α,α+β→L,α→L during The semi-solid remelting. Key words:AZ91D magnesium alloy; isothermal treatment; phase transition 1、概述 镁合金是现代金属结构材料中最轻的一种,以其密度低、比强度和比刚度高、尺寸稳定性好、电磁屏蔽好及价格稳定等优点,近年来在航空航天、仪器制造、国防和电子工业等领域,尤其是汽车工业中获得日益广泛的应用[1]。 镁合金半固态成具有成形温度低、凝固收缩小、缺陷和偏析减少、晶粒尺寸细小、模具寿命延长等优点,被专家学者誉为21世纪新一代新兴金属加工方法。但是,要实现镁合金的半固态成型,首先必须制备初生相为颗粒的非枝晶组织合金。国内外研究者常用的枝晶粒化方法为机械搅拌法或电磁搅拌法。由于机械搅拌法的工艺参数难以控制、搅拌设备易磨损和腐蚀、不适应与高熔点合金和易氧化合金,因此该法很难在工业上推广应

AZ80镁合金组织性能及其成型的关键技术

AZ80镁合金组织性能及其成型的关键技术 引言 金属镁始于1808年为人所知,直到1886年德国才开始将其用于工业领域。镁有广泛的用途,主要包括烟火制造、冶金,化学、电化学和结构件的应用。由于镁合金具有重量轻、比强度高、阻尼减振性好等优点,因而将其作为结构件被广泛地应用于航空航天、3C电子产品及交通运输等领域。目前,这些结构件都以铸造件特别是压铸件的应用为主,高性能的变形镁合金材料还处于研发和推广阶段。 在变形镁合金中。AZ80镁合金表现出最为优良的力学性能,通过合理改善其形变及热处理工艺能进一步提高其强度。本文主要介绍镁合金、AZ80镁合金的组织性能和关特征及其成型的关键技术。 1 镁合金及AZ80镁合金的组织性能 1.1 镁合金的特点 镁合金和铝合金的合金化原理几乎相同,都是通过加入合金元素,产生固溶强化、时效强化、细晶强化及过剩强化作用,以提高合金的机械性能、抗腐蚀性能和耐热性能。镁合金中常加入的合金元素有Al、Zn、Mn、Zr及稀土元素等。Al在Mg中即可产生固溶强化作用,又可析出沉淀强化相Mg,Al有助于提高合金强度;Zn在Mg中除固溶强化作用外,也可产生时效强化相MgZn,但效果不如Al显著,一般需与其他合金元素同时加入;Mn加入Mg中主要为提高合金的耐热性和抗蚀性,改善合金的焊接性能;Mg中加入的少量Zr,除细化晶粒外,还从合金的成分来看,目前工业中应用的镁合金主要集中于Mg—Al—Zn、Mg—Zn—Zr、Mg—Re—Zn 和Mg一Re—Zr等几个合金系,其中前两个是发展高强镁合金的基础。从生产工艺和性能的特点,上述镁合金分为变形镁合金和铸造镁合金两大类,其编号采用汉语拼音字母加序号。同一系列的镁合金既有可以作为变形合金,又有可以作为铸造合金:其中既可能含Zr又可能不含Zr。因此,对于不同的镁合金,它的性质特点也会不相同。 金属镁及其合金是迄今在工程上应用的最轻的结构材料,具有其它金属材料不可替代的优越性,镁合金具有以下几个特点: (1)镁合金的比重小,是目前最轻的结构材料,其密度在1.75~1.859/cm3之间,约为铝合合密度的1/3~l/2,约为钛合金的1/3,不到钢密度的1/4。这一特点对于现代一些便携类

WE镁合金的时效热处理研究

毕业论文方案设计 (WE镁合金的时效热处理研究) 学院:化学化工学院姓名:学号: 第一步:开炉(获得WE43、WE54镁合金工件)并对镁合金工件进行初步的处理 1.截面应控制在25mm 2.保证镁合金表面清洁和干燥 3.镁合金的长度待定 第二步:查资料得出未经处理WE镁合金的A.金相 B.硬度 C.室温静拉伸力D.XRD物相分析 第三步:对镁合金工件进行固溶处理, 合金状态 热处理工艺(固溶处理)温度(K)时间(h) WE43A T6 789 4—8 WE54A T6 789 4—8 注:(T6)固溶处理+人工时效 注意事项:1.先装炉,炉子升温到规定温度时开始计算保温时间 2.温度控制在±5K 3.在338K的清水或其他介质中从固溶温度处淬火 4.如果镁合金铸件热处理后的显微组织中化合物含量过高,或者在固溶处理后的缓冷过程中出现了过时效时,就要进行二次热处理,时间要限制在30min 以内。 5.一般从533K升温至固溶处理时间要大于2h 第四步:通过仪器测出经过固溶处理后WE镁合金的A.金相 B.硬度 C.室温静拉伸力 D.XRD物相分析 第五步:对镁合金工件进行人工时效处理 合金状态热处理工艺(人工时效处理)温度(K)时间(h) WE43A T6 523 16 WE54A T6 523 16 第六步:通过仪器测出经过人工时效处理后WE镁合金的A.金相 B.硬度 C.室温静拉伸力 D.XRD物相分析 第七步:分析各种性能变化的原因 注:显微组织检查 侵蚀剂组成侵蚀时间(s)操作程序应用范围 浓硝酸0.5ml+乙醇 99.5ml 5—10 将试片表面浸入侵蚀液中 用热水洗涤然后干燥 热处理 乙二醇75ml+蒸馏水24ml+浓硝酸1ml 5—10热处理前 1—2热处理后 涂在试样上经数秒后用热 水洗涤然后干燥 时效

