温差解释

温差解释
温差解释

气温日较差与年较差规律总结

气温日较差亦称气温日振幅,是一天中气温最高值与最低值之差。其大小与纬度、季节、天气情况及地表性质等有关。

1.气温日较差与纬度的关系:纬度越高,日较差越小。

原因:纬度越高,太阳高度的日变化越小。

2.气温日较差与天气的关系:阴天比晴天日较差小。

3.气温日较差与海陆的关系:沿海比内陆日较差小。

4.气温日较差与海拔的关系:山顶的气温日较差比山下平原小;大尺度的高原山地地区,则海拔越高,日较差越大。

气温年较差:一年中月平均气温的最高值和最低值之差,称为气温年较差,或称气温年振幅。其大小与纬度、海陆分布等因素有关。

1.气温年较差与纬度的关系:纬度越高,年较差越大。

原因:纬度越高正午太阳高度的年变化越大,昼夜长短的年变化越大,因而气温的年较差越大;低纬相反。

2.气温年较差与海陆的关系:离海越远,年较差越大。

原因:陆地比海洋的热容量小,夏季升温快,温度比海洋高;冬季降温快,温度比海洋低,因而气温年较差比海洋大。沿海受海洋的影响较大,比内陆年较差小。

这里需要说明的是,青藏高原气温年较差与我国同纬度平原、盆地比较,气温年较差小。这是因为:青藏高原属于中低纬的大高

原,夏季因其海拔高,气温不太高;冬季因纬度低,且受高大地形的影响,南下的寒冷气流影响不到,气温不太低。

影响气温日较差的因素有:

(1)纬度气温日较差随纬度的升高而减小。这是因为一天中太阳高度的变化是随纬度的增高而减小的。一般热带地区气温日较差为12℃左右;温带地区气温日较差为8.0~9.0℃;极圈内气温日较差为3.0~4.0℃。

(2)季节一般夏季气温日较差大于冬季,但在中高纬度地区,一年中气温日较差最大值却出现在春季。因为虽然夏季太阳高度角大,日照时间长,白天温度高,但由于中高纬度地区昼长夜短,冷却时间不长,使夜间温度也较高,所以夏季气温日较差不如春季大。

(3)地形低凹地(如盆地、谷地)的气温日较差大于平地,平地大于凸地(如小山丘)的气温日较差。低凹地形,空气与地面接触面积大,通风不良,热量不易散失,并且在夜间常为冷空气沿山坡下沉汇合之处,加上辐射冷却,故气温日较差大。而凸出地形上部由于海拔高和方圆面积小的关系,气温受地表影响小而主要受周围空气的调节,白天不易升高,夜晚也不容易降低.气温日较差通常比同纬度的平地小气温日较差小,平地则介于两者之间,山谷大于山

峰;高原大于平原:如青藏高原,海拔

高,空气稀薄,大气质量、水汽、杂质相对较少。白天,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射量大,晚上大气逆

辐射弱,所以气温日较差较大;长江中下游平原,地势低平,水域面积大,大气质量、水汽、杂质集中在对流层底部。白天,大气对太阳辐射的削弱作用强,晚上大气逆辐射强,所以气温日较差较小。

(4)下垫面性质由于下垫面的比热特性和对太阳辐射吸收能力的不同,气温日较差也不同。陆地上气温日较差大于海洋,且距海越远,日较差越大。沙土、深色土、干松土壤上的气温日较差分别比粘土、浅色土和潮湿紧密土壤大,旱地比水田大。

(5)天气晴天气温日较差大于阴(雨)天的气温日较差,因为晴天时,白天太阳辐射强烈,地面增温强烈,夜晚地面有效辐射强降温强烈。大风天的气温日较差较小。

(6)地势不论什么地方,都是离地面越近,日较差越大,因为大气的直接热源是地面长波辐射

不能一概而论盆地日温差大于山地。

干旱盆地日温差可能大于山地,湿润盆地日温差可能小于山地。湿润盆地夜间虽有山地下沉冷空气,但中部有上升气流,促使水汽多而使保温作用增强,同时白天云雾多,对阳光发射作用强。因而日温差小于山地。

我认为盆地日温差大小还要看具体位置,如盆地边缘的山麓大于盆地中心地区。

纬度越高,太阳运行轨迹面与地面的夹角越小,在一天内太阳高度角的变化比纬度低的地区小,所以低纬度的气温日较差大于高纬度的气温日较差

低纬度与高纬度都从晚上24点开始计算,这时候太阳高度都没有,都在丧失热量,在不考虑昼夜长短和天气状况的前提下,丧失的热量相差不大,但是等太阳出来的时候,低纬地区正午太阳高度角大于高纬度地区,由此可以知道白天获得的热量是低纬度更多。这样低纬度气温上升更快,形成了昼夜温差大的情况。

以上解释仅从太阳高度这个角度考虑,完全未考虑昼夜长短、天气状况、下垫面状况等其他情况,实际情况复杂得多

如何解释"气温日较差低纬大于高纬,凹地大于高地"

因为低纬地区的太阳高度的日变化大于高纬地区

凹地:

1、气流不通畅,湍流交换弱,局地大气受下垫面影响更大

2、地处周围山坡的围绕之中,与大陆接触面积大,而陆地的增热与冷却都快,所以凹地气温的日变化大于山顶

3、夜间吹较冷的山风

一、“高处不胜寒”的三种原因

经常在教学中遇到学生对青藏高原等山地气温低的原因就简单回答:地势高。甚至有

的参考书也如此讲解,其实这很易对学生产生误

导。同样是海拔较高,而产生的“高处不胜寒”却应该分为三种情况来分析:

1.平原高空的“高处不胜寒”

这应该是较简单,学生易解释清楚的一种情况。由于地面是大气热量的主要直接热源,在平原的上空,由于离地较远,所以,高空气温较低。另外,高空湍流也使其气温不高。

2.山地的“高处不胜寒”