热处理对于铸造镁合金的影响

热处理对于铸造镁合金的影响 热处理的影响热处理对于铸造镁合金没有任何影响,尤其是对高纯镁合金更没有影响。但是变形镁合金热处理对提高其耐蚀性非常有效。试验证明,镁合金经过均匀处理和淬火后,其在海水中耐蚀性最好,退火后固溶体耐蚀性最低。加热时效温度影响铸造镁合金的盐腐蚀速度,当时效温度高于二百到二百五十摄氏度以后,AZ91D腐蚀速度显著提高。工艺参数对镁合金耐蚀性影响很小。高纯镁合金经过T5和T6处理以后的腐蚀速度低于0.25mm/a。铸态和固溶处理后的晶粒尺寸越小,耐蚀性越好。试验证明,减小壁厚有利于改善铸造镁合金的耐蚀性,但是选择合理壁厚才能达到既提高耐蚀性又提高产量的目的。表面处理的影响表面状态对镁合金腐蚀有非常重要的影响,并且还与铁的含量有关系,可见湿砂处理的精细表面可以使腐蚀速度降低接近两倍。镁合金的冷加工,如拉伸和弯曲,对腐蚀速度没有明显度的影响。喷丸或者喷砂处理表面的耐蚀性能常常比较差,这并非冷加工效应所导致,而是因为表面嵌入了铁杂质。可以通过酸洗去掉0.001~0.005mm深度的这些杂质。若想彻底除掉杂质,最好采用氟化物处理。 镁及镁合金的氧化室温或者高于室温的干燥氯气、碘、溴和氟对镁合金几乎没有腐蚀。溴在低于沸点的时候,及时含有0.02%H2O其腐蚀性也不大。但是氯气中海油微量的水就会使镁合金产生剧烈腐蚀。镁和氧有很大的亲和力,镁和铝相似,但是其还原性更强,镁比

铝和氧的亲和力更大。在高温的时候镁在空气中极易发生氧化甚至燃烧,在高温下其氧化膜无保护性。镁和氧反应生成立方晶格的氧化镁,在氧中,前五到十分钟主要发生镁吸收氧反应,而吸氧速度迅速下降,一小时后几乎就停止了。在空气中镁的氧化速度比在氧气中的要低很多。温度在在四百到四百五十摄氏度的条件下,初始生成的氧化膜具有一定的保护性能。高于四百五十摄氏度的时候,由于生成氧化物体积小于被氧化金属的体积,则氧化膜失去了其保护性能。在高温的情况下,即使在干燥空气中镁也极易发生氧化。经过计算,硅、镁钙在高温四百摄氏度的时候都能被氧化,其中最容易被氧化的是钙,镁与氧的结合力大于硅,略低于钙。

镁合金热处理简介

镁合金热处理 各位领导、同事们: 很荣幸能在这里和大家共同学习。感谢公司领导给予我的机会! 我进入公司的这两年多时间,从事了镁合金熔炼、铸造、压力加工、热处理等方面的一些工作。今天,仅就自己在镁合金热处理方面工作、学习的部分收获及心得,与各位进行讨论。由于水平有限,错误与不当处在所难免,请各位不吝赐教。 固态金属(包括纯金属及合金)在温度和压力改变时,组织和结构会发生变化,统称为金属固态相变。金属中固态相变的类型很多,有的金属在不同的条件下会发生几种不同类型的转变。例如钢铁的奥氏体、铁素体转变。掌握金属固态相变规律及影响因素,采取措施控制相变过程,以获得预期组织,从而使其具有预期的性能。常用的措施包括特定的加热和冷却工艺,也就是热处理。钢铁的淬火,为的是快速冷却以保持其高温相,从而达到所需要的性能。 对于镁合金,常采用的热处理方式包括:均匀化退火(扩散退火)、固溶(淬火)(T4)、时效(T5)、固溶+时效(T6)、热水淬火+时效(T61)、去应力退火、完全退火等。这里做以下方面简要介绍: 1.均质化退火,其目的是消除铸件在凝固过程中形成的晶内偏析。那么,晶内偏析是如何形成的呢?这个,我们就需要了解结晶凝固过程,下图1为镁合金相图中最普通的Mg-Al相图: 以AZ61为例,从相图中我们可以看到,从液相线开始,熔体开始凝固,形核随着温度下降开始长大,在每一个温度点,液相和固相

图1 Mg-Al相图 成分分别对应于该温度时的液相线和固相线所对应的成分。造成了晶粒随温度下降而长大过程中的成分不均匀,也就是晶内偏析。均质化退火,主要作用就是将铸件加热到一定温度,使物质迁移作用明显,消除晶粒内浓度梯度。 对于固溶、时效等热处理手段,更确切的来说,是利用合金元素在基体中溶解度随温度变化这一属性。 2.固溶处理。基体不发生多型转变的合金系,室温平衡组织为α+β,α为基体固溶体,β为第二相。当合金加热到一定温度是,β相将溶于基体而得到单相α相固溶体,这就是固溶化。如果合金从该温度以足够大的速度冷却下来,合金元素的扩散和重新分配来不及进行,β相就不能形核和长大,α固溶体中就不可能析出β相,而且由于基体固溶体在冷却过程中不发生多型性转变,因此这时合金的室温

镁合金材料应用简介

镁合金材料应用简介 庄顺英 zsy@https://www.360docs.net/doc/0e16126597.html, 摘要::以下是转载,主要介绍镁合金材料的特性、种类、成型条件和处理工艺。关键词: 如:性能,特点,压铸设备,成型技术等

镁合金材料一直是作为机械零件来应用的,近年来,由于3C产品的轻薄化,使得镁合金产品在3C领域有着较为广泛的应用。 这种金属材料的特点,决定了它的加工方式与注塑产品有很大的不同,所以在这里对镁合金材料做个简单的介绍,主要包括镁合金材料简介、镁合金压铸设备简介、镁合金压铸模具简介和典型零件工艺流程简介,给大家在设计镁合金产品时做一个参考。 一、镁及镁合金材料简介 1、物理化学性能 镁为银白色金属,原子序数为12,原子量为24,是目前实际应用中重量最轻的结构金属。 镁的密度1.74 g/cm3,熔点650℃,沸点1107℃,比热1.03KJ/(kg* K),线胀 系数26×10-6/ K,弹性模量45GPa(在常用金属中是最低的)。 气氧化,生成一层很薄的氧化膜,但这种薄膜不致密,疏松多孔,而且脆性较大,远不如铝合金氧化膜坚实,所以镁的耐蚀性很差。 镁属于活泼金属,化学活性很强,与其他金属接触时会产生电化学腐蚀,即使皮膜处理后,也不能完全防止腐蚀。 2、机械性能及合金化 纯镁的机械性能较低,屈服强度σs=90MPa,抗拉强度σb=200MPa,延伸率:δ=11.5%,断面收缩率ψ=12.5%,一般不能直接用做结构材料。 因此,人们根据不同的使用要求,在镁中加入铝、锌、锰、硅、锆、铈等合金元素,创造出多种不同性能的镁合金。 铝的合金化可以改善机械强度,提高铸造性能,同时赋于材料热处理强化效果,但随着铝含量的增加,材料的延展性和断裂强度逐渐下降。 锌的合金化能改善机械强度,在含量适当时,能改善合金的塑性,但锌对铸造性能有不利的影响,增加形成疏松和热裂纹的倾向。 锰的合金化对提高耐腐蚀性能也十分有利,因为Mn可与合金中的Fe形成化合物作为熔渣被排除,消除Fe对镁合金耐蚀性的有害影响。 硅和其它稀有元素的镁合金,能促使形成细小的微粒分布在晶粒的周围,改善镁合金的高温蠕变性能,当然,这些合金在室温下也具有良好的机械性能。 合金化的个作用:第一,提高镁的机械性能;第二,降低液相温度,增加流动性,改善镁合金的铸造性能,减小收缩倾向;第三,针对镁合金在150℃以上,强度显著下降的特点,增强镁合金的高温抗蠕变性能。

钢的热处理及热处理后的显微组织观察实验报告资料

钢的热处理及热处理后的显微组织观察 实验报告 罗毅晗2014011673 一、实验目的 (1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。 (2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。 (3)观察碳钢热处理后的显微组织。 二、概述 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。热处理的基本操作有退火、正火、淬火、回火等。进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。 三、实验内容 显微组织观察 45钢860℃气冷索氏体+铁素体

45钢860℃油冷马氏体+屈氏体 45钢860℃水冷马氏体

45钢 860℃水冷+600℃回火回火索氏体 T12钢 760℃球化退火球化体

T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体 T12钢 1100℃水冷粗大马氏体+残余奥氏体

四、实验分析 1.火温度而言,淬火温度越高,硬度越高。但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。 2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。 3.火温度而言,回火温度越高,硬度越低。 图像: 分析原因: ①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。 ②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。因此,硬度大小为:空冷>炉冷>水冷>油冷。

③高温回火生成回火索氏体,中温回火生成回火屈氏体,低温回火生成回火马氏体+残余奥氏体。硬度大小为:回火马氏体>回火屈氏体>回火索氏体。因此,回火温度越低,生成产物硬度就越高。 五、思考题 (1)45钢的热处理时850℃水淬+550℃回火,即淬火+高温回火(调质处理)。生成物是回火索氏体。45钢广泛用于制造齿轮、轴类件、连杆、螺栓等工件。(2)回火温度越高,硬度越低。因为高温回火生成回火索氏体,中温回火生成回火屈氏体,低温回火生成回火马氏体+残余奥氏体。硬度大小为:回火马氏体>回火屈氏体>回火索氏体。因此,回火温度越低,生成产物硬度就越高。(3)用金相法观察产物。若产物中观测到大量白色晶粒状的铁素体,则是淬火加热温度不足;若产物中观测到大块黑色晶团状的屈氏体,则是冷却速度不足。 (4)45钢调制处理后生成回火索氏体,它是由粒状渗碳体和等轴形铁素体组成的混合物,在光学显微镜下观测到渗碳体小颗粒,它均匀地分布在铁素体中,性能方面,它具有良好的韧性和塑性,同时具有较高的强度,因此具有良好的综合力学性能。广泛用于制造汽车、拖拉机、机床和其他机器上的齿轮、轴类件、连杆、螺栓等工件。 T12球化退火的产物是球化体,球化体指的是铁素体基体上分布着细小均匀的球状渗碳体。球化退火是使钢中碳化物球状化的热处理工艺。性能方面,球化体塑性好,韧性强但硬度低;但球化体经过淬火和低温回火及磨削加工后的T12钢产物硬度高,韧性较低,可制造锉刀、刮刀等刃具及量规、样套等量具。

AZ31镁合金组织性能的影响研究

摘要 挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。 轧制变形使板材晶粒明显细化,硬度提高。AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。 关键词:AZ31变形镁合金;强化机制;组织;性能

绪论 20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。 大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。 目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。