在高山上,海拔增加,山地近地面大气比同纬度平原近地面大气稀薄,对太阳辐射的削弱少,太阳辐射因此很强。可是因为山地在同海拔地区地面面积较平原地区小,所以即使太阳辐射强,可地面小,使地面吸收热量,发出的长波辐射有限。因此也就导致山地大气得到的来自山地的地面辐射较少,使得气温不高。此外,山地的地形复杂,植被较多,并且云雾较多也削弱了一定高度下的太阳辐射。另外,山地海拔较高,也使山地的湍流交换作用较强,风力较大,使气温不会太高。因而“高处不胜寒”。

3.高原地区的“高处不胜寒”

高原地区同样有着高海拔,空气稀薄的特点,因此太阳辐射很强。然而高原地区与山地不同,大气与陆面接触面积比山地大,地面辐射较多。在强烈的太阳辐射下,广阔的地面增温并产生了比山地多的地面辐射。可地面辐射的增多并没形成平原地区那样的较高气温,原因仍然在于其稀薄的大气,由于大气稀薄,水汽、二氧化碳较少,使大气吸收地面长波辐射的能力很弱,即大气的保

温作用弱,使整个地气系统的热量流失很快。这样,大气的气温也就不会很高了,同样导致了“高处不胜寒”。比较起来,同纬度平原地区近地面空气密度大等因素,使其对大气的保温作用强,地气系统的热量流失慢,故气温较高。

由此可见,同样是“高处不胜寒”,不同地形下,原因不同。简单总结,平原高空大气是离地面这热源太远而“供热不足”;高山地区的大气是地面小而“供热不足”和高空风力的影响;而高原上的大气是太阳辐射和地面辐射强而大气保温作用弱使气温不高。青藏高原的气温低的根本原因应该是空气稀薄,且水汽和二氧化碳等含量少、大气的保温作用弱

二、地形与气温较差的关系及原因

在人教版教材高一上里有个表格比较了济南和泰山的气温日较差,引起了很多学生关于地形与气温较差关系与原因的讨论。对于这个问题,我们仍应该分情况来进行对比分析。

1.山地与同纬度平原地区气温较差的差异

地形凹凸和形态的不同,对气温也有明显的影响。在凸起地形如山顶,因大气与陆面接触面积小

,受到地面日间增热、夜间冷却的影响较小,又因风速较大,湍流交换强,再加上夜间地面

附近的冷空气可以沿坡下沉,而交换来自由大气中较暖的空气,因此气温日较差、年较差皆较小;凹陷地形则相反,气流不通畅,湍流交换弱,又处于周围山坡的围绕之中,白天在强烈阳光下,

地温急剧增高,影响下层气温,夜间地面散热快,又因冷气流的下沉,谷底和盆地底部特别寒冷,因此气温日较差很大。

以山地为例,不同的地形条件在山地气温日变化中的作用也不同。山顶处的气温日较差最小,山谷的气温日较差最大,而山坡平地介于二者之间。如黄山全年平均气温较低,只有7.9℃,年较差也偏小,仅为20.3℃。说明山顶的气候状况与山下地区的气候状况相比较,更接近于海洋性气候的特征,夏凉冬温,年较差不大,适宜于人们生活。冬季山谷带出现临时性逆温现象,即冬季夜晚冷空气密度大,沿山坡流入山谷底部,在一定高度的山坡地带,温度反而比谷底高。与同纬度平原区相比,除谷地外,山区的气温日变化一般较小。

2.同纬度地区高原与平原气温较差的比较

与同纬度地区的平原相比,高原的气候资源一般具有气温日较差大而年较差较小的特点。高原与山地不同,大气与陆面接触面积比山地大,地面辐射较多。由于白天大量吸收太阳辐射,地面温度急剧升高,加速了近地面空气的升温作用;夜间,地面以长波辐射迅速散热降温,由于高原大气保温作用弱,热量大量向空中散失,使近地面气温迅速下降,因而高原上各地日较差大。形成高原年较差小的原因是,由于受海拔高度的影响大大超过了纬度的影响,使年内气温变化有所减缓,年振幅相对较小。夏季温度比较低,而冬季的温度不太低,导致气温年变化较小。

(1)日较差以青藏高原为例,在我国,青藏高原气温因为太阳辐射强烈,日出后地表升温快,即使在冬季,在阳光下也会感到温和如春;日落后,由于空气稀薄、水汽含杂质少,地表容易散热等项原因,降温迅速;所以青藏高原日较差比同纬度东部地区大,表明这里具有大陆性气候的特征。如拉萨、日喀则等地年平均日较差均在14~16℃。与此相比较,北京、西安为10~12℃,成都、武汉、南京为7~8.5℃。阿里地区、藏北高原、柴达木盆地等地的日较差约17℃左右,即使日较差较小地区如班戈湖、申扎、三江河谷、青海东部等地区其日较差也多为14℃左右。另外高原地区内部日较差也还有差异,其具体差异的大小与地形、植被、干湿程度等有关,如柴达木盆地干燥,多

晴少雨,白天日晒增温急剧,夜间地面辐射强,降温快,其日较差就比较大。而在多阴雨的藏东南地区,白天增温不高,夜间云层

低,地面辐射相对较弱,降温少,所以昼夜温差较小。

(2)年较差青藏高原与同纬度中国东部地区相比,气温年较差稍小(按特征来说,也算是大的),年较差比同纬度东部地区要小4~6℃以上。主要的原因是由于受海拔高度的影响大大超过了纬度的影响:海拔高,本身气温就很低;夏季云量增多、太阳辐射减弱,加上高原上空的空气又不断向四周散发热量,所以夏季气温不高;而冬季,东西走向的高大山脉,阻挡了北来冷空气的入侵,没有“象东部平原地区受近地层纬寒冷的冬季风的影

响”这样的强降温因素,而且冬季晴朗而海拔高的优势也更使其能受到较多太阳辐射,所以气温下降不甚剧烈。这样夏季温度比较低,而冬季的温度不太低,使年内气温变化有所减缓,年振幅相对较小。如青海大部分地区气温年较差在26℃以下,其中班玛县和囊谦县气温年较差均在20℃以下,较中国相近纬度的华东、华中、华北地区都小。西藏自治区南部拉萨、昌都、日喀则等地的年较差为18-20℃,而纬度相近的武汉、南京是26℃;西藏北部的气温年较差略大,一般达26~30℃,但比起来纬度接近的兰州气温年较差也达到了30~31℃。