第1章挤压变形对AZ31镁合金组织和性能的影响 1.1 挤压变形组织特征及挤压比的影响作用 图1-1为动态挤压变形过程中的组织变化。动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。图1-1a为初始区挤压变形前的铸态棒料组织。由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。晶粒尺寸为112~400μm。图1-1b为变形区近稳态区组织。图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。 图1-1c为稳态区纵断面组织。图中沿挤压方向分布的剪切条纹平行流线清晰可见,在平行流线上,分布着大量细小、致密的等轴晶粒。显然,形变组织已发生了再结晶,平行流线可能是变形纤维在再结晶组织中的再现。晶粒间几乎看不到α-Mg+Mg17Al12共晶组织。这表明,经过大的挤压变形后,铸态组织中的共晶体发生破碎,离散分布于α固溶体中。挤压流线密度较高,黑白相间,成簇状穿越每一个再结晶晶粒。挤压纤维横向尺度比再结晶晶粒要小的多。 图1-2为λ=28时稳定段不同截面组织。图1-2a为45°斜截面组织,图中晶粒细小,流线呈菊花瓣状分布。图1-2b为横断面组织,图中晶粒细小,短小的网状流线依稀可辨。挤压平行流线和再结晶等轴晶粒是变形组织的基本特征。图1-3为不同挤压比所对应的变形组织。 图1-3a为λ=16的组织,图1-3b为λ=64的组织。可知,在等温挤压条件下,随着挤压比的增大,合金变形程度增加,挤压组织进一步细化,挤压流线更加细密,晶粒变得更加细小。三种挤压比(λ=16、28、64)分别对应的晶粒平均尺寸为50μm、35μm和20μm。最小尺寸仅12μm,与快速凝固所形成的等轴晶尺寸(10μm)十分接近。 观察发现,在横断面和斜截面上,周边组织比中心区组织略显细小和致密些,在中心区域存在年轮状或花瓣状流线条纹。相应地,纵向挤压组织中也存在晶粒大小和剪切条纹分布不均匀现象,边缘区比轴线附近的条纹更加细密,晶粒显得更为细小。这主要与挤压棒材周边变形量较大,中心变形量较小,晶粒细化程度不同有关。

镁合金热处理工艺及研究现状

镁合金热处理工艺及研究现状 摘要:镁合金具有较高的比刚度、比强度、良好的电磁屏蔽性、减振性能和散热性能,是最轻的结构金属材料之一,在航空航天领域具有广泛的应用前景。本文综述了镁合金热处理工艺及其研究现状。 关键词:镁合金热处理研究现状 多数镁合金都可通过热处理来改善或调整材料的力学性能和加工性能。镁合金能否通过热处理强化完全取决于合金元素的固溶度是否随温度变化。当合金元素的固溶度随温度变化时,镁合金可以进行热处理强化。镁合金的常规热处理工艺分为退火和固溶时效两大类。 镁合金热处理强化的特点是:合金元素的扩散和合金相的分解过程极其缓慢,因此固溶和时效处理时需要保持较长的时间。另外,镁合金在加热炉中应保持中性气氛或通入保护气体以防燃烧。 一、退火 退火可以显著降低镁合金制品的抗拉强度并增加其塑性,对某些后续加工有利。变形镁合金根据使用要求和合金性质,可采用高温完全退火(O)和低温去应力退火(T2)。 完全退火可以消除镁合金在塑性变形过程中产生的加工硬化效应,恢复和提高其塑性,以便进行后续变形加工。完全退火时一般会发生再结晶和晶粒长大,所以温度不能过高,时间不能太长。当镁合金含稀土时,其再结晶温度升高。AM60、AZ31、AZ61、AZ60 合金经热轧或热挤压退火后组织得到改善。去应力退火既可以减小或消除变形镁合金制品在冷热加工、成形、校正和焊接过程中产生的残余应力,也可以消除铸件或铸锭中的残余应力。 二、固溶和时效 1、固溶处理 要获得时效强化的有利条件,前提是有一个过饱和固溶体。先加热到单相固溶体相区内的适当温度,保温适当时间,使原组织中的合金元素完全溶入基体金属中,形成过饱和固溶体,这个过程就称为固溶热处理。由于合金元素和基体元素的原子半径和弹性模量的差异,使基体产生点阵畸变。由此产生的应力场将阻碍位错运动,从而使基体得到强化。固溶后屈服强度的增加将与加入溶质元素的浓度成二分之一次方比。 根据Hmue-Rothery规则,如果溶剂与溶质原子的半径之差超过14%~15%,该种溶剂在此种溶质中的固溶度不会很大。而Mg的原子直径为3.2nm,则Li,Al,Ti,Cr,Zn,Ge,Yt,Zr,Nb,Mo,Pd,Ti,Pb,Bi等元素可能在Mg中会有显著的固溶度。另外,若给定元素与Mg的负电性相差很大,例如当Gordy定义的负电性值相差0.4以上(即∣xMg-x∣>0.4)时,也不可能有显著的固溶度。因为此时Mg和该元素易形成稳定的化合物,而非固溶体。 2、人工时效 沉淀强化是镁合金强化(尤指室温强度)的一个重要机制。在合金中,当合金元素的固溶度随着温度的下降而减少时,便可能产生时效强化。将具有这种特征的合金在高温下进行固溶处理,得到不稳定的过饱和固溶体,然后在较低的温度下进行时效处理,即可产生弥散的沉淀相。滑动位错与沉淀相相互作用,使屈服强度提高,镁合金得到强化: Tyield=(2aGb)/L+τ a (1) 式中Tyield为沉淀强化合金的屈服强度;τa为没有沉淀的基体的屈服强度;(2aGb/L)为在沉淀之间弯出位错所需的应力。 由于具有较低的扩散激活能,绝大多数镁合金对自然时效不敏感,淬火后能在室温下长期保持淬火状态。部分镁合金经过铸造或加工成形后不进行固溶处理而是直接进行人工时效。这种工艺很简单,可以消除工件的应力,略微提高其抗拉强度。对Mg-Zn系合金就常在热变