此外,青藏高原气温变化由于受多种因素的影响,使得内部各地气温年较差也不一样。一般来说,青藏高原气温年较差是北部大南部小,西部大东部小。东南部气温年变化较小是由于所处的地理纬度较低,冬季干燥,冬季接受的太阳辐射较多。局部地区增温比较明显,所以,冬季相对而言不太冷,导致气温年变化较小。可见,气温年较差的大小与纬度有关,南部较差小,往北逐渐增加;其次是与水分状况密切相联,随大陆性加强而增大,呈现东南小、西北大的趋势。

由上可知,山地和高原的气温较差和同纬度的平原地区比较,有明显区别:山地气温年较差和日较差一般比同纬度平原较小,而高原则比同纬度平原日较差较大而年较差较小,不可混为一谈。(雾的形成:白天气温高,空气可容纳较多的水汽,到了夜间,温度下降,空气中可容纳的水汽含量减少了,因此一部分水汽会

凝结成雾。特别是秋冬季节,由于夜长,而且出现无云风小的机会较多,地面山热较夏天更迅速,以至地面温度急剧下降,这样使得近地面空气中的水汽,容易在后半夜到早晨达到饱和而凝结成小水珠,形成雾。秋冬清晨的气温最低,便是雾最浓的时刻。——山谷比山

顶水汽更易凝结形成雾)

在大尺度地形区,海拔越高,日较差越大(如青藏高原,海拔高,日较差大)在中小尺度地形区,海拔越高,日较差越小(例如泰山日较差一年

四季总地域附近平原上的济南)

为什么山地比附近平原气温日较差小呢?。主要原因有以下三个方面:第一,受对流层大气的热量来源影响。对流层大气的主要热源直接来自下垫面,所以气温随下垫面温度的变化而变化。受下垫面温度变化的影响,对流层大气越靠近下垫面,平均气温越高,气温的日变化幅度越大;离下垫面越远,平均气温越低,气温的日变化幅度越小。(山顶与大陆接触的面积小)第二,受山地云雾热力状况作用的影响。泰山海拔高,气温低,大气中云雾多,白天对太阳辐射的反射率大。第三,山地气温受周围“自由大气”的调节作用的影响。山地海拔高,空气流动性好,利于与周围“自由大气”进行交换。白天山地气温升高时,由于气温低、日较差小,同一高度的“自由大气”对其起到一定的降温作用。夜晚,由于山地上空大气稀薄,保温作用弱,气温下降快,同一高度的

“自由大气”减小了山地气温的下降幅度,所以山地气温日较差就小于附近平原气温日较差。

(低凹地(如盆地、谷地)大于平地,平地大于凸地(如小山丘)的气温日较差。低凹地形,空气与地面接触面积大,通风不良,热量不易散失,并且在夜间常为冷空气沿山坡下沉汇合之处,加上辐射冷却,故气温日较差大。而凸出地形上部由于海拔高和方圆面积小的关系,气温受地表影响小而主要受周围空气的调节,白天不易升高,夜晚也不容易降低.气温日较差通常比同纬度的平地小气温日较差小,平地则介于两者之间,山谷大于山峰;高原大于平原:如青藏高原,海拔高,空气稀薄,大气质量、水汽、杂质相对较少。白天,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射量大,晚上大气逆辐射弱,所以气温日较差较大;

那么大尺度地形区为什么又会“温度的日较差与高度成正比,海拔越高,日较差越大”呢?青藏高原由于海拔高,空气密度小,受大气热力状况的影响,白天大气对太阳辐射的削弱作用低,晚上大气对地面辐射的保温作用差,因此白天升温快,夜晚降温快。所以气温的日较差就大。长江中下游平原,地势低平,水域面积大,大气质量、水汽、杂质集中在对流层底部。白天,大气对太阳辐射的削弱作用强,晚上大气逆辐射强,所以气温日较差较小。

温差解释

气温日较差与年较差规律总结 气温日较差亦称气温日振幅,是一天中气温最高值与最低值之差。其大小与纬度、季节、天气情况及地表性质等有关。 1.气温日较差与纬度的关系:纬度越高,日较差越小。 原因:纬度越高,太阳高度的日变化越小。 2.气温日较差与天气的关系:阴天比晴天日较差小。 3.气温日较差与海陆的关系:沿海比内陆日较差小。 4.气温日较差与海拔的关系:山顶的气温日较差比山下平原小;大尺度的高原山地地区,则海拔越高,日较差越大。 气温年较差:一年中月平均气温的最高值和最低值之差,称为气温年较差,或称气温年振幅。其大小与纬度、海陆分布等因素有关。 1.气温年较差与纬度的关系:纬度越高,年较差越大。 原因:纬度越高正午太阳高度的年变化越大,昼夜长短的年变化越大,因而气温的年较差越大;低纬相反。 2.气温年较差与海陆的关系:离海越远,年较差越大。 原因:陆地比海洋的热容量小,夏季升温快,温度比海洋高;冬季降温快,温度比海洋低,因而气温年较差比海洋大。沿海受海洋的影响较大,比内陆年较差小。 这里需要说明的是,青藏高原气温年较差与我国同纬度平原、盆地比较,气温年较差小。这是因为:青藏高原属于中低纬的大高

原,夏季因其海拔高,气温不太高;冬季因纬度低,且受高大地形的影响,南下的寒冷气流影响不到,气温不太低。 影响气温日较差的因素有: (1)纬度气温日较差随纬度的升高而减小。这是因为一天中太阳高度的变化是随纬度的增高而减小的。一般热带地区气温日较差为12℃左右;温带地区气温日较差为8.0~9.0℃;极圈内气温日较差为3.0~4.0℃。 (2)季节一般夏季气温日较差大于冬季,但在中高纬度地区,一年中气温日较差最大值却出现在春季。因为虽然夏季太阳高度角大,日照时间长,白天温度高,但由于中高纬度地区昼长夜短,冷却时间不长,使夜间温度也较高,所以夏季气温日较差不如春季大。 (3)地形低凹地(如盆地、谷地)的气温日较差大于平地,平地大于凸地(如小山丘)的气温日较差。低凹地形,空气与地面接触面积大,通风不良,热量不易散失,并且在夜间常为冷空气沿山坡下沉汇合之处,加上辐射冷却,故气温日较差大。而凸出地形上部由于海拔高和方圆面积小的关系,气温受地表影响小而主要受周围空气的调节,白天不易升高,夜晚也不容易降低.气温日较差通常比同纬度的平地小气温日较差小,平地则介于两者之间,山谷大于山 峰;高原大于平原:如青藏高原,海拔 高,空气稀薄,大气质量、水汽、杂质相对较少。白天,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射量大,晚上大气逆