航空航天镁及镁合金应用

“航空航天、交通运输用高强镁合金加工材”类中,关键领域“航空航天”此方向下,具体产品(技术)名称中3类铸件锻件、挤压变形材、板带材,我公司是否有能力按照“产品(技术)要求”进行生产,并按照产品(技术)要求中的指标能生产的具体产品名称或方向各是哪些。 一.镁合金锻件运用领域 在大多数工程应用中,通常要求零件拉伸性能具有各向同性。因此,必须对镁合金铸锭坯进行不同方向的镦粗。使用三轴锻造可以控制镁合金三个方向上的镦粗过程,能有效避免各向异性。采用上述工艺可制备出的镁合金锻件,已成功地应用于航空、汽车等工业领域。比如,直升机及赛车发动机用镁合金锻件、直升机用镁合金锻件、箱罩用镁合金锻件,镁合金轮毂这些部件能承受极高的静态和动态交变载荷,并长期服役高温环境中。 二.锻造用典型镁合金 1.几种常用变形镁合金牌号和机械性能及其在航空领域的应用

锻造常用镁合金是Mg-Al-Zn、Mg-Zn-Zr和Mg-Mn 系,其他的还有Mg-Th、Mg -Re -Zn -Zr 和Mg-Al-Li 系等。 Mg-Al-Zn系合金一般属于中等强度、塑性较高的变形材料。按照ASTM标准,该系中常用的镁合金有AZ31B、AZ61A、AZ80A,我国与此相当的牌号分别是MB2、MB5、MB7。但是,Mg-A1-Zn系合金铸锭的实际晶粒尺寸不适于铸造后直接锻造,因此锻造前有必要对铸锭进行预挤压,以获得合乎要求的细晶组织,提高合金的可锻性。早在上世纪90年代李相容基于MB2制订出了镁合金的合理锻造工艺规范,随后国内很少有利用该系镁合金研制或生产镁锻件的报道。据悉俄罗斯已拥有用成套镁合金熔炼锻造生产线专利及专有技术,进行MA2—1(相当于我国牌号的MB3)镁合金锻造汽车轮毂和摩托车轮毂生产。 MB2是Mg-Al-Zn系不可热处理强化的变形镁合金。合金在室温下工艺塑性差,高温时塑性好,因此合金的压力加工工序必须在加热状态下进行。合金的切削加工性能、焊接性能良好,应力腐蚀倾向小,耐蚀性能较好。该合金可加工成形状复杂的锻件和模锻件,

镁合金的强化处理方法研究_丁亚茹

2012年1月内蒙古科技与经济Januar y2012 第1期总第251期Inner M o ngo lia Science T echnolo gy&Economy N o.1T o tal N o.251镁合金的强化处理方法研究X 丁亚茹,韩建民 (北京交通大学,北京 100080) 摘 要:研究了镁合金的强化处理方法。不同元素对镁的影响不同,通过加入不同的元素得到不同性能的镁合金;有些合金元素加入后形成固溶体,起到固溶强化。有些元素可析出第二相,起到第二相强化作用。 关键词:镁合金;固溶强化;第二相强化 中图分类号:T G166.4 文献标识码:A 文章编号:1007—6921(2012)01—0101—02 工业纯镁强度很低,不能满足在结构材料使用时的性能要求,那么,就要通过一些方法来提高镁的性能。其中,最常用的手段是可以通过合金元素的加入,起到固溶强化和析出强化来提高镁的性能。 1 合金元素的固溶强化 合金元素的固溶强化是指将镁基体中溶入合金化元素,所添加的合金元素原子替换晶格点阵上的镁原子,形成固溶体,引起晶格畸变使镁金属强化。 形成固溶体的基本条件:原子半径和镁相差小于15%,Li、Al、T i、Cr、Zn、Ge、Z r、Nb、Mo、P d、Ag、Cd、In、Sn、Sb、T e、Nd、W、Re、P t、Au、Hg、P b及Bi 等元素皆可与镁形成固溶体。 形成无限固溶体的条件:原子半径和镁相差小于15%、与镁具有相同的原子价、与镁的晶体结构相似,Cd和Z n可与镁元素形成无限固溶体[2]。 合金元素原子可以阻碍镁原子的自扩散,使镁合金的弹性模量增大,镁合金的熔点也随之增大,镁的抗蠕变性能升高。 2 合金元素的析出强化 位错和第二相交互作用形成第二相强化,一般情况下第二相强化比固溶强化效果更加显著。第二相强化可分为析出强化和弥散强化。析出强化是通过相变热处理获得的,也称沉淀强化;弥散强化是通过粉末烧结获得的。 2.1 析出强化[3] 析出强化是金属在过饱和固溶体中溶质原子产生偏聚,由之脱溶出微粒弥散分布于基体中而产生的一种强化。析出相阻碍了位错的滑移与运动,滑移位错间也可相互作用,阻碍彼此相对运动,从而提高了屈服强度。析出相还必须具有合适的尺寸、形状及物理性质,同时,与集基体间的界面性质也是关键因素。镁合金加入合金元素后会析出第二相,阻碍位错的滑移与运动,滑移位错间也可相互作用,阻碍彼此相对运动,从而提高了屈服强度。 起到析出强化作用的合金元素需要满足的条件:1高温下,合金化元素具有足够大的固溶度,且其固溶度随着温度的降低而减小。这样,随着温度的降低,才可逐渐析出第二相;o在基体中的合金化元素扩散速度不宜太快,这样可以减少位错的攀移;?镁的含量在析出相中所占比例足够大。在析出第二相时,镁元素析出的较多,合金用量降低。 2.2 弥散强化[4] 弥散强化的强化机制和析出强化相似,也是析出第二相,阻碍位错的滑移和攀升。析出强化的第二相是在固相中析出的,而弥散强化的析出相颗粒是在合金凝固过程中产生的,即从液相中析出。这些弥散强化相熔点高,且不溶于基体,具有优良的热力学稳定性。 在室温下,位错滑移受到弥散析出的颗粒相阻碍,将合金的性能提高;在高温下,析出相逐渐变得软化粗大,这就导致其失去了部分强化效果,却依然能阻止位错的移动,使合金依然具有较高的力学性能。 3 不同合金元素的强化作用[5] 3.1 铝元素 铝在固态镁合金中的溶解度较大,最大的固溶度可达到12.7%。温度改变时,铝的固溶度会随之改变,温度越低,固溶度越小,达到室温后,其固溶度只有2.0%左右。合金加入铝元素后,其可铸造性得以改善,进而铸件的强度得以提高。但是,晶界上析出了Mg17Al12,使合金的抗蠕变性能降低。特别是AZ91合金中Mg17A l12的析出量很高。铸造镁合金中,铝含量达到7%~9%。而变形镁合金中,铝含量一般可以控制在3%~5%。铝含量越高,耐腐蚀性越好,但应力腐蚀敏感性而增大。 3.2 锌元素 ? 101 ? X收稿日期:2011-11-28 作者简介:丁亚茹(1981-),女,内蒙古呼和浩特市,主要从事铝电解生产、氧化铝溶出等方面的研究。

AM60B镁合金等温热处理过程中的组织演变

第39卷 第1期有色金属加工Vo l 39 No 12010年2月 NONFERROUS METALS PROCESS I NG Feb ruary 2010 A M 60 B 镁合金等温热处理过程中的组织演变 王瑞权,张大华,张军宝 (兰州理工大学材料科学与工程学院,甘肃兰州730050) 摘 要:借助于液淬技术、光学显微镜和电子显微镜,考察了等温热处理技术制备AM 60B 镁合金非枝晶锭料的可能性,研究了AM 60B 镁合金的微观组织演变。结果表明:AM 60B 镁合金铸件经过620 60m i n 半固态等温热处理后,枝晶状的铸态组织变成圆整的球状半固态组织;半固态等温热处理过程中非枝晶组织的形成主要是由于原子扩散和能量起伏等原因造成。 关键词:AM 60B 镁合金;半固态;等温热处理;组织演变 中图分类号:TG156;TG 146 文献标识码:A 文章编号:1671-6795(2010)01-0017-04 收稿日期:2009-04-27 作者简介:王瑞权(1983-),男,河南南阳人,在读研究生,主要从 事镁合金半固态触变成型技术的研究。 镁合金是目前实际应用中最轻的一种金属结构材料,它具有比重小、比强度和比刚度高,阻尼性、切削加工性好等优点,广泛应用于航空航天、汽车、电子等行业的零部件制造上,成为全球交通和电子制造业的研发热点 [1-4] 。但是,镁合金力学性能差成为制约 其发展的一个重要问题,半固态触变压铸不仅可以提高镁合金强度,而且具有成形温度低、凝固收缩小、缺陷和偏析减少、晶粒尺寸细小、模具寿命延长等优点,被专家学者誉为21世纪新一代新兴金属加工方法。其工艺步骤一般包括制备非枝晶组织锭料、二次加热和触变成形。半固态等温热处理作为一种半固态枝晶组织坯料制备方法,其能够在半固态成形前的二次加热过程中直接把原材料锭坯变为半固态非枝晶组织坯料,省略了传统半固态成形中专门的非枝晶坯料的制备工序,因而很好地防止镁合金的氧化燃烧,且还具有工艺简单、成本低廉等优点 [5] 。本文正是采用 半固态等温热处理法,以AM 60B 铸造镁合金为研究 对象,观察其在半固态等温热处理中的组织演变,探讨其组织演变的机理。 1 实验材料和方法 实验采用商用AM 60B 镁合金铸锭,其合金成分如表1所示。合金在GD J X 0405型电阻炉中重熔,精炼剂选用C 2C l 6,精炼温度为720 ,精炼保温10m in 后,降温到705 浇入预热的金属型模具中得到 15 150mm 的圆锭试样,然后加工制备成 15 10mm 的圆柱试样进行等温热处理。热处理设备选用SRJ 45型箱式电阻炉和D WK -702型温控仪。控温时测温热电偶与试样的表面相接触,以减少测温误差。在试样放入电阻炉中的同一时刻开始计时,达到保温时间后立刻水淬取样。试样用3%HNO 3水溶液腐蚀,在MEF 3金相显微镜上观察组织变化。 表1 A M 60B 镁合金成分 A l Zn M n S i Cu N i Fe Be M g 5.8-6.2 !0.18 0.30-0.40 !0.04 !0.005 !0.001 !0.003 0.0008-0.0015 B al an ce 2 实验结果与分析 2.1 铸态组织特征 图1a 所示为AM 60B 镁合金枝晶组织的金相照 片,图中初生相 相(白色)以树枝晶形态存在,沿 相不连续分布的灰黑色组织为( + )共晶组织。图1b 所示为AM 60B 镁合金共晶组织以及少量的A M l n 相的显微扫描照片,图中白色部分为连续分布的共晶M g 17A l 12,颗粒状的为A M l n 相。由图可见,共晶组织M g 17A l 12粗大且聚集,呈团簇状或块状分布在 枝晶界面上 [6] 。 2.2 等温热处理过程的组织演变与分析 AM 60B 镁合金在不同保温温度和保温时间下的