温差地理知识文档

青藏高原昼夜温差大的原因 青藏高原昼夜温差大的根本原因是海拔高。青藏高原平均海拔4000米以上,导致高原地面上空空气稀薄,水汽、尘埃含量也少,白天,太阳辐射到达地面过程中,不仅通过大气路程短(比平原地区),且稀薄的气体对其削弱作用也少,因此,地面得到的太阳辐射多,气温相对较高,(但由于高原上空空气稀薄,吸收地面辐射能力弱,与同纬度平原地区相比,气温仍是低的);夜里,因稀薄的气体对地面的保温作用弱,气温则迅速下降。难怪藏族同胞为了避免由气温日变化大导致衣着穿脱之麻烦,而将穿时开合方便的藏袍作为自己的民族服装。 山上比山下日温差小的原因 主要有以下两个方面的原因:首先,地面是大气的直接热源.地面通过地面辐射、对流和湍流等将热量传给大气。下垫面的地形状况不同,对大气温度的影响也不同。凸地、平地、凹地在面积相同的情况下,辐射到大气中的热量是不同的。凸地最分散,凹地最集中,平地介于两者之间。所以地面温度的变化,凸地地形对大气的影响最小,凹地地形对大气的影响最大,所以虽然山顶地面日温差大,但其对大气的影响却较小。其次,通过大气运动而进行的热交换也是造成山顶气温日较差小的原因。白天,山顶近地面的热空气随热力环流流入谷地,而谷地的冷空气流到山顶;夜晚,山顶近地面冷空气沉入谷地,而周围较暖的空气流到山顶,所以山顶的气温日较差较小,而山谷的气温日较差较大。 一般情况下, 无太阳辐射时山上山下气温相差不大(山上比山下略低);由于地面是大气的直接热源,有太阳辐射时山下升温迅速,气温更高;这样,山上比山下温差小 山上气压低,气温低,山下相反。垂直距力升高1000米,气温下降6度。 山上长年低温,温差相对较小。山下东冷夏热,温差相对较大。

温差电致冷导体致冷也叫温差电致冷是利用半导体材料的温差电效应

温差电致冷 导体致冷也叫温差电致冷是利用半导体材料的温差电效应——即珀尔帖效应来实现致冷的一门新兴技术。如果把不同极性的两种半导体材料(P型、N型),联接成电偶对,通过直流电流时就发生能量的转移;电流由N型元件流向P型元件时便吸收热量,这个端面为冷面,电流由P型元件流向N型元件时便放出热量,这个端面为热面。如图所示: 2、温差电致冷的优越性 a、体积小重量轻,具有致冷和加热两种功能:改变直流电源的极性,同一致冷器可实现加热和致冷两种功能。 b、精确温控:使用闭环温控电路,精度可达+-0.1oC。 c、高可靠性:致冷组件为固体器件,无运动部件,因此失效率低。寿命大于二十万小时。 d、工作时无声:与机械制冷系统不一样,工作时不产生噪音。 e、可使用常规电源:致冷器对电源要求不高。可使用一般直流电源,工作电压和电流可在大范围内调整。12V额定电压,实际可使用到8V-14V,开关电源和变压器电源均可,波纹系数在10%以内。 f、可实现点致冷:可只冷却一专门的元件或特定的面积。 g、具有发电能力:若在致冷组件两面建立温差,则可产生直流电。一、预备知识: 1.Peltier effect(珀尔帖效应): 珀尔帖效应的论述很简单——当电流通过热电偶时,其中一个结点散发热而另一个结点吸收热,这个现象由法国物理学家Jean Peltier在1834年发现。 2.P型半导体 半导体材料的一种形式,其导带中的电子密度超过了价带中的空穴密度。P型材料通过增加受主(acceptor)杂质来形成,例如在硅上掺杂硼。 3.N型半导体 半导体材料的一种形式,在导带中的电子密度大于在价带中的空穴密度的半导体,N型材料通过对硅的晶体结构中加入施主杂质(掺杂)——比如砷或磷——来得到。 二、珀尔帖效应应用 半导体致冷器是由半导体所组成的一种冷却装置,於1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。如图是由X及Y两种不同的金属导线所组成的封闭线路。

温差电效应及其应用

温差电效应及其应用 摘要: 本文首先系统阐述了温差电效应,包括温差电效应现象的发现和基本内容,接着介绍了近年来温差电效应研究的应用,重点介绍温差电效应在温度测量、温差发电和温差电制冷方面的最新应用,最后对温差电效应在一些新科技领域的潜在应用进行了展望。 关键词: 温差电效应;温差发电;温差电制冷。 引言: 温差电效应研究是一门古老而又年轻的学科,它很好的将温度差异和电压的产生两者联系起来,被广泛应用于高温测量、温差发电等领域。构成温差电技术的基础有三个基本效应:塞贝克效应、珀尔帖效应和汤姆逊效应。早在1821年,德国科学家塞贝克就发现了温差电的第一个效应,所以,人们称之为塞贝克效应——将两种不同的金属连接,构成一个闭合回路,如果两个接头处存在温差,回路中便产生电流。该效应便成了温差发电的技术基础。1834年法国科学家珀尔帖发现电致冷所依赖的珀尔帖效应,它是塞贝克效应的逆效应——将两种不同的金属连接,构成一个闭合回路,如果回路中存在直流电流,两个接头之间便会产生温差。而第三个效应——汤姆逊效应,是汤姆逊在1856年发现的。 1.温差电效应 将两种不同的金属相连接,并在两接头处保持不同的温度,电路中将存在温度梯度和化学势梯度,因而同时产生热流和粒子流,出现交叉现象。这就是温差电效应【1】。由A、B 两种金属接成的热电偶,在两接点处保持不同的温度 T 和 T+ΔT ,发现,回路中两接点将产生电势差,并且与两接点处的温度差ΔT成正比,即Δζ=εABΔT,其中εAB 是温差电动势系数,它与材料及温度有关。Je表示电流密度【2】。