镁铝合金表面处理工艺大全

铝表面处理工艺 一、选材 1.1铝合金6061:镁铝6061-T651是6系合金的主要合金,是经热处理预拉伸工艺的高品质铝合金产品;镁铝6061具有加工性能极佳、良好的抗腐蚀性、韧性高及加工后不变形、上色膜容易、氧化效果极佳等优良特点。主要用途:广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如制造卡车、塔式建筑、船舶、电车、铁道车辆。 6061典型用途:代表用途包括航天固定装置、电器固定装置、通讯领域,也广泛应用于自动化机械零件、精密加工、模具制造、电子及精密仪器、SMT、PC板焊锡载具等等。 1.2电镀是在表面添加一层金属保护层。阳极氧化是把表面一层人为按要求用电化学进行氧化,用这层氧化层作保护层。铝不好电镀,但氧化铝很硬(可作磨料),化学性能又特好(不会再氧化,不受酸腐蚀),比一般金属还好,还可以染成各种颜色。所以铝件一般用阳极氧化。

二、工艺类型、效果图、厂家调研 2.1氧化工艺

喷砂可以使丝印时,印料和承印物的结合更加牢固。均匀适当的喷砂处理,基本上可以克服铝材表面常见的缺陷。详见附录

2.2、喷涂工艺

1、表面处理工艺:机壳漆 机壳漆金属感极好,耐醇性佳,可复涂PU或UV光油。玩具油漆重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 963、欧洲标准EN71、EN1122。 2、表面处理工艺:变色龙 随不同角度而变化出不同颜色。是一种多角度幻变特殊涂料,使你的商品价值提高,创造出无懈可击的超卓外观效果。 3、表面处理工艺:电镀银涂料 电镀银漆是一款无毒仿电镀效果油漆,适用ABS、PC、金属工件,具有极佳的仿电镀效果和优异的耐醇性。 4、表面处理工艺:橡胶漆 适用范围:ABS、PC、PS、PP、PA以及五金工件。 产品特点:本产品为单组份油漆,质感如同软性橡胶,富有弹性,手感柔和,具有防污、防溶剂等功能。这种油漆干燥后可得涂丝印。重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 963、欧洲标准EN71、EN1122。 5、表面处理工艺:导电漆 适用于各种PS 及ABS 塑料制品;导电导磁、对外界电磁波、磁力线都能起到屏蔽作用;在电气功能上达到以塑料代替金属的目的。电阻值可根据客人要求调试。重金属含量符合国际安全标准,包括CPSC 含铅量标准、美国测试标准ASTMF-963 、欧洲标准EN71 、EN1122。 6、表面处理工艺:UV油 高性能UV固化光油,类似钢琴漆。 7、表面处理工艺:珠光粉-ZG001 珠光颜料广泛应用于化妆品、塑料、印刷油墨及汽车涂料等行业。珠光颜料的主要类型有:天然鱼鳞珠光颜料、氯氧化铋结晶珠光颜料、云母涂覆珠光颜料。 8、表面处理工艺:夜光漆 夜光粉是一种能在黑暗中发光的粉末添加剂;它可以与任何一种透明涂层或外涂层混和使用,效果更显著,晚上发光时间长达8小时! 2.3、印刷工艺

碳钢的热处理及组织观察实验

《材料科学基础A2》 实验指导书 江苏科技大学材料机械与冶金学院 2010年6月

实验1:碳钢的热处理操作、组织观察及硬度测定综合实验 一、实验目的 1. 了解硬度计的原理、初步掌握布氏、洛氏硬度计的使用; 2. 了解碳钢的热处理工艺操作; 3. 研究碳钢加热温度、冷却速度、回火温度对钢性能的影响; 4. 观察热处理后的组织及其变化。 二、实验内容 1.按表1中的热处理工艺进行操作,并对热处理后的各样品进行硬度测定,将硬度值填入表1中。 注:保温时间可按1分钟/每毫米直径计算;回火保温时间均为30分钟,然后取出空冷。 1

2. 观察下列表2热处理后的金相试样,并画出组织示意图。 三、实验原理 (一)硬度计的原理 1.洛氏硬度 洛氏硬度是以顶角为120°的金刚石圆锥体(或直径为Φ1.588㎜的淬火钢球)作压头,以规定的试验力使其压入试样表面。试验时,先加初试验力,然后加主试验力。压入试样表面之后卸除主试验力,在保留初试验力的情况下,根据试样表面压痕深度,确定被测金属材料的洛氏硬度值。洛氏硬度值由h的大小确定,压入深度h越大,硬度越低;反之,则硬度越高。一般说来,按照人们习惯上的概念,数值越大,硬度越高。因此采用一个常数c减去h来表示硬度的高低。并用每0.002mm的压痕深度为一个硬度单位。由此获得的硬度值称为洛氏硬度值,用符号HR表示。由此获得的洛氏硬度值HR 为一无名数,试验时一般由试验机指示器上直接读出。洛氏硬度的三种标尺中,以HRC应用最多,一般经淬火处理的钢或工具都采用HRC测量。在中等硬度情况下,洛氏硬度HRC与布氏硬度HBS之间关系约为1:10,如40HRC 相当于400HBS 。如50HRC,表示用HRC标尺测定的洛氏硬度值为50。硬度值应在有效测量范围内(HRC为20-70)为有效。 2.布氏硬度 布氏硬度是以一定的试验力如:187.5kg\250kg\3000kg等载荷把用一定直径的钢球或硬质合金球压入材料表面,保持一段时间,去载后,负