2.温差电效应的应用 可能现在大家对温差电效应有所了解,然而,在温差电现象发现后一百多年里,却一直未得到实际的应用,原因就是利用金属合金做成的温差电偶的温差电致冷效应很弱,温差电技术真正复兴,可以认为是从20世纪30年代开始,杰出的苏联物理学家——约飞,最早提出了用半导体材料,作为温差电换能的材料,特别是首先提出的固熔体合金的概念,为近现代温差电技术的研发与实际应用奠定了理论与技术基础。直到二十世纪五十年代,由于半导体科学技术的发展,科学家发现用半导体材料构成的温差电偶,其温差电效应相当显著。之后,许多科学家在这方面做出了杰出贡献,到六十年代,温差电致冷达到了实用化阶段。 前苏联的俄罗斯、乌克兰等国家,曾首先在温差发电和温差电致冷方面进行了最广泛的研究。现在,他们的科研成果正逐渐从航天、军事领域向市场需求方面转化。美国也是温差电技术的强国之一,而且美国研究温差电的技术领域得到美国政府,尤其是军方的支持。从六七十年代开始,我国的科研人员才对温差电技术展开了较广泛的研究,这使我国目前已成为世界上温差电产品生产量最大的国家之一,产品的技术性能也接近国际先进水平。 半导体材料的研发与应用,极大地推动了温差电技术的发展。目前,温差电已形成了一个新的行业,新产品不断出现,整个行业处在上升阶段,发展前景十分广阔。随着技术的发展,也随着氟里昂等具有温室效应的制冷剂在全球禁用,温差电致冷技术显得越来越显得重要,市场会越来越大【3】。 2.1 温度测量 温度测量方面的典型代表是温差电偶温度计。温差电偶温度计是一种工业上广泛应用的测温仪器。它的制成,就是利用了温差电现象。两种不同的金属丝焊接在一起形成工作端,另两端与测量仪表连接,形成电路。把工作端放在被测温度处,工作端与自由端温度不同时,就会出现电动势,因而有电流通过回路。通过电学量的测量,利用已知处的温度,就可以测

提高蒸发系统有效温差的意义及方法

龙源期刊网 https://www.360docs.net/doc/0e4989616.html, 提高蒸发系统有效温差的意义及方法 作者:王勇 来源:《中国化工贸易·上旬刊》2020年第02期 摘要:影响蒸发结晶设备能力的因素有蒸发系统的设备形式、加热器换热面积及有效传热温差,中试厂蒸发器的类型,加热器的面积和材质,都是已经安装好定了型的,所以提高传热效率的最有效手段,在于增加有效温差,本文阐述了有效温差的概念及意义,分析了我厂蒸發结晶工序有哪些温差损失,并从这些温差损失入手,采取有效手段减少温差损失,增加有效温差,提高蒸发效率。 关键词:蒸发结晶;传热温差;有效温差;温差损失;蒸发效率 1 提高有效温差的意义 氧化铝中试厂自主研发了“一步酸溶法”工艺技术,从粉煤灰中提取氧化铝、镓等产品,开创了工业化粉煤灰酸法生产氧化铝的世界先河,其中蒸发结晶工序是“一步酸溶法”工艺技术中非常重要的生产工序,随着我厂中试实验的不断深入、生产工艺的不断成熟,氧化铝产量的提升也就成了重中之重,这就要求我厂在现有的蒸发装置上不断改进,提高蒸发效率,提高氯化铝晶体的生产能力。 根据蒸发系统的传热速率公式:Q=K·A·Δt 传热速率Q越大,设备的使用效果越好,生产强度越高,我们的产量也越高。生产中我 们要力求用有限的热量投入换取较高的传热速率。从上式可知,Q值大小与蒸发设备传热面积A、传热系数K以及传热的有效温度差Δt成正比。对于我厂来说,由于蒸发设备已成定局,则换热设备的换热面积A已成定值。从我们来说,提高传热速率的途径主要是从提高传热系 数K值与增加换热的有效温度差Δt上下功夫。在假设进罐料液浓度不变,首效加热蒸汽压力稳定,循环泵转速不变的情况下,并在操作上做到不凝气、冷凝水及时彻底排除,罐内固液比控制适当,出料均匀稳定,则传热系数K可基本保持稳定值。则影响传热速率的关键因素是 有效温度差Δt,所以我们要想在现有条件上提高蒸发效率,提高产量就必须想办法提高有效 温差Δt。 2 有效温差的概念 我厂采用三效顺流蒸发系统,靠蒸汽加热的方式对氯化铝稀溶液进行蒸发、结晶,最后得到六水氯化铝晶体,蒸发过程中,真空蒸发系统能够顺利进行传热的前提条件是系统应具备传热温差,可以看做是系统传热推动力。我们可以用传热速率公式来定性的表述传热推动力,根据传热速率公式:

温差电现象及其应用温差发电机

温差电现象及其应用——温差发电机 2010级化学物理系龚科PB10206089 摘要:本文分为两部分:第一部分介绍温差电现象的产生机理,包含汤姆孙效应、珀尔帖效应和塞贝克效应的介绍.第二部分介绍温差电现象的一种利用,即温差发电机的应用现状及前景. 关键词:温差电现象汤姆孙效应珀尔帖效应塞贝克效应温差电发电机 正文: 一、温差电现象产生机理 由两种不同材料制成的结点由于受到某种因素作用而出现了温差,就有可能在两结点间产生电动势,回路中产生电流,这就是温差电效应.所产生的电动势称为温差电动势,在一定范围内,温差电动势在数值上正比于两接点处的温度差,即 ε=a(T1-T2),(1)其中,a为塞贝克系数,在数值上等于单位温度差所引起的电动势.金属的温差电效应较小,a为0~80μV·K-1,用于测量温度,半导体温差电效应较大,a为50~103μV·K-1,可用来制造温差发电机.温差电效应由德国物理学家塞贝克于1821年首先发现;1834年,法国实验科学家珀尔帖发现了它的反效应:两种不同金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差,即珀尔帖效应.1837年,俄国物理学家楞次又发现,电流的方向决定了吸收热量还是产生热量,发热(制冷)量的多少与电流大小成正比.温差电效应根据具体作用原理及表现形式,有汤姆逊效应、帕尔贴效应、赛贝克效应三种. 1、汤姆孙效应 汤姆孙效应即导体两端有温差时产生电动势的现象.其机理是金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大.像气体一样,当温度不均匀时会产生热扩散,在温度低端堆积起来,从而在导体内形成电场在金属棒两端便形成一个电势差.这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止. 2、珀尔帖效应 珀尔帖效应就是电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量.由珀尔帖效应产生的热流量称作珀尔帖热.珀尔帖效应的物理解释是:电荷载体在导体中运动形成电流.由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量.能量在两材料的交界面处以热的形式吸收或放出. 1837年,俄国物理学家楞次(Lenz,1804~1865)发现,电流的方向决定了吸收还是产生热量,发热(制冷)量的多少与电流的大小成正比,比例系数称为“帕尔帖系数”. Q=л·I=a·Tc·I,(2)其中л=a·Tc 式中:Q——放热或吸热功率π——比例系数,称为珀尔帖系数I——工作电流a——温差电动势率Tc——冷接点温度. 珀尔帖效应最主要的应用就是半导体制冷.半导体制冷片具有以下优势:(1)可以把温度降至室温以下;(2)精确温控(使用闭环温控电路,精度可达±0.1℃);(3)高可靠性(致冷组件为固体器件,无运动部件,寿命超过20万小时,失效率低);(4)没有工作噪音.此应用不作为本文的主要内容,故不作详细介绍. 3、塞贝克效应 在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电

温差发电装置

温差发电的概念很广,只要利用了温度差产生电能都能算。 其实目前标准的温差发电机仅仅是两种材料之间的温差发电,原理就是将两种不同类型的热电转换材料N和P的一端结合并将其置于高温状态,另一端开路并给以低温时,由于高温端的热激发作用较强,空穴和电子浓度也比低温端高,在这种载流子浓度梯度的驱动下,空穴和电子向低温端扩散,从而在低温开路端形成电势差;如果将许多对P型和N型热电转换材料连接起来组成模块,就可得到足够高的电压,形成一个温差发电机。 简单的说就是2种不同材料(半导体或金属)连接时,如果两边温度不同导体中就产生电流(是没有机械运动的,与热胀冷缩无关)。这种方法产生的电动势比较小,是最基本的温差发电。 在实际应用中温差发电虽然在发电过程中具有无噪音、无磨损、无介质泄漏、体积小、重量轻、移动方便、使用寿命长等优点,但长久以来受热电转换效率和较大成本的限制,温差电技术向工业和民用产业的普及受到很大制约。虽然最近几年随着能源与环境危机的日渐突出,以及一批高性能热电转换材料的开发成功,温差发电技术的研究又重新成为热点,但突破的希望还是在于转换效率的稳定提高。 目前仅在军事和航天器小功率发电方面应用较多。 温差发电的原理 热电转换材料具有3个基本效应, 即Peltier效应、Seebeck效应和Thomson效应, 这3个效应奠定了热力学中热电理论的基础, 也为热电转换材料的实际应用展示了广阔的前景. 温差电是利用材料的Seebeck效应, 通过载流子(电子和空穴)进行能量的输运. 该效应于1821年由德国人Seebeck 发现: 在两种不同金属(锑与铜)构成的回路中, 如果两个接头处存在温度差, 其周围就会出现磁场. 通过进一步的实验, Seebeck发现回路中存在电动势. Seebeck效应是制作测温热电偶、温差发电和温差电传感器的基础。 温差发电的原理如图1所示: 将两种不同类型的热电转换材料N和P的一端结合并将其置于高温状态, 另一端开路并给以低温. 由于高温端的热激发作用较强, 此端的空穴和电子浓度比低温端高, 在这种载流子浓度梯度的驱动下, 空穴和电子向低温端扩散, 从而在低温开路端形成电势差. 将许多对P型和N型热电转换材料连接起来组成模块, 就可得到足够高的电压, 形成一个温差发电机. 这种发电机在有微小温差存在的条件下就能将热能直接转化为电能, 且转换过程中不需要机械运动部件, 也无气态或液态介质存在, 因此适应范围广、体积小、重量轻、安全可靠、对环境无任何污染, 是十分理想的电源. 温差发电的灵活、绿色、安静和微小体积的特性, 使其可在许多领域发挥重要的作用。

气温、日温差、年温差

影响气温的因素 1.纬度:通过影响昼长变化、太阳高度变化影响气温变化 2.大气运动:暖气团影响增温,冷气团影响降温 3.下垫面 3.1海陆:陆地和海洋热力性质不同,所以气温变化的速度,日温差等在海和陆两种不同的下垫面状态下差异明显3.2洋流:暖流增温增湿,寒流降温减湿 3.3地形(重难点) 从大尺度上讲,海拔越高温度越低,年温差越小,日温差越大。 小尺度: ①地形阳坡温度高与同海拔的阴坡,背风坡气流下沉增温作用显著 例:太行山东坡冬半年的干热风 ②地形走向: 地形走向与移动空气垂直,对空气运动产生阻挡作用。例:我国东西向山脉秦岭、南陵、阴山、天山对冬季风的阻挡地形走向与移动空气平行,形成狭管效应,气温变化据移动空气的性质降温/增温加剧。 例:山西省长治盆地冬季历经寒潮天气的频率多于盆地两侧的高原山地 ③地形类型 盆地地形易于冷空气下沉积聚,同理暖空气在此也不易散去往往会成较周围地区极冷、极热的地区 例:马拉开波盆地是南美洲最热的地方,吐鲁番盆地同样也是中国夏季最热的地方 世界第三极俄罗斯的奥伊米亚康东、西、南三面被契尔斯基山脉和维尔霍扬斯克山脉包围,中间形成谷地,北冰洋南下的冷气团于盆地中堆积,成为北半球最寒冷的永居地之一。 3.4.人类活动,人类植树造林、修建水库、城市化发展等活动改变了下垫面性质,从而影响气温变化

影响气温日变化的因素 一天中气温的最高值出现在当地地方时14:00前后,最低值出现在日出前后。一般而言,白天温度变化幅度大于夜晚。 影响气温日变化最常见的三个因素: 1.天气:晴天?阴天晴天白天的削弱作用弱,夜晚的保温作用弱 2.海陆:越靠近内陆,气温日变化越显著。例:新疆深居亚欧大陆内部,终年受大陆气团控制,有“早穿棉袄午穿纱,围着火炉吃西瓜”一说。 3.地形(重难点) 大尺度的地形区海拔越高,日温差越大。例:青藏高原空气稀薄,大气透明度高,多晴天。白天削弱作用弱,夜晚保温作用弱。 小尺度的地形部位:日温差大小从小尺度讲应为:谷?平?峰 例:谷地地形中,谷底的日温差大于山顶。山上空气流通速度快易于热量传递,山顶陆地面积小受陆地热力调节作用弱。 影响气温年变化的因素 陆地年最高温出现在7月,海洋出现在8月。陆地年最低温出现在1月,海洋出现在2月。 影响气温年变化最常见的因素: 纬度:温带较热带寒带的气温年变化显著。温带地区,纬度越高的地方昼夜长短变化幅度越大,年温差越大。 距海远近:大陆性气候气温年变化大于海洋性气候 气候:干旱气候气温年变化大于湿润气候 植被:植被覆盖越好,气温年变化幅度越小 地形:情况复杂,例:青藏高原夏季海拔高气温低,冬季海拔高受冷空气影响弱,气温年变化小。

温差电效应及其应用

温差电效应及其应用 题目:温差效应的原来及应用 所属课程: 电磁学 院系: 物理与空间科学学院 专业: 物理学 班级: 2015级5班 姓名: 王俊 学号: 201509140524 指导老师: 刘立军 2016年12月6日

摘要:本文首先系统阐述了温差电效应,包括温差电效应现象的发现和基本内容,接着介绍了近年来温差电效应研究的应用,重点介绍温差电效应在温度测量、温差发电和温差电制冷方面的最新应用,最后对温差电效应在一些新科技领域的潜在应用进行了展望。 关键词:温差电效应;温差发电;温差电制冷 引言:温差电效应研究是一门古老而又年轻的学科,它很好的将温度差异和电压的产生两者联系起来,被广泛应用于高温测量、温差发电等领域。构成温差电技术的基础有三个基本效应:塞贝克效应、珀尔帖效应和汤姆逊效应。早在1821年,德国科学家塞贝克就发现了温差电的第一个效应,所以,人们称之为塞贝克效应——将两种不同的金属连接,构成一个闭合回路,如果两个接头处存在温差,回路中便产生电流。该效应便成了温差发电的技术基础。1834年法国科学家珀尔帖发现电致冷所依赖的珀尔帖效应,它是塞贝克效应的逆效应——将两种不同的金属连接,构成一个闭合回路,如果回路中存在直流电流,两个接头之间便会产生温差。而第三个效应——汤姆逊效应,是汤姆逊在1856年发现的。汤姆逊效应是指金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大。像气体一样,当温度不均匀时会产生热扩散,因此自由电子从温度高端向温度低端扩散,在低温端堆积起来,从而在导体内形成电场,在金属棒两端便引成一个电势差。这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止。

20.温差电效应

实验二十热电转换演示仪——温差电效应 【仪器介绍】 热电转换仪如图20-1所示,两个玻璃烧杯,温度计(两个),直流稳压电源。 图20-1 热电转换演示仪 【操作与现象】 1. 西伯克(Seebeck)效应 (1)将热电转换仪开关掷到“up”的位置。 (2)将转换仪的一边金属支架放到热水中,将另一条金属支架放到冷水中,温度计分别放入其中。 (3)过一段时间,热水中的能量就被转换成功,可以看到风扇转动起来。 (4)将热水和冷水倒入到一个更大的容器中,并将两支架都放入其中,这时风扇就不再转动了。 (5)更进一步,将一支架放到混合液中,而另一支架放入到冷水中,观察现象。 2.帕尔帖(Peltire)效应 (1)将稳压直流电源连接到热电转换仪上。 (2)将转换仪开关掷到“down”的位置,打开电源开关。 (3)等上一段时间,就可以感觉到两边金属支架的温度有差别了(注意:在这个实验中,没有必要将转换仪支架放入水中)。

(4)为了能观察得更细致,可以让转换仪从室温开始工作,经过一段时间后,用温度计分别测量两边支架的温度,以便具体地观察出温度的差异。 3.在演示完帕尔帖(Peltire )效应后,关闭电源。将转换仪开关掷到“up”的位置,等一段时间,转换仪两边支架温度不同,其之间的温差将产生电流,电风扇旋转起来。 【原理解析】 温差电效应又称为热电效应,是当受热物体中的电子,因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。在无外磁场的作用下,它包括以下几个效应: 1. 塞伯克(Seebeck )效应 有两种不同导体组成的开路中,如果导体的两个结点存在温度差,这开路中将产生电动势E ,这就是塞伯克效应。由于西伯克效应而产生的电动势称作温差电动势。 材料的塞伯克效应的大小,用温差电动势率a 表示。材料相对于某参考材料的温差电动势率为: 由两种不同材料P 、N 所组成的电偶,它们的温差电动势率PN a 等于P a 与N a 之差,即 N P PN PN a a dT dE a -== 单位()K V 热电制冷中用P 型半导体和N 型半导体组成电偶。两材料对应的P a 与N a ,一个为负,一个为正,取其绝对值相加,并将PN a 直接简化记作a ,有 N P a a a += 2. 帕尔帖(Peltire )效应 电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量。这就是帕尔帖效应。由帕尔帖效应产生的热流量称作帕尔帖热,用符号P Q 表示。 对帕尔帖效应的物理解释是:电荷载体在导体中运动形成电流。由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量。这样一来,能量就在两种不同材料的交界面处以热的形式吸收或放出。材料的帕尔贴效应强弱用它相对于某参考材料的帕尔贴系数π表示: dI dQ P =π 单位:()A W 式中I 是流经导体的电流,单位A 。 类似的,对于P 型半导体和N 型半导体组成的电偶,其帕尔贴系数PN π(或简单记作π):