关于AM50镁合金组织和合金相的研究

合金和化合物杂志 关于AM50镁合金组织和合金相的研究 摘要 不同状态的AM50镁合金(从铸造到固溶体和时效处理)的微观结构及合金阶段的综合研究,已经出现在了现有的论文中。 Al–Mn 相和它们对合金的电化学性能的影响受到了特别的关注。结果显示Al–Mn合金相是铸态、固溶处理和时效处理后AM50镁合金中的主要合金相。它们非常耐高温,几乎保持不变的形态、分布及数量。当固溶处理温度达到410?C,大多数Mg17Al12相在铸态合金中可能会减少,而且它在时效处理时沉淀为增强相。根据的微观结构和相应的显微硬度分析,人们认为AM50 的强化机制可能不限于沉淀增强;例如底部构造和重新分布的合金元素的一些其他因素也可能会发挥关键作用。电化学实验进一步表明Al–Mn相不利于抵抗正在考虑中的合金的腐蚀,尤其是当富铝α-Mg和Mg17Al12相的消除。 1.简介 镁及镁合金的极具吸引力的力学性能提高了许多技术的应用,特别是在汽车工业中的使用。在各种商业镁合金中,由于AM系列镁合金足够的强度、良好的铸造性能和耐腐蚀性能,因此它们是最广泛使用的。然而,AM 系列合金的全球研究主要重点在于铸造技术、成形性和其在该行业中的应用。基本的工作,例如微观结构、合金相,以及对它们的热处理影响极为少见。 与此同时,AM 系列合金属于Mg–Al 系,通常会添加锰来减少对铁的耐腐蚀的有害影响。锰的少量加入会通过Al–(Fe,Mn) 粒子的形成减少熔炼体中铁的浓度,其中一些沉淀在坩埚底部,其它的在凝固过程中嵌入铸件。据报道,这种粒子的大小通常范围从0.1 到 30μm,他们的形态似乎形成十字架、针、花和短角块状结构;这些粒子的可能的合金相是Al6Mn,Al4Mn,Al8Mn5和铁浓度很少或没有铁浓度的AlMn。最近的研究显示Al–Mn 的不同相有不同的输出电流密度,因此对Mg–Al 系列合金的腐蚀性有不同的效果。富铝粒子像Al6Mn和Al4Mn显示较低输出电流密度,而那些像Al8Mn5和AlMn含锰浓度高显示出了相当高的输出电流密度。因此后者可能不利于合金的耐腐蚀问题,除了对耐腐蚀性能的影响,Al–Mn 相也能充当导致晶粒细化的异质成核的地方。然而,这种影响目前仍不清楚,Haitham et al最近报道了Al–Mn相可能有裂纹的形成有关。显然,Al–Mn相Mg–Al 系列合金性能有密切的联系。不幸的是,随着这种合相受到更多的关注,关于Al–Mn 相的研究显得非常有限。为了研究微观结构和合金相、尤其是在AM系列合金中Al–Mn相的研究,有关AM50显微组织和合金相从固态到固溶和时效处理的重要研究已经出现在了现今的论文当中。种类、大小、形态、分布和目标合金中Al–Mn 相的含量受到了特别的关注。另外,显微硬度测试和电化学测试也说明了微观结构与力学性能的相关的联系。2.实验步骤 2.1 热处理实验 实验中采用含有铝5.07%,锰0.297%,锌0.168%, 硅0.0398%,铁0.001%, 铜0.0018%, 镍0.0003%, 铍0.0012%, 氯0.0005%和94.4204%镁的商业铸态AM50 镁合金铸块。因为在Mg–Al 系中,广泛发现共晶和粗共晶的存在可能影响Al–Mn

浅谈镁合金材料的热处理方法

浅谈镁合金材料的热处理方法 摘要:镁在地壳中的含量很高,但由于纯镁的抗拉强度和硬度很低,所以在生产生活中一般通过加入合金元素,与镁形成固溶体进而提高其力学性能。除此以外镁合金还可进行热处理,主要包括T2、T4、T5、T6 等热处理方法,改善合金使用性能和工艺性能、发挥材料潜力的一种有效的方法。镁合金热处理的目的是在不同程度上改善它的力学性能,比如抗拉强度、屈服强度、硬度、塑性、冲击韧性和伸长率等。 镁是在自然界中分布最广的十个元素之一,在地壳中是第八丰富的元素,约占地球壳层质量的1.93%。其在海洋质量含量为0.13% 。镁的抗拉强度和硬度很低。一般通过加入合金元素,与镁形成固溶体,或是在固溶体中加入一定数量的过剩强化相来强化合金,即固溶强化和第二相强化[1] 。除此加入合金元素外还可以通过热处理来提高 镁合金的性能[2] 。热处理是改善合金使用性能和工艺性能、发挥材料潜力的一种有效的方法。镁合金热处理的目的是在不同程度上改善它的力学性能,比如抗拉强度、屈服强度、硬度、塑性、冲击韧性和伸长率等。其热处理方法有以下几类:T1—部分固溶加自然时效;T2 —铸后退火;T3—固溶加冷加工;T4 —固溶处理;T5—人工时效;T6—固溶处理加人工时效;T7 —固溶处理加稳定化处理;T8 —固溶处理、冷加工加人工时效。其中最常用的为T2 、T4、T5、T6 热处理方法。 关键词:镁合金热处理材料成型 一、T2 、T 4、T 5、T 6 热处理方法 1 T 2 处理 又称均质化退火,其目的是消除铸件在凝固过程中形成的晶内偏析。减小或消除变形镁合金制品在冷热加工、成形、校正和焊接过程中产生的残余应力,也可以消除铸件或铸锭中的残余应力。凝固过程中模具的约束、热处理后冷却不均匀或者淬火引起的收缩等都会导致镁合金铸件中出现残余应力。此外,机加工过程中也会产生残余应力,所以在最终机加工前最好进行中间去应力退火处理。 2 T4 处理[3] T4即固溶处理后进行自然时效。镁合金中合金元素固溶到A—Mg 基体中形成固溶体时,镁合金的强度、硬度会得到提高,称为固溶强化,而这个过程就称为固溶处理。加热温度越高,镁合金中强化相和合金元素溶解得也就越充分,固溶处理后的力学性能也就越高。固溶过程中,保温时间与加热温度相互关联的,加热温度越高,保温时间就相对越短。然而加热温度过高或者保温

相关文档
最新文档