温差对多肉植物的影响

温差对于多肉植物的意义 对于原产南非的多肉植物来说,大多数品种最适宜生长的温度是在12-28度之间,这个数据应该也正是原产地生长季节的高低平均温度。 以杭州为代表的江南地区,由于地处南北气流交汇斗争的地带,经常是冷空气刚走,副热带高压就占据了主导。全年能够维持12-28度的日子只有5、6、10、11大约4个月时间,其他大部分月份不是太冷就是太热,以至于时常刚脱棉衣就直接过渡到短袖,穿了两天短袖突然又要穿毛衣了。 这样的气候,人勉强可以承受,但是对于植物来说,特别是多肉植物,则是相当麻烦的。有人说,大温差能够促进植物生长。没错,昼夜温差的确能够促进植物生长,但是以天为单位的温差则不然。 植物生长的好坏,取决于体内养分积累的多少。白天,植物的光合作用是个制造养分的过程,在合理的温度上限内,温度越高,光合作用越强,制造的养分也就越多。这个过程我们可以看做是对植物养分积累的一个加分过程。 到了晚上,由于没有光,大多数植物制造养分的生理作用停止,加分为零。但是植物的蒸腾作用还是在继续。所谓蒸腾作用就是植物依靠环境温度使叶片蒸发体内的水分,同时靠蒸发作用带来的虹吸效应,促使根系吸水,这个过程是需要消耗植物体内的养分的,对于植物的养分积累也可以看做是个减分过程。环境温度越高,蒸腾作用越大,减分越多,所以一天下来植物能积聚多少养分,就取决于白天制造多少,晚上消耗多少。 通过以上的解释,相信大家应该有了认识。白天温度越高,植物制造的养分就越多,晚上温度越低,植物消耗的养分就越少。昼夜温差的效应就体现在这里。新疆的葡萄为什么甜的粘牙?新疆的番茄为什么能吃出柿子味道?不是巴郎子们

勤劳,而是“早穿皮袄午穿纱”的气候使然。 骤降起伏的气候对多肉植物的影响 好了,既然知道了这原理,就该明白突然升温、降温导致的以天为单位的温差和昼夜温差这个两个概念的区别了。 其实,气候原因突然的升、降温,对植物不但没有好处,反而有极其严重的伤害作用,不光会打乱植物的正常生理秩序,还会促使各种意外事故的发生。从生理秩序上来讲;比如春天,好不容易气温回升了一段时间,植物开始有了生长的迹象,你也已经开始屁颠颠的浇水施肥,忙的不亦乐乎。突然就降温了,刚长出来的新叶立刻僵在哪里,不说你浇下去的水,施下去的肥会有什么后果。光是这片僵住的叶子往后就可能引发你砍头的冲动。你说你不砍,好,不砍,过几个月僵叶子开始长了,上面是尖的,下面是圆的,整个一葫芦造型。这还是好的,索性全部都是这造型还能当个新品种骗骗自己。问题是一圈好叶子就这么一片葫芦叶。你说你还砍不砍?再就是意外事故,高温后突然降温倒是没事,南非多肉在短时零下是没问题的。但是低温后突然升温就麻烦了。大冬天的,气温突然回升到25度,好好花棚里闷着的,温度一下子飙到50度。完了,等你晚上回去,一棚子热腾腾的粉蒸肉等着你揭盖呢,除了这些还有病虫害,真菌等,都和温度突然的变化有关联。 温差能促使多肉植物的生长和营养物资的积累,但是必须是受控的昼夜温差,天气突然变化导致的温差,对植物有害无利。

温差发电汤姆逊效应

温差发电

温差发电 半导体材料具有较高的热电势可以成功地用来做成小型热电制冷器。图1示出N型半导体和P型半导体构成的热电偶制冷元件。用铜板和铜导线将N型半导体和P型半导体连接成一个回路,铜板和铜导线只起导电的作用。此时,一个接点变热,一个接点变冷。如果电流方向反向,那么结点处的冷热作用互易。 热电制冷器的产冷量一般很小,所以不宜大规模和大制冷量使用。但由于它的灵活性强,简单方便冷热切换容易,非常适宜于微型制冷领域或有特殊要求的用冷场所。 热电制冷的理论基础是固体的热电效应,在无外磁场存在时,它包括五个效应,导热、焦耳热损失、西伯克(Seebeck)效应、帕尔帖(Peltire)效应和汤姆逊(Thomson)效应。 一般的冷气与冰箱运用氟氯化物当冷媒,造成臭氧层的被破坏.无冷媒冰箱(冷气)因而是环境保护的重要因素.利用半导体之热电效应,可制造一个无冷媒的冰箱。 这种发电方法是将热能直接转变成电能,其转变效率受热力学第二定律即柯诺特效率(Carnotefficiency)的限制.早在1822年西伯即已发现,因而热电效应又叫西伯效应(Seebeckeffect)。 编辑本段热电第三效应——汤姆逊效应 威廉·汤姆逊1824年生于爱尔兰,父亲詹姆士是贝尔法斯特皇家学院的数学教授,后因任教格拉斯哥大学,在威廉8岁那年全家迁往苏格兰的格拉斯哥。汤姆逊十岁便入读格拉斯哥大学(你不必惊讶,在那个时代,爱尔兰的大学会取录最有才华的小学生),约在14岁开始学习大学程度的课程,15岁时凭一篇题为“地球形状”的文章获得大学的金奖章。汤姆逊后来到了剑桥大学学习,并以全年级第2名的成绩毕业。他毕业后到了巴黎,在勒尼奥的指导下进行了一年实验研究。1846年,汤姆逊再回到格拉斯哥大学担任自然哲学(即现在的物理学) 教授,直到1899年退休为止。 汤姆逊在格拉斯哥大学创建了第一所现代物理实验室;24岁时发表一部热力学专著,建立温度的“绝对热力学温标”;27岁时发表《热力学理论》一书,建立热力学第二定律,使其成为物理学基本定律;与焦耳共同发现气体扩散时的焦耳-汤姆逊效应;历经9年建立欧美之间永久大西洋海底电缆,由此获得“开尔文勋爵”的贵族称号。

相关主题
相关文档
最新文档